Biogas production from restaurant waste with the addition of co-substrate variation of tofu liquid waste and cow dung

Document Type : Research Paper

Authors

1 Environmental Engineering Program, Engineering Faculty, Riau University, Pekanbaru, Indonesia

2 Research and Development Agency the Ministry of Agriculture of the Republic of Indonesia, Bogor, Indonesia

Abstract

Restaurant waste is a potential biomass to be developed into a renewable energy, especially in biogas production. It is the main substrate for anaerobic process, as it contains many organic materials. Tofu liquid waste and cow dung have the potential to be used as an additional substrate in this process. This research aims to determine the effect of variations in the restaurant waste, tofu liquid, and cow dung composition towards the quality of methane gas in biogas production. It was conducted using a 30 liters reactor with a working volume of 22.5 liters. The substrate variables included 50%, 93.75%, and 100% variations of restaurant waste, 50% tofu liquid, and 6.25% cow dung. The results showed that the variations in the organic waste composition affected methane gas quality in biogas production. The reactor with 100% restaurant waste substrate, obtained the highest yield in each parameter. The anaerobic treatment with 100% restaurant waste substrate in reactor C yielded the highest values for each parameter. Additionally, the largest volume of biogas formed in this reactor was 109 liters, with a methane gas concentration of 51.307 ppm which is followed by reactor B and then reactor A with biogas production of 48 Liters and 45 Liters. The ratio of methane and carbon dioxide levels in the biogas formed was 60% and 40%.

Graphical Abstract

Biogas production from restaurant waste with the addition of co-substrate variation of tofu liquid waste and cow dung

