Machine learning-driven advances in polymer membrane science: Emerging trends and future directions

Document Type : Review Paper

Authors

1 Department of Electronics and Communication Engineering, NMAM Institute of Technology (NMAMIT), Nitte (Deemed to be University), P. O. Box: 574110, Karkala, India

2 Department of Biotechnology Engineering, NMAM Institute of Technology (NMAMIT), Nitte (Deemed to be University), P. O. Box: 574110, Karkala, India

3 Membrane and Separation Technology Laboratory, Department of Chemistry, National Institute of Technology, Karnataka, P. O. Box: 575025, Surathkal, Mangalore, India

Abstract

Membrane science is gaining importance in the emerging field due to its fewer energy consumption and low maintenance. Many surveys and studies were concentrating on specific membranes for specific applications. Trial-and-error approaches in membrane design result in inefficiencies, including time and material wastage. There is a need for developing a generalized model with minimal parameters and resulting membrane satisfying separation applications. Enhancement of membrane performance is crucial and hence many researchers considered the fabrication and design aspects of membrane parameters as research criteria for different applications. High surface area, ease of maintenance, and low cost make them attractive to different applications including the bio-medical sector, food and beverages, water filtration, gaseous environment, etc. However, membrane design and configuration demand several experiments specific to the applications. Hence it is still considered to be a challenging process thus opening new avenues towards automating the process. This review comprises a summary of state-of-the-art membrane technology and its application in the separation phenomenon providing a machine learning perspective in membrane science and engineering.

Graphical Abstract

Machine learning-driven advances in polymer membrane science: Emerging trends and future directions

Keywords

Main Subjects


[1] Mehrifar, Y. F., Ghasemi Koozekonan, A. F., Rashidi, M. A. F., Arab, N. F., & Farhang Dehghan, S. F. (2024). A review on H2S adsorption by metal-organic frameworks for
air purification application. Advances in Environmental Technology, 10(3), 270-296. https://doi.org/10.22104/aet.2024.6818.1863
[2] Kishore Chand, A. A., Bajer, B., Schneider, E. S., Mantel, T., Ernst, M., Filiz, V., & Glass, S. (2022). Modification of polyacrylonitrile ultrafiltration membranes to enhance the adsorption of cations and anions. Membranes, 12(6), 580. https://doi.org/10.3390/membranes12060580
[3] Ibrahim, S., Mohammadi Ghaleni, M., Isloor, A. M., Bavarian, M., & Nejati, S. (2020). Poly (Homopiperazine–Amide) thin-film composite membrane for nanofiltration of heavy metal ions. ACS omega, 5(44), 28749-28759. https://doi.org/10.1021/acsomega.0c04064.
[4] Hu, Y. (2023). Grand challenge in membrane applications: Liquid. Frontiers in Membrane Science and Technology, 2, 1177528. https://doi.org/10.3389/frmst.2023.1177528
[5] Isloor, A. M., Nayak, M. C., Prabhu, B., Ismail, N., Ismail, A. F., & Asiri, A. M. (2019). Novel polyphenylsulfone (PPSU)/nano tin oxide (SnO2) mixed matrix ultrafiltration hollow fiber membranes: Fabrication, characterization and toxic dyes removal from aqueous solutions. Reactive and Functional Polymers, 139, 170-180. https://doi.org/10.1016/j.reactfunctpolym.2019.02.015
[6] Moch Jr, I. (2000). Membranes, hollow‐fiber. KirkOthmer Encyclopedia of Chemical Technology. https://doi.org/10.1002/0471238961.0815121213150308.a01.pub2
[7] Jonkers, W. A., Cornelissen, E. R., & de Vos, W. M. (2023). Hollow fiber nanofiltration: From lab-scale research to full-scale applications. Journal of Membrane Science, 669, 121234. https://doi.org/10.1016/j.memsci.2023.121234.
[8] Mokarizadeh, H., Moayedfard, S., Maleh, M. S., Mohamed, S. I. G. P., Nejati, S., & Esfahani, M. R. (2021). The role of support layer properties on the fabrication and performance of thin-film composite membranes: The significance of selective layer-support layer connectivity. Separation and Purification Technology, 278, 119451. https://doi.org/10.1016/j.seppur.2021.119451
[9] Karki, S., Hazarika, G., Yadav, D., & Ingole, P. G. (2024). Polymeric membranes for industrial applications: Recent progress, challenges and perspectives. Desalination, 573, 117200. https://doi.org/10.1016/j.desal.2024.117200.
