Document Type : Review Paper
Author
Department of Environmental Engineering, College of Civil Engineering, University of Technology, P. O. Box: 35010, Baghdad, Iraq
Abstract
Graphical Abstract
Keywords
Main Subjects
[1] Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60-72. https://doi.org/10.2478/intox-2014-0009.
[2] He, Z. L., Yang, X. E., Stoffella, P. J. (2017). Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology, 15(2-3), 116-124.https://doi.org/10.1016/j.jtemb.2005.02.010.
[3] Mergler, D., Anderson, H. A., Chan, L. H. M., Mahaffey, K. R., Murray, M., Sakamoto, M., & Stern, A. H. (2007). Methylmercury exposure and health effects in humans: A worldwide concern. Ambio, 36(1), 3-11.https://www.jstor.org/stable/4315779.
[4] Fu, F., Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407-418. https://doi.org/10.1016/j.jenvman.2010.11.011.
[5] European Union (IED) - Industrial Emissions Directive : Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). http://data.europa.eu/eli/dir/2010/75/oj
[6] WHO (2006). Guidelines for the Safe Use of Wastewater, Excreta and Greywater (Volumes relevant to reuse and discharge).
[7] Yang, J., Hou, B., Wang, J., Tian, B., Bi, J., Wang, N., Li, X., Huang, X. (2019). Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomaterials, 9(3), 424.https://doi.org/10.3390/nano9030424.
[8] Mauter, M. S., Elimelech, M. (2008). Environmental applications of carbon-based nanomaterials. Environmental Science & Technology, 42(16), 5843-5859. https://doi.org/10.1021/es8006904
[9] Aguilar-Ascón, E., Marrufo-Saldaña, L., Neyra-Ascón, W. (2024). Enhanced chromium removal from tannery wastewater through electrocoagulation with iron electrodes: Leveraging the Box-Behnken design for optimization. Heliyon, 23;10(3):e24647. https://doi: 10.1016/j.heliyon.2024.e24647
[10] Mahtab, Md, Asma, B., Salman, K., Mohd, A., Ullah Khan, S. (2024). Nickel (II) removal from real electroplating wastewater in an electrocoagulation reactor: parametric optimization by response surface methodology. Water Science & Technology, 90, 8, 2266. https://doi: 10.2166/wst.2024.331.
[11] Evelyn, M., Caleb, M., Jeffrey, K., Michael, E., Colton, L.,Carli, S. et al., (2024). High Efficacy Two-Stage Metal Treatment Incorporating Basic Oxygen Furnace Slag and Microbiological Sulfate Reduction. ACSESTEngg, 4, 433−444. https://doi.org/10.1021/acsestengg.3c00381.
[12] Rajesh, J., Raja, S., Vytla, R. (2024). Efficient removal of hexavalent chromium from wastewater using a novel magnetic biochar composite adsorbent. Journal of Water Process Engineering, 66, 105908. https://doi.org/10.1016/j.jwpe.2024.105908.
[13] Ziguo, L., Miao, L., Wei, Z., Ye, L., Bolin, L., Dongxue, L., Chang, L. (2023). Synthesis of magnetic Fe3O4@SiO2-(-NH2/-COOH) nanoparticles and their application for the removal of heavy metals from wastewater. Ceramics International, 49, 12, 20470-20479. https://doi.org/10.1016/j.ceramint.2023.03.177.
[14] Zhang, L., Linxin Q., Lanting, M., Zhe, S., Yabin, J. and Si, C. (2024). Treatment of electroplating wastewater using electrocoagulation and integrated membrane. Water Science & Technology, Vol 89 No 9, 2538. https://doi: 10.2166/wst.2024.136.
[15] Eman, M., Mohammed, F. Eman, M., Ahmad, A. (2024). Hexavalent chromium ion removal from wastewater using novel nanocomposite based on the impregnation of zero-valent iron nanoparticles into polyurethane foam. Sci Rep 14, 5387. https://doi.org/10.1038/s41598-024-55803-1.
[16] Charbel, A., Lucie, M., Sanaz, M., Seyedeh, L., Konstantin, V., Saviz, M.,and Ihsen, B. (2024). Removal of heavy metals from mine water using a hybrid electrocoagulation-ceramic membrane filtration process. Desalination and Water Treatment, 320, 100730.
https://doi.org/10.1016/j.dwt.2024-.100730.
[17] Manoj, K., Kannan, P. (2021). Continuous removal and recovery of metals from wastewater using inverse fluidized bed sulfidogenic bioreactor. Journal of Cleaner Production, 15, 124769.
https://doi.org/10.1016/j.jclepro.2020.124769.
[18] Zheng, Li, Zhao, He., (2025). Sulfate-driven microbial collaboration for synergistic remediation of chloroethene-heavy metal pollution. Water Research, 268, Part B, 122738.
https://doi.org/10.1016/j.watres.2024.122738.
