[1] Al-Tohamy, R., Ali, S. S., Li, F., Okasha, K. M., Mahmoud, Y. A. G., Elsamahy, T., Jiao, H., Fu, Y. & Sun, J. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety.
Ecotoxicology and environmental safety, 231, 113160.
https://doi.org/10.1016/j.ecoenv.2021.113160
[2] Olisah, C., Adams, J. B., & Rubidge, G. (2021). The state of persistent organic pollutants in South African estuaries: A review of environmental exposure and sources. Ecotoxicology and Environmental Safety, 219, 112316.
https://doi.org/10.1016/j.ecoenv.2021.112316
[3] Almroth, B. C., Cartine, J., Jönander, C., Karlsson, M., Langlois, J., Lindström, M., Lundin, J., Melander, N., Pesqueda, A., Rahmqvist, I., & Sturve, J. (2021). Assessing the effects of textile leachates in fish using multiple testing methods: From gene expression to behavior.
Ecotoxicology and Environmental Safety, 207, 111523.
https://doi.org/10.1016/j.ecoenv.2020.111523
[4] Teng, T. T., & Low, L. W. (2012). Removal of dyes and pigments from industrial effluents. In Advances in water treatment and pollution prevention (pp. 65-93). Dordrecht: Springer Netherlands.
https://doi.org/10.1007/978-94-007-4204-8_4
[5] Satishkumar, P., Isloor, A. M., Rao, L. N., & Farnood, R. (2024). Fabrication of 2D vanadium MXene polyphenylsulfone ultrafiltration membrane for enhancing the water flux and for effective separation of humic acid and dyes from wastewater.
ACS omega, 9(24), 25766-25778.
https://doi.org/10.1021/acsomega.3c10078
[6] Hebbar, R. S., Isloor, A. M., Abdullah, M. S., Ismail, A. F., & Asiri, A. M. (2018). Fabrication of polyetherimide nanocomposite membrane with amine functionalised halloysite nanotubes for effective removal of cationic dye effluents. Journal of the T
aiwan Institute of Chemical Engineers, 93, 42-53.
https://doi.org/10.1016/j.jtice.2018.07.03
[7] Mohan, D., Sarswat, A., Ok, Y. S., & Pittman Jr, C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review.
Bioresource technology, 160, 191-202.
https://doi.org/10.1016/j.biortech.2014.01.120
[8] Gupta, C., Pant, P., & Mishra, S. (2023). Removal of Organic and Inorganic Contaminants from Water Using Nanosponge Cyclodextrin Polyurethanes. In Nanosponges for Environmental Remediation (pp. 169-186). Cham: Springer Nature Switzerland.
https://doi.org/10.1007/978-3-031-41077-2_8
[9] Akbar, S. A., & Khairunnisa, K. (2024). Seaweed-based biosorbent for the removal of organic and inorganic contaminants from water: a systematic review. In BIO Web of Conferences (Vol. 87, p. 02011). EDP Sciences.
https://doi.org/10.1051/bioconf/20248702011
[11] Kajekar, A. J., Dodamani, B. M., Isloor, A. M., Karim, Z. A., Cheer, N. B., Ismail, A. F., & Shilton, S. J. (2015). Preparation and characterization of novel PSf/PVP/PANI-nanofiber nanocomposite hollow fiber ultrafiltration membranes and their possible applications for hazardous dye rejection.
Desalination, 365, 117-125.
https://doi.org/10.1016/j.desal.2015.02.028
[12] Hamid, N. A. A., Ismail, A. F., Matsuura, T., Zularisam, A. W., Lau, W. J., Yuliwati, E., & Abdullah, M. S. (2011). Morphological and separation performance study of polysulfone/titanium dioxide (PSF/TiO
2) ultrafiltration membranes for humic acid removal.
Desalination, 273(1), 85-92.
https://doi.org/10.1016/j.desal.2010.12.052
[13] Panda, S. R., & De, S. (2014). Preparation, characterization and performance of ZnCl
2 incorporated polysulfone (PSF)/polyethylene glycol (PEG) blend low pressure nanofiltration membranes.
Desalination, 347, 52-65.
https://doi.org/10.1016/j.desal.2014.05.030
[14] Kumar, R., Isloor, A. M., Ismail, A. F., & Matsuura, T. (2013). Performance improvement of polysulfone ultrafiltration membrane using N-succinyl chitosan as additive.
Desalination, 318, 1-8.
https://doi.org/10.1016/j.desal.2013.03.003
[15] Kumar, R., Isloor, A. M., Ismail, A. F., & Matsuura, T. (2013). Synthesis and characterization of novel water soluble derivative of chitosan as an additive for polysulfone ultrafiltration membrane.
Journal of membrane science, 440, 140-147.
https://doi.org/10.1016/j.memsci.2013.03.013
[16] Kumar, R., Isloor, A. M., Ismail, A. F., Rashid, S. A., & Al Ahmed, A. (2013). Permeation, antifouling and desalination performance of TiO
2 nanotube incorporated PSf/CS blend membranes.
Desalination, 316, 76-84.
https://doi.org/10.1016/j.desal.2013.01.032
[17] Padaki, M., Isloor, A. M., Kumar, R., Ismail, A. F., & Matsuura, T. (2013). Synthesis, characterization and desalination study of composite NF membranes of novel Poly [(4-aminophenyl) sulfonyl] butanediamide (PASB) and methyalated Poly [(4-aminophenyl) sulfonyl] butanediamide (mPASB) with Polysulfone (PSf).