[10] Pasaoglu, M. E., Kaya, R., & Koyuncu, I. (2023). Novel Membrane Technologies in the Treatment and Recovery of Wastewaters. In Wastewater Management and Technologies (pp. 87-106). Cham: Springer Nature Switzerland. https://link.springer.com/chapter/10.1007/978-3-031-36298-9_7
[11] Vali, H., Sadeghi, A., Shafiee, M. J., Barzegar, M., & Rahimpour, M. R. (2024). Carbon capture with mixed-matrix membrane. In Handbook of Membrane Separations: Chemical, Gas, and Water Applications. Elsevier. https://doi.org/10.1016/b978-0-323-93940-9.00269-3
[12] Hamid, M. R. A., & Jeong, H. K. (2018). Recent advances on mixed-matrix membranes for gas separation: Opportunities and engineering challenges. Korean Journal of Chemical Engineering, 35(8), 1577-1600. https://doi.org/10.1007/s11814-018-0081-1
[13] Xu, X., Yang, Y., Liu, T., & Chu, B. (2022). Cost-effective polymer-based membranes for drinking water purification. Giant, 10, 100099. https://doi.org/10.1016/j.giant.2022.100099.
[14] Du, Y., Pramanik, B. K., Zhang, Y., & Jegatheesan, V. (2023). Resource recovery from RO concentrate using nanofiltration: Impact of active layer thickness on performance. Environmental Research, 231, 116265. https://doi.org/10.1016/j.envres.2023.116265
[15] Ibrahim, G. S., Isloor, A. M., Moslehyani, A., & Ismail, A. F. (2017). Bio-inspired, fouling resistant, tannic acid functionalized halloysite nanotube reinforced polysulfone loose nanofiltration hollow fiber membranes for efficient dye and salt separation. Journal of Water Process https://doi.org/10.1016/j.jwpe.2017.09.015
[16] Tuncay, G., Keskin, B., Türken, T., Vatanpour, V., & Koyuncu, I. (2022). Development of braid reinforced hollow fiber membranes as both ultrafiltration and nanofiltration membranes:
Effect of pore forming additive on structure and performance. Journal of Applied Polymer Science, 139(44). https://doi.org/10.1002/app.53098
[17] Syed Ibrahim, G. P., Isloor, A. M., Ismail, A. F., & Farnood, R. (2020). One-step synthesis of zwitterionic graphene oxide nanohybrid: Application to polysulfone tight ultrafiltration hollow fiber membrane. Scientific reports, 10(1), 6880. https://doi.org/10.1038/s41598-020-63356-2
[18] Baig, M. I., Pejman, M., Willott, J. D., Tiraferri, A., & De Vos, W. M. (2022). Polyelectrolyte complex hollow fiber membranes prepared via aqueous phase separation. ACS Applied Polymer Materials, 4(2), 1010-1020. https://doi.org/10.1021/acsapm.1c01464
[19] Kumar, M., Isloor, A. M., Nayak, M. C. S., Todeti, S. R., Padaki, M., & Ismail, A. F. (2023). Hydrophilic polydopamine/polyvinylpyrrolidone blended polyphenylsulfone hollow fiber membranes for the removal of arsenic-V from water. Journal of Environmental Chemical Engineering, 11(5), 110358. https://doi.org/10.1016/j.jece.2023.110358
[20] Vainrot, N., Li, M., Isloor, A. M., & Eisen, M. S. (2021). New preparation methods for pore formation on polysulfone membranes. Membranes, 11(4), 292. https://doi.org/10.3390/membranes11040292
[21] Li, Q., Bi, Q. Y., Lin, H. H., Bian, L. X., & Wang, X. L. (2013). A novel ultrafiltration (UF) membrane with controllable selectivity for protein separation. Journal of Membrane Science, 427, 155-167. https://doi.org/10.1016/j.memsci.2012.06.035
[22] Liang, C. Z., Askari, M., Choong, L. T., & Chung, T. S. (2021). Ultra-strong polymeric hollow fiber membranes for saline dewatering and desalination. Nature communications, 12(1), 2338.