[19] EPA (Environmental Protection Agency). Introduction to Water Quality Standards. EPA, 2022.
https://www.epa.gov/sites/default/files/2021-04/documents/intro_to_wqs.
[20] Azimi, A., et al. (2017). Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Reviews, 4, 1, 37-59.
https://doi.org/10.1002/cben.201600010.
[21] Abbaspour, P. (2022). Metal Plating Industry and Environmental Pollution. Asian Research Journal of Current Science, 4(1), 1–6.
https://jofscience.com/index.php/ARJOCS/article/view/65.
[22] Clarkson, T. W., Magos, L. The toxicology of mercury and its chemical compounds. Critical Reviews in Toxicology, 36, 8, 609-662.
https://doi: 10.1080/10408440600845619.
[23] David, C., Ashley, M., Robert, O. (2018). Chapter One - The Neurodevelopmental Toxicity of Lead: History, Epidemiology, and Public Health Implications. Advances in Neurotoxicology, 2, 1-26.
https://doi.org/10.1016/bs.ant.2018.03.009.
[24] Nordberg, G. F., et al. (2023). Cadmium and Human Health: A Perspective Based on Recent Studies in China. Environmental Health Perspectives, 120, 5, 688-694.
https://doi.org/10.1002/jtra.10039.
[25] Welz, B., & Sperling, M. (1999). Atomic Absorption Spectrometry. Wiley-VCH.
https://doi:10.1002/9783527611690.
[26] Boss, C., & Fredeen, K. (2004). Concepts, Instrumentation and Techniques in Inductively Coupled Plasma Optical Emission Spectroscopy. Third ed., PerkinElmer.
[27] Skoog, D. A., Holler, F. J., & Crouch, S. R. (2017). Principles of Instrumental Analysis. Seventh ed., Cengage Learning.
[28] Jenkins, R. (1999). X-ray Fluorescence Spectrometry. Second ed., John Wiley & Sons, Inc.
[29] Bard, A. J., & Faulkner, L. R. (2001). Electrochemical Methods: Fundamentals and Applications. Second ed., John Wiley & Sons, Hoboken, NJ.
[30] Rao, C., Müller, A., Cheetham, A. 2004. The Chemistry of Nanomaterials: Synthesis, Properties and Applications. First ed., Wiley-VCH Verlag, Weinheim.
[31] Işık, K., Olcay, T. (2023). Hexavalent Chromium Removal from Water and Wastewaters by Electrochemical Processes: Review. Molecules, 28(5): 2411.
https://doi.org/10.3390/molecules28052411
[32] Xubiao, Y., Ronghua, X., Chaohai, W., Haizhen, W., (2016). Removal of cyanide compounds from coking wastewater by ferroussulfate: Improvement of biodegradability. Journal of Hazardous Materials, 302, 468-474.
https://doi.10.1016/j.jhazmat.2015.10.013.
[33] Kurniawan, T., Chan, G., Lo, W.-H., Babel, S. (2006). Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 118, 83–98. https://doi.org/10.1016/j.cej.2006.01.015.
[34] Aziz, A., Adlan, N., and Ariffin S. (2008). Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: post treatment by high quality limestone Bioresour. Technol., 99,1578-1583. https://doi.org/10.1016/j.biortech.2007.04.007
[35] Park, J.-H., Choi, G., Kim, S. (2014). Effects of pH and slow mixing conditions on heavy metal hydroxide precipitation. J. Korea. Org. Res. Recycl. Assos. 22, 50–56. https://doi.org/10.17137/Korrae.2014.22.2.50
[36] Anik, C., Animesh, P., and Bidyut, B. (2022). A Critical Review of the Removal of Radionuclides fromWastewater Employing Activated Carbon as an Adsorbent. Materials 15, 8818.
https://doi.org/10.3390/ma15248818.
[37] Mohan, D., Pittman, C. U. (2007). Arsenic removal from water/wastewater using adsorbents—A critical review. Journal of Hazardous Materials, 142(1-2), 1-53. https://doi.org/10.1016/j.jhazmat.2007.01.006
[38] Babel, S., Kurniawan, T. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, 97(1-3), 219-243. https://doi.org/10.1016/S0304-3894(02)00263-7.
[39] Politaeva, N., Smyatskaya, Y.A., Tatarintseva, E. (2020). Using adsorption material based on the residual biomass of Chlorella sorokinianamicroalgae for wastewater purification to remove heavy metal ions. Chem. Pet. Eng. 55, 907–912. https://doi.org/10.1007/s10556-020-00712-z
[40] Wang, J., Chen, R., Fan, L., Cui, L., Zhang, Y., Cheng, J., Wu, X., Zeng, W., Tian, Q., Shen, L. (2021). Construction of fungi-microalgaesymbiotic system and adsorption study of heavy metal ions. Purif. Technol. 268, 118689. https://doi.org/10.1016/j.seppur.2021.118689
[41] Gryko, K., Kalinowska, M., ́Swiderski, G. (2021). The Use of apple pomace in removing heavy metals from water and sewage. Environ.Sci. Proc. 9, 24. https://doi.10.3390/environsciproc2021009024.