Keywords

Main Subjects


[1] Wikurendra, E. A., Csonka, A., Nagy, I., & Nurika, G. (2024). Urbanization and Benefit of Integration Circular Economy into Waste Management in Indonesia: A Review. Circular Economy and Sustainability, 4(2), 1219–1248.
[2] Sasmita, A., Asmura, J., & Nurmaida, B. (2022). Analysis of CH4 Emissions and Energy Potential from the Muara Fajar 2 Final Disposal Site in Pekanbaru City. Rekayasa, 15(1), 64–70.
[3] Farsani, M. H., Yengejeh, R. J., Mirzahosseini, A. H., Monavari, M., Hassani, A. H., & Mengelizadeh, N. (2021). Study of the performance of bench-scale electro-membranes bioreactor in leachate treatment. Advances in Environmental Technology, 3, 209–220.
[4] Farahdiba, A. U., Warmadewanthi, I. D. A. A., Fransiscus, Y., Rosyidah, E., Hermana, J., & Yuniarto, A. (2023). The present and proposed sustainable food waste treatment technology in Indonesia: A review. Environmental Technology & Innovation, 32, 103256.
[5] Waluyo, & Kharisma, D. B. (2023). Circular economy and food waste problems in Indonesia: Lessons from the policies of leading Countries. Cogent Social Sciences, 9(1), 2202938.  https://doi.org/10.1080/23311886.2023.2202938
[6] Masoumi, A., & Yengejeh, R. J. (2020). Study of chemical wastes in the Iranian petroleum industry and feasibility of hazardous waste disposal. Journal of Environmental Health Science and Engineering, 18(2), 1037–1044.
[7] Lins, M., Puppin Zandonadi, R., Raposo, A., & Ginani, V. C. (2021). Food Waste on Foodservice: An Overview through the Perspective of Sustainable Dimensions. Foods, 10(6), 1175.
[8] Mohamed Ali, A., Alam, M. Z., Mohamed Abdoul-latif, F., Jami, M. S., Gamiye Bouh, I., Adebayo Bello, I., & Ainane, T. (2023). Production of Biogas from Food Waste Using the Anaerobic Digestion Process with Biofilm-Based Pretreatment. Processes, 11(3), 655.
[9] Pilarska, A. A., Kulupa, T., Kubiak, A., Wolna-Maruwka, A., Pilarski, K., & Niewiadomska, A. (2023). Anaerobic Digestion of Food Waste—A Short Review. Energies, 16(15), 5742.
[10] Bong, C. P. C., Lim, L. Y., Lee, C. T., Klemeš, J. J., Ho, C. S., & Ho, W. S. (2018). The characterisation and treatment of food waste for improvement of biogas production during anaerobic digestion – A review. Journal of Cleaner Production, 172, 1545–1558.
[11] Kurniawan, L., Maryudi, M., & Astuti, E. (2024). Utilization of Tofu Liquid Waste as Liquid Organic Fertilizer Using the Fermentation Method with Activator Effective Microorganisms 4 (EM-4): A Review. Equilibrium Journal of Chemical Engineering, 8(1), 100.
[12] Nekhubvi, V. (2024). The Investigation of Chemical Composition and the Specific Heat Capacity of Cow Dung and Water Mixture. In S. Aydin (Ed.), Anaerobic Digestion—Biotechnology for Environmental Sustainability. IntechOpen.
[13] Yulianto, R., Sukardi, S., Rusli, M. S., & Ningrum, S. S. (2023). Application of Biogas with Fermenting Bacteria from Manure Raw Material on Stoves and Generators. Agro Bali: Agricultural Journal, 6(2), 249–263.
[14]      Rianawati, E., Sagala, S., Hafiz, I., Anhorn, J., Alemu, S., Hilbert, J., Rosslee, D., Mohammed, M., Salie, Y., Rutz, D., Rohrer, M., Sainz, A., Kirchmeyr, F., Zacepins, A., & Hofmann, F. (2021). The potential of Biogas in Energy Transition in Indonesia. IOP Conference Series: Materials Science and Engineering, 1143(1), 012031.
[15] Yadav, R., Sudhishri, S., Khanna, M., Lal, K., Dass, A., Kushwaha, H. L., Bandyopadhyay, K., Dey, A., Kushwah, A., & Nag, R. H. (2023). Temporal characterization of biogas slurry: A pre-requisite for sustainable nutrigation in crop production. Frontiers in Sustainable Food Systems, 7, 1234472.
[16] Mujahidah, Mappiratu, & Rismawaty, S. (2013). Biogas Production Technology Study from Household Wet Waste. Online Jurnal of Natural Science, 2(1), 25–34.