 
https://doi.org/10.1038/s41467-021-02516-4
[23] Pereira, V. R., Isloor, A. M., Kumar, M., & Ismail, A. F. (2022). Polysulfone nanocomposite membranes containing nanostructured TiO2, SiO2 and 3-Aminopropyltriethoxysilane (APTES) modified nano-TiO2 and nano-SiO2 nanocomposites: Fabrication, characterization and removal of cadmium (Cd2+) ions from aqueous solution. https://doi.org/10.21203/rs.3.rs-1362575/v1
[24] Mansor, H., & Sobran, N. H. M. (2022). Effect of Additive on the Structure and Performance of PVDF Hollow Fibre Membrane on Phosphorus Removal. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 21, 363-370 https://doi.org/10.55549/epstem.1226659
[25] Mithun Kumar, M. K., Rao, T. S., Isloor, A. M., Ibrahim, G. P. S., Inamuddin, I., Norafiqah Ismail, N. I. & Asiri, A. M. (2019). Use of cellulose acetate/polyphenylsulfone derivatives to fabricate ultrafiltration hollow fiber membranes for the removal of arsenic from drinking water. https://doi.org/10.1016/j.ijbiomac.2019.02.017
[26] Rajashekhara, P. H., Isloor, A. M., & Ismail, A. F. (2022). One-step synthesis and characterization of hydrophilic polymer microspheresimmobilized with polyphenylsulfone ultrafiltration membranes for protein rejection application. https://doi.org/10.21203/rs.3.rs-1331802/v1
[27] Han, G., Chung, T. S., Weber, M., & Maletzko, C. (2018). Low-pressure nanofiltration hollow fiber membranes for effective fractionation of dyes and inorganic salts in textile wastewater. Environmental science & technology, 52(6), 3676-3684. https://doi.org/10.1021/acs.est.7b06518
[28] Banjerdteerakul, K., Moghadam, F., Peng, H., & Li, K. (2023). Smoothing the wrinkle formation and improving dye rejection performance in porous graphene oxide membranes using high surface curvature hollow fiber substrates. Journal of Membrane Science, 683, 121763. https://doi.org/10.1016/j.memsci.2023.121763
[29] Kumar, M., Isloor, A. M., Todeti, S. R., Ismail, A. F., & Farnood, R. (2021). Hydrophilic nano-aluminum oxide containing polyphenylsulfone hollow fiber membranes for the extraction of arsenic (As-V) from drinking water. Journal of Water Process Engineering, 44, 102357. https://doi.org/10.1016/j.jwpe.2021.102357
[30] Alijanpour Shalmani, A., Vaezi, A., & Tabatabaei, M. R. (2024). Estimating daily
suspended sediment by intelligent and traditional models (Case Study: Kasalian and Rood Zard watersheds, Iran). Advances in Environmental Technology, 10(2), 102-117. https://doi.org/10.22104/aet.2024.3942
[31] Hamid, M. R. A., & Jeong, H. K. (2018). Recent advances on mixed-matrix membranes for gas separation: Opportunities and engineering challenges. Korean Journal of Chemical Engineering, 35(8), 1577-1600. https://doi.org/10.1007/s11814-018-0081-1
[32] Cao, Z., Barati Farimani, O., Ock, J., & Barati Farimani, A. (2024). Machine learning in membrane design: From property prediction to AI-guided optimization. Nano letters, 24(10), 2953-2960. https://doi.org/10.1021/acs.nanolett.3c05137
[33] Esmaili, Z., Sadeghian, Z., & Ashrafizadeh, S. N. (2024). Tailoring of BiVO4 morphology for efficient antifouling of visible-light-driven photocatalytic ceramic membranes for oily wastewater treatment. Journal of Water Process Engineering, 67, 106145. https://doi.org/10.1016/j.jwpe.2024.106145
[34] Esmaili, Z., Sadeghian, Z., & Ashrafizadeh, S. N. (2023). Anti-fouling and self-cleaning ability of BiVO4/rGO and BiVO4/g-C3N4 visible light-driven photocatalysts modified ceramic membrane in high performance ultrafiltration of oily wastewater. Journal of Membrane Science, 688, 122147. https://doi.org/10.1016/j.memsci.2023.122147
[35]Karimzadeh, M., Khatibi, M., & Ashrafizadeh, S. N. (2022). Boost ionic selectivity by coating bullet-shaped nanochannels with dense polyelectrolyte brushes. Physics of Fluids, 34(12). https://doi.org/10.1063/5.0130425
[36] Khatibi, M., & Ashrafizadeh, S. N. (2024). Mitigating Joule heating in smart nanochannels: Evaluating the efficacy of AC vs. DC fields. International Communications in Heat and Mass Transfer, 154, 107448. https://doi.org/10.1016/j.icheatmasstransfer.2024.107448