Journal of Membrane Science, 428, 489-497.
https://doi.org/10.1016/j.memsci.2012.11.001
[18] Esmaili, Z., Sadeghian, Z., & Ashrafizadeh, S. N. (2024). Tailoring of BiVO
4 morphology for efficient antifouling of visible-light-driven photocatalytic ceramic membranes for oily wastewater treatment.
Journal of Water Process Engineering, 67, 106145.
https://doi.org/10.1016/j.jwpe.2024.106145
[19] Esmaili, Z., Sadeghian, Z., & Ashrafizadeh, S. N. (2023). Anti-fouling and self-cleaning ability of BiVO
4/rGO and BiVO
4/g-C
3N
4 visible light-driven photocatalysts modified ceramic membrane in high performance ultrafiltration of oily wastewater.
Journal of Membrane Science, 688, 122147.
https://doi.org/10.1016/j.memsci.2023.122147
[20] Akrami, M. R., Sadeghian, Z., & Ashrafizadeh, S. N. (2025). Oily Wastewater Treatment via a Visible-light-responsive Slurry Membrane Photocatalytic Reactor Incorporating Bi
2WO
6-Based Photocatalysts.
Chemical Engineering and Processing-Process Intensification, 110365. https://doi.org/10.1016/j.cep.2025.110365
[21] Golshenas, A., Sadeghian, Z., & Ashrafizadeh, S. N. (2020). Performance evaluation of a ceramic-based photocatalytic membrane reactor for treatment of oily wastewater.
Journal of Water Process Engineering, 36, 101186.
https://doi.org/10.1016/j.jwpe.2020.101186
[22] Sadeghian, Z., Zamani, F., & Ashrafizadeh, S. N. (2010). Removal of oily hydrocarbon contaminants from wastewater by γ-alumina nanofiltration membranes.
Desalination and Water Treatment, 20(1-3), 80-85.
https://doi.org/10.5004/dwt.2010.1154
[23] O, Sneha., Isloor, A. M., Martis, G. J., Bhat, S. P., & Mugali, P. (2024). Impact of TiO
2 and CaCO
3 nanoparticles and their incorporation in polysulfone composite membrane on photocatalytic degradation of RB 5.
Advances in Environmental Technology, 10(4), 315-325.
https://doi.org/10.22104/aet.2024.6957.1907
[24] Yousefi, V., & Kariminia, H. R. (2024). The optimization of reactive black 5 dye removal using Coprinus cinereus peroxidase (CIP).
Advances in Environmental Technology, 10(2), 85-101.
https://doi.org/10.22104/aet.2024.6444.1787
[26] Shenvi, S. S., Isloor, A. M., Ismail, A. F., Shilton, S. J., & Al Ahmed, A. (2015). Humic acid based biopolymeric membrane for effective removal of methylene blue and rhodamine B.
Industrial & Engineering Chemistry Research, 54(18), 4965-4975.
https://doi.org/10.1021/acs.iecr.5b00761
[27] Razmjou, A., Resosudarmo, A., Holmes, R. L., Li, H., Mansouri, J., & Chen, V. (2012). The effect of modified TiO
2 nanoparticles on the polyethersulfone ultrafiltration hollow fiber membranes.
Desalination, 287, 271-280.
https://doi.org/10.1016/j.desal.2011.11.025
[28] Moslehyani, A., Ismail, A. F., Othman, M. H. D., & Isloor, A. M. (2015). Novel hybrid photocatalytic reactor-UF nanocomposite membrane system for bilge water degradation and separation.
RSC Advances, 5(56), 45331-45340.
https://doi.org/10.1039/C5RA01491C
[31] Thakur, V. K., & Voicu, S. I. (2016). Recent advances in cellulose and chitosan based membranes for water purification: A concise review.
Carbohydrate polymers, 146, 148-165.
https://doi.org/10.1016/j.carbpol.2016.03.030
[32] Majid, D., Al Kholif, M., Arif, M. N., Sutrisno, J., & Zhang, J. W. (2025). Eco-friendly solutions for urban wastewater: evaluating constructed wetlands and filtration methods.
Advances in Environmental Technology, 11(2), 182-194.
https://doi.org/10.22104/aet.2025.6887.1887
[33] Yanqoritha, N., Piska, F., Ginting, B. N. B., & Mitha, N. (2024). Using biofilter aerobic reactor for optimizing the hydraulic loading rate in nitrification process for tofu-manufacturing wastewater management.
Advances in Environmental Technology, 10(4), 326-338.
https://doi.org/10.22104/aet.2024.6855.1882
[35] Liu, W., Gao, J., Zhang, F., & Zhang, G. (2007). Preparation of TiO
2 nanotubes and their photocatalytic properties in degradation methylcyclohexane.
Materials Transactions, 48(9), 2464-2466.
https://doi.org/10.2320/matertrans.MRA2007616
[38] Kumar, R., Isloor, A. M., Ismail, A. F., Rashid, S. A., & Al Ahmed, A. (2013). Permeation, antifouling and desalination performance of TiO
2 nanotube incorporated PSf/CS blend membranes.
Desalination, 316, 76-84.
https://doi.org/10.1016/j.desal.2013.01.032