[1] Wikurendra, E. A., Csonka, A., Nagy, I., & Nurika, G. (2024). Urbanization and Benefit of Integration Circular Economy into Waste Management in Indonesia: A Review. Circular Economy and Sustainability, 4(2), 1219–1248.
[2] Sasmita, A., Asmura, J., & Nurmaida, B. (2022). Analysis of CH4 Emissions and Energy Potential from the Muara Fajar 2 Final Disposal Site in Pekanbaru City. Rekayasa, 15(1), 64–70.
[3] Farsani, M. H., Yengejeh, R. J., Mirzahosseini, A. H., Monavari, M., Hassani, A. H., & Mengelizadeh, N. (2021). Study of the performance of bench-scale electro-membranes bioreactor in leachate treatment. Advances in Environmental Technology, 3, 209–220.
[4] Farahdiba, A. U., Warmadewanthi, I. D. A. A., Fransiscus, Y., Rosyidah, E., Hermana, J., & Yuniarto, A. (2023). The present and proposed sustainable food waste treatment technology in Indonesia: A review. Environmental Technology & Innovation, 32, 103256.
[5] Waluyo, & Kharisma, D. B. (2023). Circular economy and food waste problems in Indonesia: Lessons from the policies of leading Countries.
Cogent Social Sciences,
9(1), 2202938.
https://doi.org/10.1080/23311886.2023.2202938
[6] Masoumi, A., & Yengejeh, R. J. (2020). Study of chemical wastes in the Iranian petroleum industry and feasibility of hazardous waste disposal. Journal of Environmental Health Science and Engineering, 18(2), 1037–1044.
[7] Lins, M., Puppin Zandonadi, R., Raposo, A., & Ginani, V. C. (2021). Food Waste on Foodservice: An Overview through the Perspective of Sustainable Dimensions. Foods, 10(6), 1175.
[8] Mohamed Ali, A., Alam, M. Z., Mohamed Abdoul-latif, F., Jami, M. S., Gamiye Bouh, I., Adebayo Bello, I., & Ainane, T. (2023). Production of Biogas from Food Waste Using the Anaerobic Digestion Process with Biofilm-Based Pretreatment. Processes, 11(3), 655.
[9] Pilarska, A. A., Kulupa, T., Kubiak, A., Wolna-Maruwka, A., Pilarski, K., & Niewiadomska, A. (2023). Anaerobic Digestion of Food Waste—A Short Review. Energies, 16(15), 5742.
[10] Bong, C. P. C., Lim, L. Y., Lee, C. T., Klemeš, J. J., Ho, C. S., & Ho, W. S. (2018). The characterisation and treatment of food waste for improvement of biogas production during anaerobic digestion – A review. Journal of Cleaner Production, 172, 1545–1558.
[11] Kurniawan, L., Maryudi, M., & Astuti, E. (2024). Utilization of Tofu Liquid Waste as Liquid Organic Fertilizer Using the Fermentation Method with Activator Effective Microorganisms 4 (EM-4): A Review. Equilibrium Journal of Chemical Engineering, 8(1), 100.
[12] Nekhubvi, V. (2024). The Investigation of Chemical Composition and the Specific Heat Capacity of Cow Dung and Water Mixture. In S. Aydin (Ed.), Anaerobic Digestion—Biotechnology for Environmental Sustainability. IntechOpen.
[13] Yulianto, R., Sukardi, S., Rusli, M. S., & Ningrum, S. S. (2023). Application of Biogas with Fermenting Bacteria from Manure Raw Material on Stoves and Generators. Agro Bali : Agricultural Journal, 6(2), 249–263.
[14] Rianawati, E., Sagala, S., Hafiz, I., Anhorn, J., Alemu, S., Hilbert, J., Rosslee, D., Mohammed, M., Salie, Y., Rutz, D., Rohrer, M., Sainz, A., Kirchmeyr, F., Zacepins, A., & Hofmann, F. (2021). The potential of Biogas in Energy Transition in Indonesia. IOP Conference Series: Materials Science and Engineering, 1143(1), 012031.
[15] Yadav, R., Sudhishri, S., Khanna, M., Lal, K., Dass, A., Kushwaha, H. L., Bandyopadhyay, K., Dey, A., Kushwah, A., & Nag, R. H. (2023). Temporal characterization of biogas slurry: A pre-requisite for sustainable nutrigation in crop production. Frontiers in Sustainable Food Systems, 7, 1234472.
[16] Mujahidah, Mappiratu, & Rismawaty, S. (2013). Biogas Production Technology Study from Household Wet Waste. Online Jurnal of Natural Science, 2(1), 25–34.