[37] Khatibi, M., & Ashrafizadeh, S. N. (2023). Ion transport in intelligent nanochannels: A comparative analysis of the role of electric field. Analytical Chemistry, 95(49), 18188-18198. https://doi.org/10.1021/acs.analchem.3c03809
[38] Khatibi, M., Aminnia, A., & Ashrafizadeh, S. N. (2024). The role of ionic concentration polarization on the behavior of nanofluidic membranes. Chemical Engineering and Processing-Process Intensification, 202, 109849. https://doi.org/10.1016/j.cep.2024.109849
[39] Hoshyargar, V., Ashrafizadeh, S. N., & Sadeghi, A. (2015). Drastic alteration of diffusioosmosis due to steric effects. Physical Chemistry Chemical Physics, 17(43), 29193-29200. https://doi.org/10.1039/C5CP05327G
[40] Dartoomi, H., Khatibi, M., & Ashrafizadeh, S. N. (2022). Enhanced ionic current rectification through innovative integration of polyelectrolyte bilayers and charged-wall smart nanochannels. Analytical Chemistry, 95(2), 1522-1531. https://doi.org/10.1021/acs.analchem.2c04559
[41] Jafari, S., Khatibi, M., & Ashrafizadeh, S. N. (2024). Blue energy conversion utilizing smart ionic nanotransistors. Electrochimica Acta, 507, 145186. https://doi.org/10.1016/j.electacta.2024.145186
[42]Khatibi, M., Mehta, S. K., Ashrafizadeh, S. N., & Mondal, P. K. (2024). Surface charge-dependent slip length modulates electroosmotic mixing in a wavy micromixer. Physics of Fluids, 36(7). https://doi.org/10.1063/5.0218566
[43] Qi, H., Sun, W., Zhao, S., Zhao, Z., Sun, Y., Zhu, Y., Mu, J., Zhang, H., Zhu, X., Jiang, Z., & Jiang, L. (2024). Permeability and selectivity synergistically enhanced nanofluidic membrane for osmotic energy harvesting. Carbon Energy. https://doi.org/10.1002/cey2.458
[44] Kitto, D., & Kamcev, J. (2024). Predicting the conductivity–selectivity trade-off and upper bound in ion-exchange membranes. ACS Energy Letters, 9(4), 1346-1352. https://doi.org/10.1021/acsenergylett.4c00301
[45] Karimzadeh, M., Khatibi, M., & Ashrafizadeh, S. N. (2022). Boost ionic selectivity by coating bullet-shaped nanochannels with dense polyelectrolyte brushes. Physics of Fluids, 34(12). https://doi.org/10.1063/5.0130425
[46] Alinezhad, A., Khatibi, M., & Ashrafizadeh, S. N. (2023). Ionic transfer behavior of bipolar nanochannels resembling PNP nanotransistor. Electrochimica Acta, 460, 142625. https://doi.org/10.1016/j.electacta.2023.142625
[47] Prabhu, S., Prasad, K., Robels-Kelly, A., & Lu, X. (2022). AI-based carcinoma detection and classification using histopathological images: A systematic review. Computers in Biology and Medicine, 142, 105209. https://doi.org/10.1016/j.compbiomed.2022.105209
[48] Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020‐compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell systematic reviews, 18(2), e1230. https://doi.org/10.1002/cl2.1230.
[49] Karki, S., Hazarika, G., Yadav, D., & Ingole, P. G. (2024). Polymeric membranes for industrial applications: Recent progress, challenges and perspectives. Desalination, 573, 117200. https://doi.org/10.1016/j.desal.2024.117200
[50] Zhao, S., Minier-Matar, J., Chou, S., Wang, R., Fane, A. G., & Adham, S. (2017). Gas field produced/process water treatment using forward osmosis hollow fiber membrane: Membrane fouling and chemical cleaning. Desalination, 402, 143-151. https://doi.org/10.1016/j.desal.2016.10.006
[51] Zhang, J., Xie, M., Tong, X., Yang, D., Liu, S., Qu, D., Feng, L., & Zhang, L. (2021). Ammonia capture from human urine to harvest liquid N-P compound fertilizer by a submerged hollow fiber membrane contactor: Performance and fertilizer analysis. Science of The Total Environment, 768, 144478. https://doi.org/10.1016/j.scitotenv.2020.144478
[52] Wang, X., Ping, W., & Al-Shati, A. S. (2023). Numerical simulation of ozonation in hollow-fiber membranes for wastewater treatment. Engineering Applications of Artificial Intelligence, 123, 106380. https://doi.org/10.1016/j.engappai.2023.106380
[53] Rutten, S. B., Junker, M. A., Leal, L. H., de Vos, W. M., Lammertink, R. G., & de Grooth, J. (2023). Influence of dominant salts on the removal of trace micropollutants by hollow fiber nanofiltration membranes. Journal of Membrane Science, 678, 121625. https://doi.org/10.1016/j.memsci.2023.121625