[42] Ahmad, S., Zhu, X., Wang, Q., Wei, X., Zhang, S. (2021). Microwave-assisted hydrothermal treatment of soybean residue and chi-tosan: Characterization of hydrochars and role of N and P transformation for Pb (II) removal. J. Anal. Appl. Pyrolysis,160, 105330. https://doi.org/10.1016/j.jaap.2021.105330.
[43] Arachchige, M., Mu, T., Ma, M. (2021). Effect of high hydrostatic pressure-assisted pectinase modification on the Pb2+ adsorptioncapacity of pectin isolated from sweet potato residue. Chemosphere, 262, 128102. https://doi.org/10.1016/j.chemosphere.2020.128102.
[44] Shen, B., Guo, Z., Huang, B., Zhang, G., Fei, P., Hu, S. (2022). Preparation of hydrogels based on pectin with different esterification degreesand evaluation of their structure and adsorption properties. Int. J. Biol. Macromol, 202, 397–406.
https://doi.org/10.1016/j.ijbiomac.2021.12.160
[45] Krishna, B. S., & Swamy, A. V. V. S. (2011). Removal of heavy metals from wastewater using natural adsorbents. Research Journal of Chemical Sciences, 1(7), 13-20. https://doi.10.5772/intechopen.95841.
[46] Lesley J., Byung-Moon J., Joseph R., Chang M., Yeomin Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229, 142-159. https://doi.org/10.1016/j.chemosphere.2019.04.198.
[47] Mohammed A., Mahmood S. (2023). Removal of Cu2+, Pb2+, And Ni2+ Ions from Simulated Waste Water By Ion Exchange Method On Zeolite And Purolite C105 Resin. Journal of Engineering, 19(10), 1327–1340. https://doi:10.31026/j.eng.2013.10.10.
[48] Qasem, N., Mohammed, R. & Lawal, D. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. npj Clean Water 4, 36. https://doi.org/10.1038/s41545-021-00127-0.
[49] Ahalya, N., Kanamadi, R. D., & Ramachandra, T. V. (2003). Biosorption of heavy metals. Research Journal of Chemistry and Environment, 7(4), 71-79.
http://wgbis.ces.iisc.ernet.in/energy/water/paper/biosorption/biosorption.htm
[50] Tansel, B. (2008). New technologies for water and wastewater treatment: a survey of recent patents. Recent Patents on Chemical Engineering, 1(1), 17-26.
https://doi.10.2174/1874478810801010017
[51] Alnasrawy, S. (2023). Adsorption Efficiency, Isotherms, and Kinetics for Cationic Dye Removal Using Biowaste Adsorbent. J. Hazard. Toxic Radioact. Waste, 27(1), 04022040. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000735.
[52] Gholamreza G., Mahdiye M., Fakhriye O. (2014). Applications of nanomaterials in water treatment and environmental remediation. Frontiers of Environmental Science & Engineering, 8, 471–482. https://doi.10.1007/s11783-014-0654-0
[53] Bhateria, R., Singh, R. (2019). A review on nanotechnological application of magnetic iron oxides for heavy metal removal. Journal of Water Process Engineering, 31, 100845.
https://doi.org/10.1016/j.jwpe.2019.100845.
[54] Cao, Y., et al. (2018). Feasibility of nanoscale zero-valent iron to enhance the removal efficiencies of heavy metals from polluted soils by organic acids. Ecotoxicology and Environmental Safety, 162, 464-473. https://doi.org/10.1016/j.ecoenv.2018.07.036
[55] Briffa, J., et al. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9): e04691.https://doi.10.1016/j.heliyon.2020.e04691.
[56] Auffan, M., Rose, J., Bottero, J., Lowry, G., Jolivet, P., Wiesner, M. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4(10), 634-641.https://doi.10.1038/nnano.2009.242.
[57] Sun, Y., Li, X., Cao, J., Zhang, W., & Wang, H. (2006). Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science, 120(1-3), 47-56. https://doi.org/10.1016/j.cis.2006.03.001.
[58] Karn, B., Kuiken, T., Otto, M. (2009). Nanotechnology and in situ remediation: A review of the benefits and potential risks. Ciencia & Saude Coletiva, 14(2), 1071-1080.
https://doi.10.1289/ehp.0900793.