[17] Mohamed, Z. B., Fattah, M. Y., Shehab, E. Q., & Shamkhy, A. G. (2024). Enhanced biogas production from municipal solid waste via digestion with cow manure: A case study. Open Engineering, 14(1), 20240011.
[18] Setiawan, A., & Rusdjijati, R. (2014, August). Improving the Quality of Tofu Liquid Waste Biogas Using the Taguchi Method. Seminar Nasional Teknologi dan Informatika 2014, Indonesia.
[19] Oyewusi, T. F., Soji-Adekunle, A. R., Oguntunji, M. A., Ayo, V. O., Omotosho, O., & Ogundahunsi, O. E. (2023). Biopotential Property of Maggots as Inoculum in Anaerobic Digestion of Substrates for Biogas Production.
[20] Otieno, E. O., Kiplimo, R., & Mutwiwa, U. (2023). Optimization of anaerobic digestion parameters for biogas production from pineapple wastes co-digested with livestock wastes. Heliyon, 9(3), e14041.
[21] Sasmita, A., Elystia, S., & Mulyadi, R. (2022). The Effect of Water Addition Ratio on Biogas Production from Campus Waste at Bina Widya University of Riau Using the Wet Anaerobic Digestion Method. Jurnal Rekayasa Hijau, 6(2), 117–126.
[22] Gruszczyński, M. F., Kałuża, T., Czekała, W., Zawadzki, P., Mazurkiewicz, J., Matz, R., Pawlak, M., Jarzembowski, P., Nezhad, F. S., & Dach, J. (2024). The Influence of Temperature on Rheological Parameters and Energy Efficiency of Digestate in a Fermenter of an Agricultural Biogas Plant. Energies, 17(23), 6111.
[23] Pour, F. H., & Makkawi, Y. T. (2021). A review of post-consumption food waste management and its potentials for biofuel production. Energy Reports, 7, 7759–7784.
[24] Winkler, J., Neuner, T., Hupfauf, S., Arthofer, A., Ebner, C., Rauch, W., & Bockreis, A. (2024). Impact of impeller design on anaerobic digestion: Assessment of mixing dynamics, methane yield, microbial communities and digestate dewaterability. Bioresource Technology, 406, 131095.
[25] Nyamaizi, S., Messiga, A. J., Cornelis, J.-T., & Smukler, S. M. (2022). Effects of increasing soil pH to near-neutral using lime on phosphorus saturation index and water-extractable phosphorus. Canadian Journal of Soil Science, 102(4), 929–945.
[26] Mrosso, R., Mecha, A. C., & Kiplagat, J. (2023). Characterization of kitchen and municipal organic waste for biogas production: Effect of parameters. Heliyon, 9(5), e16360.
[27] Sukphun, P., Sittijunda, S., & Reungsang, A. (2021). Volatile Fatty Acid Production from Organic Waste with the Emphasis on Membrane-Based Recovery. Fermentation, 7(3), 159.
[28] Raji, W. A., Yerima, Y., & Alufar, P. T. (2018). Comparative Study on the Rates of Production of Biogas from Organic Substrates. Energy and Power Engineering, 10(12), 508–517.
[29] Kang, A. J., & Yuan, Q. (2017). Enhanced Anaerobic Digestion of Organic Waste. In F.-C. Mihai (Ed.), Solid Waste Management in Rural Areas. InTech.
[30] Menzel, T., Neubauer, P., & Junne, S. (2020). Role of Microbial Hydrolysis in Anaerobic Digestion. Energies, 13(21), 5555.
[31] Oghoghorie, O., Erhinyodavwe, O., & Kelly Orhorhoro, E. (2024). Anaerobic co-digestion of Cow Manure and Food Waste: An investigation of biogas yield from feedstock percentage variation. Discovery, 60(336), 1–11.
[32] Yang, S., Liu, Y., Wu, N., Zhang, Y., Svoronos, S., & Pullammanappallil, P. (2019). Low-cost, Arduino-based, portable device for measurement of methane composition in biogas. Renewable Energy, 138, 224–229.
[33] Okonkwo, U. C., Onokpite, E., & Onokwai, A. O. (2018). Comparative study of the optimal ratio of biogas production from various organic wastes and weeds for digester/restarted digester. Journal of King Saud University - Engineering Sciences, 30(2), 123–129.
[34] Alengebawy, A., Ran, Y., Osman, A. I., Jin, K., Samer, M., & Ai, P. (2024). Anaerobic digestion of agricultural waste for biogas production and sustainable bioenergy recovery: A review. Environmental Chemistry Letters, 22(6), 2641–2668.