[54] da Silva Biron, D., Espindola, J. C., Subtil, E. L., & Mierzwa, J. C. (2023). A new approach to the development of hollow fiber membrane modules for water treatment: mixed polymer matrices. Membranes, 13(7), 613. https://doi.org/10.3390/membranes13070613
[55] Gaudio, M. T., Curcio, S., & Chakraborty, S. (2023). Design of an integrated membrane system to produce dairy by-product from waste processing. International Journal of Food Science and Technology, 58(4), 2104-2114. https://doi.org/10.1111/ijfs.15986
[56] Sergey, B., Pavel, N., Andrey, B., Vladimir, Z., Dmitriy, M., & Alexandr, M. (2018). Hydrodynamics and mass transfer with gel formation in a roll type ultrafiltration membrane. Foods and Raw materials, 6(2), 350-357. https://doi.org/10.21603/2074-9414-2018-6-2-350-357
[57] Poudineh, M. T., Zarafshan, P., Mirsaeedghazi, H., & Dehghani, M. (2019). Comparison study of the effect modeling of flow parameters on the membrane clarification efficiency for pomegranate juice. Engineering in Agriculture, Environment and Food, 12(4), 379-387. https://www.sciencedirect.com/science/article/abs/pii/S1881836619300096
[58] Nejad, A. R. S., Ghaedi, A. M., Madaeni, S. S., Baneshi, M. M., Vafaei, A., Emadzadeh, D., & Lau, W. J. (2019). Development of intelligent system models for prediction of licorice concentration during nanofiltration/reverse osmosis process. Desalination and Water Treatment, 145, 83-95. https://doi.org/10.5004/dwt.2019.23731
[59] Vatanpour, V., Nekouhi, G. N., & Esmaeili, M. (2020). Preparation, characterization and performance evaluation of ZnO deposited polyethylene ultrafiltration membranes for dye
and protein separation. Journal of the Taiwan Institute of Chemical Engineers, 114, 153-167. https://doi.org/10.1016/j.jtice.2020.09.008
[60] Trombino, S., Sole, R., Curcio, F., & Cassano, R. (2023). Polymeric based hydrogel membranes for biomedical applications. Membranes, 13(6), 576. https://doi.org/10.3390/membranes13060576
[61] Chen, Z., Lv, Z., Sun, Y., Chi, Z., & Qing, G. (2020). Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications. Journal of Materials Chemistry B, 8(15), 2951-2973. https://doi.org/10.1039/C9TB02271F
[62] An, Z., Xu, R., Dai, F., Xue, G., He, X., Zhao, Y., & Chen, L. (2017). PVDF/PVDF-g-PACMO blend hollow fiber membranes for hemodialysis: preparation, characterization, and performance. RSC Advances, 7(43), 26593-26600. https://doi.org/10.1039/C7RA03366D
[63] Miller, J. J., Carter, J. A., Hill, K., DesOrmeaux, J. P. S., Carter, R. N., Gaborski, T. R. & Johnson, D. G. (2020). Free standing, large-area silicon nitride membranes for high toxin clearance in blood surrogate for small-format hemodialysis. Membranes, 10(6), 119. https://doi.org/10.3390/membranes10060119
[64] Alshammari, N., Alazmi, M., & Veettil, V. N. (2021). Applying a Hydrophilic Modified Hollow Fiber Membrane to Reduce Fouling in Artificial Lungs. Separations, 8(8), 113. https://doi.org/10.3390/separations8080113
[65] Tang, Y. S., Tsai, Y. C., Chen, T. W., & Li, S. Y. (2022). Artificial kidney engineering: the development of dialysis membranes for blood purification. Membranes, 12(2), 177. https://doi.org/10.3390/membranes12020177
[66] Fang, F., Zhao, H. Y., Wang, R., Chen, Q., Wang, Q. Y., & Zhang, Q. H. (2023). Fabrication and Study of Dextran/Sulfonated Polysulfone Blend Membranes for Low-Density Lipoprotein Adsorption. Materials, 16(13), 4641. https://doi.org/10.3390/ma16134641
[67] Rutten, S. B., Junker, M. A., Leal, L. H., de Vos, W. M., Lammertink, R. G., & de Grooth, J. (2023). Influence of dominant salts on the removal of trace micropollutants by hollow fiber nanofiltration membranes. Journal of Membrane Science, 678, 121625. https://doi.org/10.1016/j.memsci.2023.121625
[68] Bethi, B., Sonawane, S. H., Bhanvase, B. A., & Sonawane, S. S. (2021). Textile industry wastewater treatment by cavitation combined with fenton and ceramic nanofiltration membrane. Chemical Engineering and Processing-Process Intensification, 168, 108540. https://doi.org/10.1016/j.cep.2021.108540