[59] Gottschalk, F., Sun, T., Nowack, B. (2013). Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies. Environmental Pollution, 181, 287-300.
https://doi.org/10.1016/j.envpol.2013.06.003
[60] Phenrat, T., Long, T. C., Lowry, G. V., Veronesi, B. (2009). Partial oxidation ("aging") and surface modification decrease the toxicity of nanosized zero-valent iron. Environmental Science & Technology, 43(1), 195-200. https://doi.10.1021/es801955n.
[61] Mishu S. (2023). Nano-adsorbents for the Effective Removal of Heavy Metal Ions from Domestic and Industrial Wastewater: A Review of Current Scenario JAC : A Journal Of Composition Theory, XVI(XI), 51-64. https://doi.10.13140/RG.2.2.15264.56322.
[62] El-sayed, M.E.A. (2020). Nanoadsorbents for water and wastewater remediation. Sci. Total Environ., 739, 139903. https://doi.org/10.1016/j.scitotenv.2020.139903.
[63] Menezes, B., Rodrigues, K., Fonseca, B., Ribas, R., Montanheiro, T., Thim, G.P. (2019). Recent advances in the use of carbon nanotubes as smart biomaterials. J. Mater.Chem. B, 7, 1343–1360.
https://doi.org/10.1039/C8TB02419G.
[64] Hur, J., Shin, J., Yoo, J., Seo, Y.-S. (2015). Competitive Adsorption of Metals onto Magnetic Graphene Oxide: Comparison with Other Carbonaceous Adsorbents. Sci. World J., 836287.
https://doi.org/10.1155/2015/836287.
[65] Farghali, A., Abdel Tawab, H., Abdel Moaty, S., Khaled, R. (2017). Functionalization of acidified multi-walled carbon nanotubes for removal of heavy metals in aqueous solutions. J.Nanostruct. Chem., 7, 101–111. https://doi.org/10.1007/s40097-017-0227-4.
[66] Mallakpour, S., Khadem, E. (2019) Carbon nanotubes for heavy metals removal. In Composite Nanoadsorbents. Kyzas, G.Z., Mitropoulos,A.C., Eds., 181–210.
https://doi.org/10.1016/B978-0-12-814132-8.00009-5.
[67] Woo, Y., Kim, S., Shon, H., Tijing, L. (2019). Introduction: Membrane Desalination Today, Past, and Future. In Current Trends and Future Developments on (Bio-) Membranes. Basile, A., Curcio, E., Inamuddin, Eds., xxv–xlvi.
https://doi.org/10.1016/B978-0-12-813551-8.00028-0.
[68] Xu, L., Wang, J. (2017). The application of graphene-based materials for the removal of heavy metal sand radionuclides from water and wastewater. Crit. Rev. Environ. Sci. Technol. 47,1042–1105. https://doi.org/10.1080/10643389.2017.1342514.
[69] Ali, I., Basheer, A., Mbianda, X., Burakov, A., Galunin, E., Burakova, I., Mkrtchyan,E., Tkachev, A., Grachev, V. (2021). Graphene based adsorbents for remediation of noxiouspollutants from wastewater. Environ. Int., 127, 160–180. Processes, 9, 1379 25 of29.
https://doi.org/10.1016/j.envint.2019.03.029
[70] Linh, Q., Anh,-T., Thu, D., Chinh, D., and Hoang, V. (2024). Fe3O4/Graphene Oxide/Chitosan Nanocomposite: A Smart Nanosorbent for Lead(II) Ion Removal from Contaminated Water. ACS Omega. 3;9(15):17506–17517. https://doi: 10.1021/acsomega.4c00486.
[71] Maria, R., Yulia, R., Artyom, P, Roman, A., et al. (2025). A fixed-bed-column study on arsenic removal from water using an in situ-synthesized nanocomposite of magnetite and reduced graphene oxide. Nano-Structures & Nano-Objects, 41(1): 101431.
https://doi:10.1016/j.nanoso.2025.101431.
[72] Aslam, M., Kuo, H.-W., Den, W., Usman, M., Sultan, M., Ashraf, H. (2021). Functionalized Carbon Nanotubes (CNTs) for Water and Wastewater Treatment: Preparation to Application. Sustainability, 13(10), 5717. https://doi.org/10.3390/su13105717.
[73] Guo, Z., Pang, J. and Liu, Z. (2022). On the journey exploring nanoscale packing materials for ultra-efficient liquid chromatographic separation. Journal of Chromatography Open, 2, 100033.
https://doi.org/10.1016/j.jcoa.2022.100033.
[74] Narayan, R., Nayak, U. Y., Raichur, A. M. and Garg, S. (2018). Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances. Pharmaceutics, 10(3), 118. https://doi.org/10.3390/pharmaceutics10030118
[75] Kordasht, H., Pazhuhi, M., P. Pashazadeh-Panahi, Hasanzadeh, M. and Shadjou, N. (2020). Multifunctional aptasensors based on mesoporous silica nanoparticles as an efficient platform for bioanalytical applications: Recent advances. TrAC Trends in Analytical Chemistry, 124, 115778.
https://doi.org/10.1016/j.trac.2019.115778.