[17] Mohamed, Z. B., Fattah, M. Y., Shehab, E. Q., & Shamkhy, A. G. (2024). Enhanced biogas production from municipal solid waste via digestion with cow manure: A case study. Open Engineering, 14(1), 20240011.
[18] Setiawan, A., & Rusdjijati, R. (2014, August). Improving the Quality of Tofu Liquid Waste Biogas Using the Taguchi Method. Seminar Nasional Teknologi dan Informatika 2014, Indonesia.
[19] Oyewusi, T. F., Soji-Adekunle, A. R., Oguntunji, M. A., Ayo, V. O., Omotosho, O., & Ogundahunsi, O. E. (2023). Biopotential Property of Maggots as Inoculum in Anaerobic Digestion of Substrates for Biogas Production.
[20] Otieno, E. O., Kiplimo, R., & Mutwiwa, U. (2023). Optimization of anaerobic digestion parameters for biogas production from pineapple wastes co-digested with livestock wastes. Heliyon, 9(3), e14041.
[21] Sasmita, A., Elystia, S., & Mulyadi, R. (2022). The Effect of Water Addition Ratio on Biogas Production from Campus Waste at Bina Widya University of Riau Using the Wet Anaerobic Digestion Method. Jurnal Rekayasa Hijau, 6(2), 117–126.
[22] Gruszczyński, M. F., Kałuża, T., Czekała, W., Zawadzki, P., Mazurkiewicz, J., Matz, R., Pawlak, M., Jarzembowski, P., Nezhad, F. S., & Dach, J. (2024). The Influence of Temperature on Rheological Parameters and Energy Efficiency of Digestate in a Fermenter of an Agricultural Biogas Plant. Energies, 17(23), 6111.
[23] Pour, F. H., & Makkawi, Y. T. (2021). A review of post-consumption food waste management and its potentials for biofuel production. Energy Reports, 7, 7759–7784.
[24] Winkler, J., Neuner, T., Hupfauf, S., Arthofer, A., Ebner, C., Rauch, W., & Bockreis, A. (2024). Impact of impeller design on anaerobic digestion: Assessment of mixing dynamics, methane yield, microbial communities and digestate dewaterability. Bioresource Technology, 406, 131095.
[25] Nyamaizi, S., Messiga, A. J., Cornelis, J.-T., & Smukler, S. M. (2022). Effects of increasing soil pH to near-neutral using lime on phosphorus saturation index and water-extractable phosphorus. Canadian Journal of Soil Science, 102(4), 929–945.
[26] Mrosso, R., Mecha, A. C., & Kiplagat, J. (2023). Characterization of kitchen and municipal organic waste for biogas production: Effect of parameters. Heliyon, 9(5), e16360.
[27] Sukphun, P., Sittijunda, S., & Reungsang, A. (2021). Volatile Fatty Acid Production from Organic Waste with the Emphasis on Membrane-Based Recovery. Fermentation, 7(3), 159.
[28] Raji, W. A., Yerima, Y., & Alufar, P. T. (2018). Comparative Study on the Rates of Production of Biogas from Organic Substrates. Energy and Power Engineering, 10(12), 508–517.
[29] Kang, A. J., & Yuan, Q. (2017). Enhanced Anaerobic Digestion of Organic Waste. In F.-C. Mihai (Ed.), Solid Waste Management in Rural Areas. InTech.
[30] Menzel, T., Neubauer, P., & Junne, S. (2020). Role of Microbial Hydrolysis in Anaerobic Digestion. Energies, 13(21), 5555.
[31] Oghoghorie, O., Erhinyodavwe, O., & Kelly Orhorhoro, E. (2024). Anaerobic co-digestion of Cow Manure and Food Waste: An investigation of biogas yield from feedstock percentage variation. Discovery, 60(336), 1–11.
[32] Yang, S., Liu, Y., Wu, N., Zhang, Y., Svoronos, S., & Pullammanappallil, P. (2019). Low-cost, Arduino-based, portable device for measurement of methane composition in biogas. Renewable Energy, 138, 224–229.
[33] Okonkwo, U. C., Onokpite, E., & Onokwai, A. O. (2018). Comparative study of the optimal ratio of biogas production from various organic wastes and weeds for digester/restarted digester. Journal of King Saud University - Engineering Sciences, 30(2), 123–129.
[34] Alengebawy, A., Ran, Y., Osman, A. I., Jin, K., Samer, M., & Ai, P. (2024). Anaerobic digestion of agricultural waste for biogas production and sustainable bioenergy recovery: A review. Environmental Chemistry Letters, 22(6), 2641–2668.
[35] Wang, X., Liu, T., Liu, Y., & Sun, Y. (2024). Effects of stirring time on anaerobic digestion of cattle manure-corn stover: Microbial diversity and metabolic pathways. Fuel, 367, 131468.