[69] Hebbar, R. S., Isloor, A. M., Zulhairun, A. K., Abdullah, M. S., & Ismail, A. F. (2017). Efficient treatment of hazardous reactive dye effluents through antifouling polyetherimide hollow fiber membrane embedded with functionalized halloysite nanotubes. Journal of the Taiwan Institute of Chemical Engineers,72, 244-252. https://doi.org/10.1016/j.jtice.2017.01.022
[70] Liu, H., Chen, Y., Zhang, K., Wang, C., Hu, X., Cheng, B., & Zhang, Y. (2019). Poly (vinylidene fluoride) hollow fiber membrane for high-efficiency separation of dyes-salts. Journal of Membrane Science, 578, 43-52. https://doi.org/10.1016/j.memsci.2019.02.029
[71] Maleš, L., Fakin, D., Bračič, M., & Gorgieva, S. (2020). Efficiency of differently processed membranes based on cellulose as cationic dye adsorbents. Nanomaterials, 10(4), 642. https://doi.org/10.3390/nano10040642
[72] Cockerham, C., Caruthers, A., McCloud, J., Fortner, L. M., Youn, S., & McBride, S. P. (2022). Azo-dye-functionalized polycarbonate membranes for textile dye and nitrate ion removal. Micromachines, 13(4), 577. https://doi.org/10.3390/mi13040577
[73] Ahmad, H., Zahid, M., Rehan, Z. A., Rashid, A., Akram, S., Aljohani, M. M., & Al-Harbi, M. S. (2022). Preparation of polyvinylidene fluoride nano-filtration membranes modified with functionalized graphene oxide for textile dye removal. Membranes, 12(2), 224. https://doi.org/10.3390/membranes12020224
[74]Zulfiani, U., Junaidi, A., Nareswari, C., Ali, B. T. I., Jaafar, J., Widyanto, A. R.,... & Widiastuti, N. (2023). Performance of a membrane fabricated from high-density polyethylene
waste for dye separation in water. RSC advances, 13(12), 7789-7797. https://doi.org/10.1039/D2RA07595D
[75] Bazhenov, S. D., Bildyukevich, A. V., & Volkov, A. V. (2018). Gas-liquid hollow fiber membrane contactors for different applications. Fibers, 6(4), 76. https://doi.org/10.3390/fib6040076
[76] Bernardo, P., Tasselli, F., & Clarizia, G. (2019). Gas separation Hollow Fiber Membranes: Processing conditions for manipulating morphology and performance. CHEMICAL ENGINEERING, 74. https://doi.org/10.1016/j.cep.2019.06.007
[77] Ecker, P., Pekovits, M., Yorov, T., Haddadi, B., Lukitsch, B., Elenkov, M., & Harasek, M. (2021). Microstructured Hollow Fiber Membranes: Potential Fiber Shapes for Extracorporeal Membrane Oxygenators. Membranes, 11(5), 374. https://doi.org/10.3390/membranes11050374
[78] Sharma, A. K., Conover, S. P., & Sirkar, K. K. (2022). Plasma polymerized coatings on hollow fiber membranes-applications and their aging characteristics in different media. Membranes, 12(7), 656. https://doi.org/10.3390/membranes12070656
[79] Sohaib, Q., Kalakech, C., Charmette, C., Cartier, J., Lesage, G., & Mericq, J. P. (2022). Hollow-fiber membrane contactor for biogas recovery from real anaerobic membrane bioreactor permeate. Membranes, 12(2), 112. https://doi.org/10.3390/membranes12020112
[80] González-Revuelta, D., Fallanza, M., Ortiz, A., & Gorri, D. (2023). Thin-film composite matrimid-based hollow fiber membranes for oxygen/nitrogen separation by gas permeation. Membranes, 13(2), 218. https://doi.org/10.3390/membranes13020218
[81] Shukla, A. K., Alam, J., & Alhoshan, M. (2022). Recent advancements in polyphenylsulfone membrane modification methods for separation applications. Membranes, 12(2), 247. https://doi.org/10.3390/membranes12020247
[82] Okamoto, Y., Chiang, H. C., Fang, M., Galizia, M., Merkel, T., Yavari, M., & Lin, H. (2020). Perfluorodioxolane polymers for gas separation membrane applications. Membranes, 10(12), 394. https://doi.org/10.3390/membranes10120394
[83] Asghari, Z., Arasteh, B., & Koochari, A. (2023). Effective software mutation-test using program instructions classification. Journal of Electronic Testing, 39(5), 631-657. https://doi.org/10.1007/s10836-023-06089-0
[84] Talukder, M. J., Alshami, A. S., Tayyebi, A., Ismail, N., & Yu, X. (2024). Membrane science meets machine learning: future and potential use in assisting membrane material design and fabrication. Separation & Purification Reviews, 53(2), 216-229.https://doi.org/10.1080/15422119.2023.2212295
[85] Tayyebi, A., Alshami, A. S., Yu, X., & Kolodka, E. (2022). Can machine learning methods guide gas separation membranes fabrication? Journal of Membrane Science Letters, 2(2), 100033. https://doi.org/10.1016/j.msl.2022.100033.