[76] Madhu, P., Syed, S., Nao, Ts., Sourav, D., and Mahuya, B. (2023) Extraction of heavy metals from wastewater using amine‑modifiedmesoporous silica. Environmental Science and Pollution Research, 30:113409–113423. https://doi.org/10.1007/s11356-023-30092-9.
[77] Etale, A.; Tutu, H.; Drake, D.C. (2016). The effect of silica and maghemite nanoparticles on remediation of Cu(II)-, Mn(II)- and U(VI)-contaminated water by Acutodesmus sp. J. Appl.Phycol., 28, 251–260.https://doi.org/10.1007/s10811-015-0555-z.
[78] Tutijärvi, T., Lu, J., Sillanpää, M., Chen, G. (2009). As(V) adsorption on maghemite nanoparticles. J. Hazard. Mater, 166, 1415–1420.https://doi.org/10.1016/j.jhazmat.2008.12.069
[79] Mourdikoudis, S., Kostopoulou, A., LaGrow, A.P. (2021). Magnetic Nanoparticle Composites: Synergistic Effects and Applications. Adv.Sci., 8, 2004951.
https://doi.org/10.1016/j.jhazmat.2008.12.069
[80] Mutairah, S., Marwa, M., Mariam, E., Eida, S., Hussein, M. (2025). Preparation and characterization of a novelmagnetic nano adsorbent for removal of metalions. PLoS One 20(8): e0329686.
https://doi. org/10.1371/journal.pone.0329686.
[81]Adina, S., Catalin, N., Gabriela, V., Claudiu, C., Maria, M., Cornelia, M. & Ioan G. (2022). Highly efficient engineered waste eggshell‑fly ash for cadmium removal from aqueous solution. Scientific Reports, 12, 9676.
https://doi.org/10.1038/s41598-022-13664-6.
[82] Liosis, C., Papadopoulou, A., Karvelas, E., Karakasidis, T. E., & Sarris, I. E. (2021). Heavy Metal Adsorption Using Magnetic Nanoparticles for Water Purification: A Critical Review. Materials, 14(24), 7500.
https://doi.org/10.3390/ma14247500.
[83] Alijani, H., Shariatinia, Z. (2018). Synthesis of high growth rate SWCNTs and their magnetite cobaltsulfide nanohybrid as super adsorbent for mercury removal. Chem. Eng. Res. Des., 129,132–149.
https://doi.org/10.1016/j.cherd.2017.11.014
[84] Yu, G., Lu, Y., Guo, J., Patel, M., Bafana, A.;Wang, X., Qiu, B., Jeffryes, C., Wei, S., Guo,Z., et al. (2018). Carbon nanotubes, graphene, and their derivatives for heavy metal removal. Adv.Compos. Hybrid. Mater, 1, 56–78.
https://doi.org/10.1007/s42114-017-0004-3
[85] Bassyouni, M., Mansi, A., Elgabry, A., Ibrahim, B., Kassem, O., Alhebeshy, R. (2019). Utilization of carbon nanotubes in the removal of heavy metals from wastewater: A review of the CNTs’ potential and current challenges. Appl. Phys., 126, 38.
https://doi.org/10.1007/s00339-019-3211-7.
[86] Azam, A., Mohammed, L., Sallam., A., Sitohy, M., El-hadary, A., Mohamed, M. (2023). Environmentally friendly cost-effective removal of heavy metals from polluted water by carbon nanotube. Int. J. Environ. Sci. Technol. 20, 9143–9160.
https://doi.org/10.1007/s13762-022-04599-6
[87] Zhang, C.-Z., Chen, B., Bai, Y., Xie, J. (2018). A new functionalized reduced graphene oxide adsorbent for removing heavy metal ions in water via coordination and ion exchange. Sep.Sci. Technol., 53, 2896–2905.
https://doi.org/10.1080/01496395.2018.1497655
[88] Tabish, T., Memon, F., Gomez, D., Horsell, D., Zhang, S. (2018). A facile synthesis ofporous graphene for efficient water and wastewater treatment. Sci. Rep., 8, 1817.
https://doi.org/10.1038/s41598-018-19978-8
[89] Zheng, S., Hao, L., Zhang, L., Wang, K., Zheng, W., Wang, X., Zhou, X., Li, W., Zhang, L.Tea (2018). Polyphenols Functionalized and Reduced Graphene Oxide-ZnO Composites for Selective Pb2+ Removal and Enhanced Antibacterial Activity. J. Biomed.Nanotechnol., 14,1263–1276.