[35] Wang, X., Liu, T., Liu, Y., & Sun, Y. (2024). Effects of stirring time on anaerobic digestion of cattle manure-corn stover: Microbial diversity and metabolic pathways. Fuel, 367, 131468.
[36] Sidi Habib, S., Torii, S., S., K. M., & Charivuparampil Achuthan Nair, A. (2024). Optimization of the Factors Affecting Biogas Production Using the Taguchi Design of Experiment Method. Biomass, 4(3), 687–703.
[37] Borowski, M., Życzkowski, P., Łuczak, R., Karch, M., & Cheng, J. (2019). Tests to Ensure the Minimum Methane Concentration for Gas Engines to Limit Atmospheric Emissions. Energies, 13(1), 44.
[38] Ali, H., Faraj, J., & Hussien, F. (2021). Effect of pH on biogas production during anaerobic digestion. Journal of University of Shanghai for Science and Technology, 23(08), 224–231.
[39] Tao, B., Zhang, Y., Heaven, S., & Banks, C. J. (2020). Predicting pH rise as a control measure for integration of CO2 biomethanisation with anaerobic digestion. Applied Energy, 277, 115535.
[40] Ramdiana, R. (2017). The Effect of Composition Variations in a Mixture of Palm Sugar Liquid Waste and Cow Dung on Biogas Production. Eksergi, 14(2), 12.
[41] Gensollen, G., Pourcher, A.-M., Duedal, A.-L., Picard, S., Le Roux, S., & Peu, P. (2022). Impact of pH in the first-stage of a two-stage anaerobic digestion on metabolic pathways and methane production. Bioresource Technology Reports, 20, 101256.
[42] Uddin, M. M., & Wright, M. M. (2023). Anaerobic digestion fundamentals, challenges, and technological advances.
Physical Sciences Reviews,
8(9), 2819–2837.
https://doi.org/10.1515/psr-2021-0068
[43] Huus, K. E., & Ley, R. E. (2021). Blowing Hot and Cold: Body Temperature and the Microbiome. mSystems, 6(5).
[44] Strąk-Graczyk, E., & Balcerek, M. (2020). Effect of Pre-hydrolysis on Simultaneous Saccharification and Fermentation of Native Rye Starch. Food and Bioprocess Technology, 13(6), 923–936.
[45] Sugiarto, Y., Wijayanti, U. R., Sunyoto, N. M. S., Maharsih, I. K., Andriani, R. D., & Anugroho, F. (2023). The Effect of Biochar Particle Size on Biogas Production Using Bread Waste Substrate. Jurnal Keteknikan Pertanian Tropis Dan Biosistem, 11(1), 105–115.
[46] Lv, Z., Ran, X., Liu, J., Feng, Y., Zhong, X., & Jiao, N. (2024). Effectiveness of Chemical Oxygen Demand as an Indicator of Organic Pollution in Aquatic Environments.
Ocean-Land-Atmosphere Research,
3, 0050.
https://doi.org/10.34133/olar.0050
[47] Solera, R., Romero, L. I., & Sales, D. (2001). Measurement of Microbial Numbers and Biomass Contained in Thermophilic Anaerobic Reactors. Water Environment Research, 73(6), 684–690.
[48] Sun, M., Liu, B., Yanagawa, K., Ha, N. T., Goel, R., Terashima, M., & Yasui, H. (2020). Effects of low pH conditions on decay of methanogenic biomass. Water Research, 179, 115883.
[50] Atasoy, M., & Cetecioglu, Z. (2022). The effects of pH on the production of volatile fatty acids and microbial dynamics in long-term reactor operation.
Journal of Environmental Management,
319, 115700.
https://doi.org/10.1016/j.jenvman.2022.115700
[51] Fu, S., Angelidaki, I., & Zhang, Y. (2021). In situ Biogas Upgrading by CO2-to-CH4 Bioconversion. Trends in Biotechnology, 39(4), 336–347.
[52] Owusu-Agyeman, I., Plaza, E., & Cetecioglu, Z. (2020). Production of volatile fatty acids through co-digestion of sewage sludge and external organic waste: Effect of substrate proportions and long-term operation.
Waste Management,
112, 30–39.
https://doi.org/10.1016/j.wasman.2020.05.027
[53] Muñoz-Duarte, L., Chakraborty, S., Grøn, L. V., Bambace, M. F., Catalano, J., & Philips, J. (2024).
H2 consumption by various acetogenic bacteria follows first-order kinetics up to H2 saturation.
https://doi.org/10.1101/2024.05.08.593002