[36] Sidi Habib, S., Torii, S., S., K. M., & Charivuparampil Achuthan Nair, A. (2024). Optimization of the Factors Affecting Biogas Production Using the Taguchi Design of Experiment Method. Biomass, 4(3), 687–703.
[37] Borowski, M., Życzkowski, P., Łuczak, R., Karch, M., & Cheng, J. (2019). Tests to Ensure the Minimum Methane Concentration for Gas Engines to Limit Atmospheric Emissions. Energies, 13(1), 44.
[38] Ali, H., Faraj, J., & Hussien, F. (2021). Effect of pH on biogas production during anaerobic digestion. Journal of University of Shanghai for Science and Technology, 23(08), 224–231.
[39] Tao, B., Zhang, Y., Heaven, S., & Banks, C. J. (2020). Predicting pH rise as a control measure for integration of CO2 biomethanisation with anaerobic digestion. Applied Energy, 277, 115535.
[40] Ramdiana, R. (2017). The Effect of Composition Variations in a Mixture of Palm Sugar Liquid Waste and Cow Dung on Biogas Production. Eksergi, 14(2), 12.
[41] Gensollen, G., Pourcher, A.-M., Duedal, A.-L., Picard, S., Le Roux, S., & Peu, P. (2022). Impact of pH in the first-stage of a two-stage anaerobic digestion on metabolic pathways and methane production. Bioresource Technology Reports, 20, 101256.
[42] Uddin, M. M., & Wright, M. M. (2023). Anaerobic digestion fundamentals, challenges, and technological advances. Physical Sciences Reviews, 8(9), 2819–2837. https://doi.org/10.1515/psr-2021-0068
[43] Huus, K. E., & Ley, R. E. (2021). Blowing Hot and Cold: Body Temperature and the Microbiome. mSystems, 6(5).
[44] Strąk-Graczyk, E., & Balcerek, M. (2020). Effect of Pre-hydrolysis on Simultaneous Saccharification and Fermentation of Native Rye Starch. Food and Bioprocess Technology, 13(6), 923–936.
[45] Sugiarto, Y., Wijayanti, U. R., Sunyoto, N. M. S., Maharsih, I. K., Andriani, R. D., & Anugroho, F. (2023). The Effect of Biochar Particle Size on Biogas Production Using Bread Waste Substrate. Jurnal Keteknikan Pertanian Tropis Dan Biosistem, 11(1), 105–115.
[46] Lv, Z., Ran, X., Liu, J., Feng, Y., Zhong, X., & Jiao, N. (2024). Effectiveness of Chemical Oxygen Demand as an Indicator of Organic Pollution in Aquatic Environments. Ocean-Land-Atmosphere Research, 3, 0050. https://doi.org/10.34133/olar.0050
[47] Solera, R., Romero, L. I., & Sales, D. (2001). Measurement of Microbial Numbers and Biomass Contained in Thermophilic Anaerobic Reactors. Water Environment Research, 73(6), 684–690.
[48] Sun, M., Liu, B., Yanagawa, K., Ha, N. T., Goel, R., Terashima, M., & Yasui, H. (2020). Effects of low pH conditions on decay of methanogenic biomass. Water Research, 179, 115883.
[49] Gonzalez, J. M., & Aranda, B. (2023). Microbial Growth under Limiting Conditions-Future Perspectives. Microorganisms, 11(7), 1641. https://doi.org/10.3390/microorganisms11071641
[50] Atasoy, M., & Cetecioglu, Z. (2022). The effects of pH on the production of volatile fatty acids and microbial dynamics in long-term reactor operation. Journal of Environmental Management, 319, 115700. https://doi.org/10.1016/j.jenvman.2022.115700
[51] Fu, S., Angelidaki, I., & Zhang, Y. (2021). In situ Biogas Upgrading by CO2-to-CH4 Bioconversion. Trends in Biotechnology, 39(4), 336–347.
[52] Owusu-Agyeman, I., Plaza, E., & Cetecioglu, Z. (2020). Production of volatile fatty acids through co-digestion of sewage sludge and external organic waste: Effect of substrate proportions and long-term operation. Waste Management, 112, 30–39. https://doi.org/10.1016/j.wasman.2020.05.027
[53] Muñoz-Duarte, L., Chakraborty, S., Grøn, L. V., Bambace, M. F., Catalano, J., & Philips, J. (2024). H2 consumption by various acetogenic bacteria follows first-order kinetics up to H2 saturationhttps://doi.org/10.1101/2024.05.08.593002
 
 
Volume 12, Issue 1
January 2026
Pages 76-88
  • Receive Date: 11 March 2025
  • Revise Date: 21 December 2025
  • Accept Date: 22 December 2025