Harnessing the impact of TiO2 nanotubes, TiO2 nanofibers and their incorporation in polysulfone composite membrane for the photocatalytic degradation of reactive black 5

Document Type : Research Paper

Authors

1 Department of P. G. Studies in Chemistry, Alva’s College (Autonomous), Moodubidire, P. O. Box: 574 227, Dakshina Kannada, Karnataka, India

2 Membrane and Separation Technology Laboratory, Department of Chemistry, National Institute of Technology, Karnataka, P. O. Box: 575 025, Surathkal, Mangalore, India

Abstract

Most water resources today are contaminated for various reasons. Examples are dyes that pollute aquatic systems and threaten the environment. To overcome this problem, photocatalytic decomposition is a prominent method for eradicating hazardous dyes from water. The hydrothermal synthesis of TiO2 nanotubes and nanofibers and their subsequent utility in degrading Reactive Black (RB) 5 dye is of great interest, and the resulting nanomaterials have been characterized and validated via various techniques: ultraviolet visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM) with energy dispersive analysis (EDAX). Polysulfone (PSF) composite membranes lodged with synthesized nanomaterials were tested for the degradation of RB 5 dye. As a result, dye degradation of 89.8% and 80.2% was achieved with the TiO2 nanofibers and TiO2 nanotubes, respectively. When the nanomaterials were allowed to act upon the dye solution alone, the TiO2 nanofibers degraded up to 48.7%, whereas the TiO2 nanotubes degraded up to 18.6% because the strength of the nanomaterials was not enough for dye decomposition. This study reports on the synthesis and characterization of nanomaterials, as well as their combination for an enhanced dye degradation process. 

Graphical Abstract

Harnessing the impact of TiO2 nanotubes, TiO2 nanofibers and their incorporation in polysulfone composite membrane for the photocatalytic degradation of reactive black 5