https://doi.org/10.1166/jbn.2018.2584
[90] Arshad, F., Selvaraj, M., Zain, J., Banat, F., Haija, M.A. (2019). Polyethylenimine modified graphene oxide hydrogel composite as an efficient adsorbent for heavy metal ions. Sep. Purif. Technol., 209, 870–880.
https://doi.org/10.1016/j.seppur.2018.06.035
https://doi.org/10.1016/j.arabjc.2018.06.018
https://doi.org/10.1155/2019/6210240
https://doi.org/10.1007/s11694-020-00460-x
[94] Saqr, A., El-Qanni, A., Al-Qalaq, H., Maryam, H., Al-Zerei, W., (2020). Effective adsorptive removal of Zn2+, Cu2+, and Cr3+ heavy metals from aqueous solutions using silica-based embedded with NiO and MgO nanoparticles. Journal of Environmental Management, 268, 110713.
https://doi.org/10.1016/j.jenvman.2020.110713
[95] Deepa, S., Aiyagari, R., Gopal, D. (2021). Green synthesis of silica nanoparticles from leaf biomass and its application to remove heavy metals from synthetic wastewater: A comparative analysis. Environmental Nanotechnology, Monitoring & Management, 16, 100467.
https://doi.org/10.1016/j.enmm.2021.100467
[96] Thirupathi, K., Santhamoorthy, M., Suresh, R., Mohammad A., Mei-Ching L., Seong-Cheol K., Keerthika, K. & Thi, T. (2024). Synthesis of bis (2-aminoethyl) amine functionalized mesoporous silica (SBA-15) adsorbent for selective adsorption of Pb2+ ions from wastewater. Environ Geochem Health, 46, 357.
https://doi.org/10.1007/s10653-024-02137-6
[97] Naira, M., Eslam, S., Mohamed, F , Soheair, G., Mona, O., (2024). Synthesis of Nano-silica Oxide for Heavy Metal Decontamination from Aqueous Solutions. Water Air Soil Pollut 235, 154.
https://doi.org/10.1007/s11270-024-06944-6.
[98] El-Shafey, S.E., Obada, M.K., El-Shamy, A.M. et al. (2024). Silica/klucel nanocomposite as promising durable adsorbent for lead removal from industrial effluents. Sci Rep 14, 26095.
https://doi.org/10.1038/s41598-024-74680-2.
[99] Nicola, R., Costi ̧sor, O., Ciopec, M., Negrea, A., Lazau, R., Iana ̧si, C., Picioru ̧s, E.-M., Len, A., Almásy, L., Szerb, E.I. (2020). Silica-Coated Magnetic Nanocomposites for Pb2+Removal from Aqueous Solution. Appl. Sci., 10, 2726.
https://doi.org/10.3390/app10082726
[100] Nejati, P., Somayyeh, R., Nastaran, S. (2022). Synthesis and Characterization of a Nanomagnetic Adsorbent Modified with Thiol for Magnetic and its Adsorption Behavior for Effective Elimination of Heavy Metal Ions. Advanced Journal of Chemistry-Section A, 5(1), 31-44.
https://doi.org/10.22034/AJCA.2021.308695.1283
[101] Al-Timimi, Z., Zeina, J., (2022). Utilizing nanomagnetic materials to eliminate Pb2+ and Cd2+ from aqueous mixtures. Current Research in Green and Sustainable Chemistry, 5, 100290.
https://doi.org/10.1016/j.crgsc.2022.100290.
[102] Raj, A., Maja, B., Marijana, L., Nena, D., Aleksandra, L., Aljoša, K., (2022). Removal of Pb2+, CrT, and Hg2+ Ions from Aqueous Solutions Using Amino-Functionalized Magnetic Nanoparticles. Int J Mol Sci., 19;23(24):16186.
https://doi: 10.3390/ijms232416186. PMID: 36555824.
[103] Kothavale, V., Sharma, A., Dhavale, R., Chavan, V., Shingte, S., Selyshchev, O., Dongae, T., Park, H et. al., (2023). Carboxyl and thiol-functionalized magnetic nanoadsorbents for efficient and simultaneous removal of Pb(II), Cd(II), and Ni(II) heavy metal ions from aqueous solutions: Studies of adsorption, kinetics, and isotherms. Journal of Physics and Chemistry of Solids, 172, 111089.
https://doi.org/10.1016/j.jpcs.2022.111089.
[104]Zeng, H., Xiao, S., Siqi, S., Weihua, Z., Ruixia, H., Jie, Z., Dong, L. (2024). A comprehensive study of As(V) removal by starch-coated magnetite nano-adsorbent based on waste iron sludge. Reactive and Functional Polymers, 198, 105879.
https://doi.org/10.1016/j.reactfunctpolym.2024.105879.