[86] Ritt, C. L., Liu, M., Pham, T. A., Epsztein, R., Kulik, H. J., & Elimelech, M. (2022). Machine learning reveals key ion selectivity mechanisms in polymeric membranes with subnanometer pores. Science advances, 8(2), eabl5771. https://www.science.org/doi/10.1126/sciadv.abl5771
[87] Tao, L., Varshney, V., & Li, Y. (2021). Benchmarking machine learning models for polymer informatics: an example of glass transition temperature. Journal of Chemical Information and Modeling, 61(11), 5395-5413. https://doi.org/10.1021/acs.jcim.1c01031
[88] Jasim, D. J., Mohammed, T. J., Harharah, H. N., Harharah, R. H., Amari, A., & Abid, M. F. (2023). Modeling and optimal operating conditions of hollow fiber membrane for CO2/CH4 separation. Membranes, 13(6), 557. https://doi.org/10.3390/membranes13060557
[89] Wang, M., Xu, Q., Tang, H., & Jiang, J. (2022). Machine learning-enabled prediction and high-throughput screening of polymer membranes for pervaporation separation. ACS applied materials & interfaces, 14(6), 8427-8436. https://doi.org/10.1021/acsami.1c22886
[90] Glass, S., Schmidt, M., Merten, P., Abdul Latif, A., Fischer, K., Schulze, A.,... & Filiz, V. (2024). Design of modified polymer membranes using machine learning. ACS Applied Materials & Interfaces, 16(16), 20990-21000. https://doi.org/10.1021/acsami.3c18805
[91] Kim, N. E., Basak, J. K., & Kim, H. T. (2023). Application of Hollow Fiber Membrane for the Separation of Carbon Dioxide from Atmospheric Air and Assessment of Its Distribution Pattern in a Greenhouse. Atmosphere, 14(2), 299. https://doi.org/10.3390/atmos14020299
[92] Yang, J., Tao, L., He, J., McCutcheon, J. R., & Li, Y. (2022). Machine learning enables interpretable discovery of innovative polymers for gas separation membranes. Science Advances, 8(29), eabn9545.
https://www.science.org/doi/10.1126/sciadv.abn9545
[93] Galinha, C. F., & Crespo, J. G. (2021). From black box to machine learning: A journey through membrane process modelling. Membranes, 11(8), 574. https://doi.org/10.3390/membranes11080574
[94] Bestwick, T., Beckmann, J., & Camarda, K. V. (2023). Using Artificial Neural Networks to Predict Physical Properties of Membrane Polymers. Chemie Ingenieur Technik, 95(3), 363-367. https://doi.org/10.1002/cite.202200102
[95] Barnett, J. W., Bilchak, C. R., Wang, Y., Benicewicz, B. C., Murdock, L. A., Bereau, T., & Kumar, S. K. (2020). Designing exceptional gas-separation polymer membranes using machine learning. Science advances, 6(20), eaaz4301. https://www.science.org/doi/full/10.1126/sciadv.aaz4301
[96] Tao, L., Varshney, V., & Li, Y. (2021). Benchmarking machine learning models for polymer informatics: an example of glass transition temperature. Journal of Chemical Information and Modeling, 61(11), 5395-5413.https://pubs.acs.org/doi/10.1021/acs.jcim.1c01031
[97] Gao, H., Zhong, S., Dangayach, R., & Chen, Y. (2023). Understanding and designing a high-performance ultrafiltration membrane using machine learning. Environmental Science & Technology, 57(46), 17831-17840. https://doi.org/10.1021/acs.est.2c05404
[98] Alwatban, A. M., Alshwairekh, A. M., Alqsair, U. F., Alghafis, A. A., & Oztekin, A. (2019). Effect of membrane properties and operational parameters on systems for seawater desalination using computational fluid dynamics simulations. Desalination and Water Treatment, 161, 92-107. https://doi.org/10.5004/dwt.2019.24275
[99] Nguyen, X. L., Trinh, N. V., Kim, Y., & Yu, S. (2022). A correlation of overall mass transfer coefficient of water transport in a hollow-fiber membrane module via an artificial neural network approach. Membranes, 13(1), 8. https://doi.org/10.3390/membranes13010008 B. Anupama / Advances in Environmental Technology 12(1) 2026, 32-62. 61
[100] Stel’makh, S. A., Shcherban’, E. M., Beskopylny, A. N., Mailyan, L. R., Meskhi, B., Razveeva, I.& Beskopylny, N. (2022). Prediction of mechanical properties of highly functional lightweight fiber-reinforced concrete based on deep neural network and ensemble regression trees methods. Materials, 15(19), 6740. https://doi.org/10.3390/ma15196740
[101] Shahouni, R., Abbasi, M., Dibaj, M., & Akrami, M. (2024). Utilising artificial intelligence to predict membrane behaviour in water purification and desalination. Water, 16(20), 2940. https://doi.org/10.3390/w16202940
[102] Ismael, B., Khaleel, F., Ibrahim, S. S., Khaleel, S. R., AlOmar, M. K., Masood, A., Aljumaily, M. M., Alsalhy, Q. F., Razali, S. F. M., Al-Juboori, R. A., Hameed, M. M., & Alsarayreh, A. A. (2023). Permeation flux prediction of vacuum membrane distillation using hybrid machine learning techniques. Membranes, 13(12), 900. https://doi.org/10.3390/membranes13120900
[103] Liu, T., Liu, L., Cui, F., Ding, F., Zhang, Q., & Li, Y. (2020). Predicting the performance of polyvinylidene fluoride, polyethersulfone and polysulfone filtration membranes using machine learning. Journal of Materials Chemistry A, 8(41), 21862-21871. https://doi.org/10.1039/D0TA07607D
[104] Fetanat, M., Keshtiara, M., Keyikoglu, R., Khataee, A., Daiyan, R., & Razmjou, A. (2021). Machine learning for design of thin-film nanocomposite membranes. Separation and Purification Technology, 270, 118383. https://doi.org/10.1016/j.seppur.2021.118383
[105] Salehi, R., Krishnan, S., Nasrullah, M., & Chaiprapat, S. (2023). Using Machine learning to predict the performance of a cross-flow ultrafiltration membrane in xylose reductase separation. Sustainability, 15(5), 4245.https://doi.org/10.3390/su15054245
[106] Waqas, S., Harun, N. Y., Sambudi, N. S., Arshad, U., Nordin, N. A. H. M., Bilad, M. R.,... & Malik, A. A. (2022). SVM and ANN modelling approach for the optimization of membrane permeability of a membrane rotating biological contactor for wastewater treatment. Membranes, 12(9), 821. https://doi.org/10.3390/membranes12090821
[107] Kovacs, D. J., Li, Z., Baetz, B. W., Hong, Y., Donnaz, S., Zhao, X., & Dong, Q. (2022).