Keywords

Main Subjects


[1] Al-Tohamy, R., Ali, S. S., Li, F., Okasha, K. M., Mahmoud, Y. A. G., Elsamahy, T., Jiao, H., Fu, Y. & Sun, J. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and environmental safety, 231, 113160. https://doi.org/10.1016/j.ecoenv.2021.113160
[2] Olisah, C., Adams, J. B., & Rubidge, G. (2021). The state of persistent organic pollutants in South African estuaries: A review of environmental exposure and sources. Ecotoxicology and Environmental Safety, 219, 112316. https://doi.org/10.1016/j.ecoenv.2021.112316
[3] Almroth, B. C., Cartine, J., Jönander, C., Karlsson, M., Langlois, J., Lindström, M., Lundin, J., Melander, N., Pesqueda, A., Rahmqvist, I., & Sturve, J. (2021). Assessing the effects of textile leachates in fish using multiple testing methods: From gene expression to behavior. Ecotoxicology and Environmental Safety, 207, 111523. https://doi.org/10.1016/j.ecoenv.2020.111523
[4] Teng, T. T., & Low, L. W. (2012). Removal of dyes and pigments from industrial effluents. In Advances in water treatment and pollution prevention (pp. 65-93). Dordrecht: Springer Netherlands.  https://doi.org/10.1007/978-94-007-4204-8_4
[5] Satishkumar, P., Isloor, A. M., Rao, L. N., & Farnood, R. (2024). Fabrication of 2D vanadium MXene polyphenylsulfone ultrafiltration membrane for enhancing the water flux and for effective separation of humic acid and dyes from wastewater. ACS omega, 9(24), 25766-25778. https://doi.org/10.1021/acsomega.3c10078
[6] Hebbar, R. S., Isloor, A. M., Abdullah, M. S., Ismail, A. F., & Asiri, A. M. (2018). Fabrication of polyetherimide nanocomposite membrane with amine functionalised halloysite nanotubes for effective removal of cationic dye effluents. Journal of the Taiwan Institute of Chemical Engineers, 93, 42-53. https://doi.org/10.1016/j.jtice.2018.07.03
[7] Mohan, D., Sarswat, A., Ok, Y. S., & Pittman Jr, C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review. Bioresource technology, 160, 191-202. https://doi.org/10.1016/j.biortech.2014.01.120
[8] Gupta, C., Pant, P., & Mishra, S. (2023). Removal of Organic and Inorganic Contaminants from Water Using Nanosponge Cyclodextrin Polyurethanes. In Nanosponges for Environmental Remediation (pp. 169-186). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-41077-2_8
[9] Akbar, S. A., & Khairunnisa, K. (2024). Seaweed-based biosorbent for the removal of organic and inorganic contaminants from water: a systematic review. In BIO Web of Conferences (Vol. 87, p. 02011). EDP Sciences. https://doi.org/10.1051/bioconf/20248702011
[10] Ghasemzadeh, K., Aghaeinejad-Meybodi, A., & Basile, A. (2017). Separation theory of silica membranes. In Current Trends and Future Developments on (Bio-) Membranes (pp. 65-95). Elsevier. https://doi.org/10.1016/B978-0-444-63866-3.00004-2
[11] Kajekar, A. J., Dodamani, B. M., Isloor, A. M., Karim, Z. A., Cheer, N. B., Ismail, A. F., & Shilton, S. J. (2015). Preparation and characterization of novel PSf/PVP/PANI-nanofiber nanocomposite hollow fiber ultrafiltration membranes and their possible applications for hazardous dye rejection. Desalination, 365, 117-125. https://doi.org/10.1016/j.desal.2015.02.028
[12] Hamid, N. A. A., Ismail, A. F., Matsuura, T., Zularisam, A. W., Lau, W. J., Yuliwati, E., & Abdullah, M. S. (2011). Morphological and separation performance study of polysulfone/titanium dioxide (PSF/TiO2) ultrafiltration membranes for humic acid removal. Desalination, 273(1), 85-92. https://doi.org/10.1016/j.desal.2010.12.052
[13] Panda, S. R., & De, S. (2014). Preparation, characterization and performance of ZnCl2 incorporated polysulfone (PSF)/polyethylene glycol (PEG) blend low pressure nanofiltration membranes. Desalination, 347, 52-65. https://doi.org/10.1016/j.desal.2014.05.030
[14] Kumar, R., Isloor, A. M., Ismail, A. F., & Matsuura, T. (2013). Performance improvement of polysulfone ultrafiltration membrane using N-succinyl chitosan as additive. Desalination, 318, 1-8. https://doi.org/10.1016/j.desal.2013.03.003
[15] Kumar, R., Isloor, A. M., Ismail, A. F., & Matsuura, T. (2013). Synthesis and characterization of novel water soluble derivative of chitosan as an additive for polysulfone ultrafiltration membrane. Journal of membrane science, 440, 140-147. https://doi.org/10.1016/j.memsci.2013.03.013
[16] Kumar, R., Isloor, A. M., Ismail, A. F., Rashid, S. A., & Al Ahmed, A. (2013). Permeation, antifouling and desalination performance of TiO2 nanotube incorporated PSf/CS blend membranes. Desalination, 316, 76-84. https://doi.org/10.1016/j.desal.2013.01.032
[17] Padaki, M., Isloor, A. M., Kumar, R., Ismail, A. F., & Matsuura, T. (2013). Synthesis, characterization and desalination study of composite NF membranes of novel Poly [(4-aminophenyl) sulfonyl] butanediamide (PASB) and methyalated Poly [(4-aminophenyl) sulfonyl] butanediamide (mPASB) with Polysulfone (PSf). Journal of Membrane Science, 428, 489-497. https://doi.org/10.1016/j.memsci.2012.11.001
[18] Esmaili, Z., Sadeghian, Z., & Ashrafizadeh, S. N. (2024). Tailoring of BiVO4 morphology for efficient antifouling of visible-light-driven photocatalytic ceramic membranes for oily wastewater treatment. Journal of Water Process Engineering, 67, 106145. https://doi.org/10.1016/j.jwpe.2024.106145