[105] Feng Z., Xiang-hong R., Jian-you L., Pin L. (2014). Development of Photocatalytic Degradation of Organic Pollutants in Water. Journal of Materials Engineering, 46(10), 9 -19.
https://doi.org/10.11868/j.issn.1001-4381.2017.000972.
[106[ Gylen O. and Neil R. (2019). Bridging the gap between laboratory and application in photocatalytic water purification. Catal. Sci. Technol., 9, 533-545.
https://doi.org/10.1039/C8CY02438C.
[107] Gao, X., Meng, X. (2021). Photocatalysis for Heavy Metal Treatment: A Review. Processes, 9, 1729.
https://doi.org/10.3390/pr9101729.
[108] Hoffmann, M. R., Martin, S. T., Choi, W., Bahnemann, D. W. (1995). Environmental applications of semiconductor photocatalysis. Chemical Reviews, 95(1), 69-96.
https://doi/10.1021/cr00033a004.
[109] Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(1), 1-21.
https://doi.org/10.1016/S1389-5567(00)00002-2.
[110] Linsebigler, A. L., Lu, G., & Yates, J. T. (1995). Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews, 95(3), 735-758.
https://doi/10.1021/cr00035a013.
[111] Carp, O., Huisman, C. L., & Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32(1-2), 33-177.
https://doi.org/10.1016/j.progsolidstchem.2004.08.001.
[112] Mills, A., & Hunte, S. L. (1997). An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 108(1), 1-35.https://doi.org/10.1016/S1010-6030(97)00118-4.
[113] Chong, M. N., Jin, B., Chow, C. W., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: a review. Water Research, 44(10), 2997-3027.
https://doi.org/10.1016/j.watres.2010.02.039
[114] Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2014). Understanding TiO2 photocatalysis: mechanisms and materials. Chemical Reviews, 114(19), 9919-9986. https://doi.org/10.1021/cr5001892.
[115] Josue, T., Almeida L., Lopes M., Santos O., Lenzi, G. (2020). Cr (VI) reduction by photocatalyic process: Nb2O5 an alternative catalyst. J. Environ. Manag. 268, 110711. https://doi.org/10.1016/j.jenvman.2020.110711
[116] Yan, R., Luo, D., Fu C., Wang, Y., Zhang, H., Wu, P., Jiang W. (2020). Harmless treatment and selective recovery of acidic Cu (II)-Cr (VI)hybrid wastewater via coupled photo-reduction and ion exchange. Sep. Purif. Technol. 234, 116130. https://doi.org/10.1016/j.seppur.2019.116130.
[117] Fan, Z., Yue-Hua, L., Jing-Yu, L., Zi-Rong, T., Yi-Jun, X. (2019). 3D graphene-based gel photocatalysts for environmental pollutants degradation. Environ Pollut. 53, 365-376. https://doi.org/10.1016/j.envpol.2019.06.089
[118] Ma, Q, Li, Y, Tan, Y, Xu, B, Cai, J, Zhang, Y, Wang, Q, Wu, Q, Yang, B, Huang, J. (2023). Recent Advances in Metal-Organic Framework (MOF)-Based Photocatalysts: Design Strategies and Applications in Heavy Metal Control. Molecules, 28(18), 6681. https://doi.org/10.3390/molecules28186681.
[119] Sharaf Aldeen, E., Mim, R., Hatta, A., Hazril, N., Chowdhury, A., Hassan, N., Rajendran, S. (2023). Environmental remediation of hazardous pollutants using MXene-perovskite-based photocatalysts: A review. Environmental Research, 234, 116576. https://doi.org/10.1016/j.envres.2023.116576
[120] Farhan, A., Zulfiqar, M., Samiah et al. (2023). Removal of Toxic Metals from Water by Nanocomposites through Advanced Remediation Processes and Photocatalytic Oxidation. Curr Pollution Rep 9, 338–358. https://doi.org/10.1007/s40726-023-00253-y
[121] Liu, J., Zhang, Z., Fan, Z., Tang, X., Zhong Q. (2024). Strategies for boosting the photocatalytic reduction of toxic metal ions: Progress and prospects. Journal of Water Process Engineering, 57, 104683. https://doi.org/10.1016/j.jwpe.2023.104683.
[122] Sara, P., (2019). Tech Note: Removal of Heavy Metals by Photocatalyst. Revista Ingeniería UC, 26, 3, 378-385. http://servicio.bc.uc.edu.ve/ingenieria/revista/v26n3/art12.pdf.
[123] Wang, J., Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology Advances, 24(5), 427-451. https://doi.org/10.1016/j.biotechadv.2006.03.001
[124] Vijayaraghavan, K., Yun, Y. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances, 26(3), 266-291. https://doi.org/10.1016/j.biotechadv.2008.02.002
[125] Gadd, G. M. (2009). Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology & Biotechnology, 84(1), 13-28. https://doi.org/10.1002/jctb.1999.