Membrane fouling prediction and uncertainty analysis using machine learning: A wastewater treatment plant case study. Journal of Membrane Science, 660, 120817. https://doi.org/10.1016/j.memsci.2022.120817
[108] Zadkarami, M., Safavi, A. A., Gernaey, K. V., Ramin, P., & Prado-Rubio, O. A. (2023). Designing a fault detection classifier framework for an industrial dynamic ultrafiltration membrane process using wavelet-based feature analysis. Process Safety and Environmental Protection, 174, 1-19. https://doi.org/10.1016/j.psep.2023.04.007
[109] Shim, J., Hong, S., Lee, J., Lee, S., Kim, Y. M., Chon, K., & Cho, K. H. (2023). Deep learning with data preprocessing methods for water quality prediction in ultrafiltration. Journal of Cleaner Production, 428, 139217. https://doi.org/10.1016/j.jclepro.2023.139217
[110] Tanudjaja, H. J., Ng, A. Q. Q., & Chew, J. W. (2023). Understanding single-protein fouling in micro-and ultrafiltration systems via machine-learning-based models. Industrial & Engineering Chemistry Research, 62(19), 7610-7621. https://doi.org/10.1021/acs.iecr.2c03205
[111] Kellermann, C., Selmi, A., Brown, D., & Ostermann, J. (2022, July). Fault detection in multi-stage manufacturing to improve process quality. In 2022 International Conference on Control, Automation and Diagnosis (ICCAD) (pp. 1-6). IEEE. https://doi.org/10.1109/ICCAD55197.2022.9853909
[112] Mir, T. A., Banerjee, D., Malhotra, S., & Devliyal, S. (2024, July). Advancements in Quality Control: Integrating Machine Learning for Defect Prediction. In 2024 2nd World Conference on Communication & Computing (WCONF) (pp. 1-6). IEEE. https://doi.org/10.1109/wconf61366.2024.10692222
[113] Scheinker, A. (2021). Adaptive machine learning for robust diagnostics and control of time-varying particle accelerator components and beams. Information, 12(4), 161. https://doi.org/10.3390/info12040161
[114] Ramel, A. A. (2022). Analysis of membrane process model from black box to machine learning. Journal of Machine and Computing, 1-8. https://doi.org/10.53759/7669/jmc202202001
[115] Mukherjee, A., Adeyemo, S., & Bhattacharyya, D. (2025). All‐nonlinear static‐dynamic neural networks versus Bayesian machine learning for data‐driven modelling of chemical processes. The Canadian Journal of Chemical Engineering, 103(3), 1139-1154. https://doi.org/10.1002/cjce.25379
[116] Demir, H., & Keskin, S. (2024). A New Era of Modeling MOF‐Based Membranes: Cooperation of Theory and Data Science. Macromolecular Materials and Engineering, 309(1), 2300225. https://doi.org/10.1002/mame.202300225
[117] Jasthi, B. K., Gadhamshetty, V., Sereda, G. A., & Lipatov, A. (2023). 11 Machine Learning
for. Machine Learning in 2D Materials Science, 201. https://doi.org/10.1201/9781003132981-11
[118] Anselmi, L., & Rognoli, V. (2023). Emerging materials fostering interdisciplinary collaboration in Materials Design. In Interdisciplinary Practice in Industrial Design (AHFE Open Access),119-129. https://doi.org/10.54941/ahfe1002978