[19] Esmaili, Z., Sadeghian, Z., & Ashrafizadeh, S. N. (2023). Anti-fouling and self-cleaning ability of BiVO4/rGO and BiVO4/g-C3N4 visible light-driven photocatalysts modified ceramic membrane in high performance ultrafiltration of oily wastewater. Journal of Membrane Science, 688, 122147. https://doi.org/10.1016/j.memsci.2023.122147
[20] Akrami, M. R., Sadeghian, Z., & Ashrafizadeh, S. N. (2025). Oily Wastewater Treatment via a Visible-light-responsive Slurry Membrane Photocatalytic Reactor Incorporating Bi2WO6-Based Photocatalysts. Chemical Engineering and Processing-Process Intensification, 110365. https://doi.org/10.1016/j.cep.2025.110365
[21] Golshenas, A., Sadeghian, Z., & Ashrafizadeh, S. N. (2020). Performance evaluation of a ceramic-based photocatalytic membrane reactor for treatment of oily wastewater. Journal of Water Process Engineering, 36, 101186. https://doi.org/10.1016/j.jwpe.2020.101186
[22] Sadeghian, Z., Zamani, F., & Ashrafizadeh, S. N. (2010). Removal of oily hydrocarbon contaminants from wastewater by γ-alumina nanofiltration membranes. Desalination and Water Treatment, 20(1-3), 80-85. https://doi.org/10.5004/dwt.2010.1154
[23] O, Sneha., Isloor, A. M., Martis, G. J., Bhat, S. P., & Mugali, P. (2024). Impact of TiO2 and CaCO3 nanoparticles and their incorporation in polysulfone composite membrane on photocatalytic degradation of RB 5. Advances in Environmental Technology, 10(4), 315-325. https://doi.org/10.22104/aet.2024.6957.1907
[24] Yousefi, V., & Kariminia, H. R. (2024). The optimization of reactive black 5 dye removal using Coprinus cinereus peroxidase (CIP). Advances in Environmental Technology, 10(2), 85-101. https://doi.org/10.22104/aet.2024.6444.1787
[25] Qu, X., Alvarez, P. J., & Li, Q. (2013). Applications of nanotechnology in water and wastewater treatment. Water research, 47(12), 3931-3946. https://doi.org/10.1016/j.watres.2012.09.058
[26] Shenvi, S. S., Isloor, A. M., Ismail, A. F., Shilton, S. J., & Al Ahmed, A. (2015). Humic acid based biopolymeric membrane for effective removal of methylene blue and rhodamine B. Industrial & Engineering Chemistry Research, 54(18), 4965-4975. https://doi.org/10.1021/acs.iecr.5b00761
[27] Razmjou, A., Resosudarmo, A., Holmes, R. L., Li, H., Mansouri, J., & Chen, V. (2012). The effect of modified TiO2 nanoparticles on the polyethersulfone ultrafiltration hollow fiber membranes. Desalination, 287, 271-280. https://doi.org/10.1016/j.desal.2011.11.025
[28] Moslehyani, A., Ismail, A. F., Othman, M. H. D., & Isloor, A. M. (2015). Novel hybrid photocatalytic reactor-UF nanocomposite membrane system for bilge water degradation and separation. RSC Advances, 5(56), 45331-45340. https://doi.org/10.1039/C5RA01491C
[29] Andreozzi, R., Caprio, V., Insola, A., & Marotta, R. (1999). Advanced oxidation processes (AOP) for water purification and recovery. Catalysis today, 53(1), 51-59. https://doi.org/10.1016/S0920-5861(99)00102-9
[30] Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of photochemistry and photobiology C: Photochemistry reviews, 1(1), 1-21. https://doi.org/10.1016/S1389-5567(00)00002-2
[31] Thakur, V. K., & Voicu, S. I. (2016). Recent advances in cellulose and chitosan based membranes for water purification: A concise review. Carbohydrate polymers, 146, 148-165. https://doi.org/10.1016/j.carbpol.2016.03.030
[32] Majid, D., Al Kholif, M., Arif, M. N., Sutrisno, J., & Zhang, J. W. (2025). Eco-friendly solutions for urban wastewater: evaluating constructed wetlands and filtration methods. Advances in Environmental Technology, 11(2), 182-194. https://doi.org/10.22104/aet.2025.6887.1887
[33] Yanqoritha, N., Piska, F., Ginting, B. N. B., & Mitha, N. (2024). Using biofilter aerobic reactor for optimizing the hydraulic loading rate in nitrification process for tofu-manufacturing wastewater management. Advances in Environmental Technology, 10(4), 326-338. https://doi.org/10.22104/aet.2024.6855.1882
[34] Serbanescu, O. S., Voicu, S. I., & Thakur, V. K. (2020). Polysulfone functionalized membranes: Properties and challenges. Materials today chemistry, 17, 100302. https://doi.org/10.1016/j.mtchem.2020.100302
[35] Liu, W., Gao, J., Zhang, F., & Zhang, G. (2007). Preparation of TiO2 nanotubes and their photocatalytic properties in degradation methylcyclohexane. Materials Transactions, 48(9), 2464-2466. https://doi.org/10.2320/matertrans.MRA2007616
[36] Zhang, F. B., & Li, H. L. (2007). Hydrothermal synthesis of TiO2 Materials Science and Engineering: C, 27(1), 80-82. https://doi.org/10.1016/j.msec.2006.02.001
[37] Poulios, I., & Tsachpinis, I. (1999). Photodegradation of the textile dye Reactive Black 5 in the presence of semiconducting oxides. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 74(4), 349-357. https://doi.org/10.1002/(SICI)1097-4660(199904)74:4<349::AID-JCTB5>3.0.CO;2-7
[38] Kumar, R., Isloor, A. M., Ismail, A. F., Rashid, S. A., & Al Ahmed, A. (2013). Permeation, antifouling and desalination performance of TiO2 nanotube incorporated PSf/CS blend membranes. Desalination, 316, 76-84. https://doi.org/10.1016/j.desal.2013.01.032