[126] Singh, V., Singh, J., Singh, N. et al. (2023). Simultaneous removal of ternary heavy metal ions by a newly isolated Microbacterium paraoxydans strain VSVM IIT(BHU) from coal washery effluent. Biometals 36, 829–845.
https://doi.org/10.1007/s10534-022-00476-4.
[127] Malakootian, M., Yousefi, Z., and Khodashenasimoni, Z. (2016). Removal of zinc from industrial wastewaters using microscopic green algae Chlorella Vulgaris. Journal of ILAM University of medical sciences, 23(6), 40-50. SID.
https://sid.ir/paper/89994/en.
[128] Kapoor, A., Viraraghavan, T. (1997). Heavy metal biosorption sites in Aspergillus niger. Bioresource Technology, 61(3), 221-227.
https://doi.org/10.1016/S0960-8524(97)00055-2
[129] Văcar, C. L., Covaci, E., Chakraborty, S., Li, B., Weindorf, D. C., Frențiu, T., Pârvu, M., & Podar, D. (2021). Heavy Metal-Resistant Filamentous Fungi as Potential Mercury Bioremediators. Journal of Fungi, 7(5), 386.
https://doi.org/10.3390/jof7050386
[130] Alabssawy, A.N., Hashem, A.H. (2024). Bioremediation of hazardous heavy metals by marine microorganisms: a recent review. Archives of Microbiology, 206(1), 103.
https://doi.org/10.1007/s00203-023-03793-5
[131] Tufail, M.A., Jawaria I., Tahreem Z., Leeza T., Muhammad B. et. al. (2022). Recent advances in bioremediation of heavy metals and persistent organic pollutants: A review. The Science of The Total Environment, 850(10), 157961.
https://doi.org/10.1016/j.scitotenv.2022.157961
[132] Mosa, K., Saadoun, I., Kumar, K., Helmy, M., Dhankher, OP. (2016). Potential Biotechnological Strategies for the Cleanup of Heavy Metals and Metalloids. Front Plant Sci., 15;7:303.
https://doi.org/10.3389/fpls.2016.00303.
[133] Pham, V., Kim, J., Chang, S., Chung, W. (2022). Bacterial Biosorbents, an Efficient Heavy Metals Green Clean-Up Strategy: Prospects, Challenges, and Opportunities. Microorganisms, 10, 610.
https://doi.org/10.3390/microorganisms10030610
[134] Ullah, N., Maqsood, U., Bashir, A., Irshad A., Muhammad, Y., Muhammad, A., Atta-Ur R. (2022). Assessment of heavy metals accumulation in agricultural soil, vegetables, and associated health risks. PLoS ONE, 17(6), e0267719.
https://doi.org/10.1371/journal.pone.0267719
[135] Petersen, R. J. (1993). Composite reverse osmosis and nanofiltration membranes. Journal of Membrane Science, 83(1), 81-150.
https://doi.org/10.1016/0376-7388(93)80014-O.
[136] Barakat, M.AF. (2015). Complexation–Ultrafiltration Process for Heavy Metal Removal from Effluents. In: Drioli, E., Giorno, L. (eds) Encyclopedia of Membranes. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-40872-4_1898-1.
[137] Alaa El, Din, M., and Esraa, M. (2023). Nanofiltration Membranes for the Removal of Heavy Metals from Aqueous Solutions: Preparations and Applications. Membranes 13, no. 9:
https://doi.org/10.3390/membranes13090789789
[138] Xiuzhen, W., Xin, K., Songxue, W., Hai, X., Jiade, W., and Jinyuan, C. (2013). Removal of Heavy Metals from Electroplating Wastewater by Thin-Film Composite Nanofiltration Hollow-Fiber Membranes” Ind. Eng. Chem. Res., 52, 17583−17590.
https://doi.org/10.1021/ie402387u.
[139] Basaran, G., Kavak, D., Dizge, N., Asci, Y., Solener, M., Ozbey, B. (2016). Comparative study of the removal of nickel (II) and chromium (VI) heavy metals from metal plating wastewater by two nanofiltration membranes. Desalination and Water Treatment, 57(99), 21870-21880.
https://doi.org/10.1080/19443994.2015.1127778
[140] Bharti, V., Chandrajit, B., Manigandan, S., and Sarang, P. (2021). Pressure-Driven Membrane Process: A Review of Advanced Technique for Heavy Metals Remediation. Processes, 9, 5, 752.
https://doi.org/10.3390/pr9050752.
[141] Zhao, J., Luo, G., Wu, J., & Xia, H. (2016). New trends in removing heavy metals from wastewater. Appl Microbiol Biotechnol, 100(15) :6509-6518. https://pubmed.ncbi.nlm.nih.gov/27318819/
[142] Haruna, B. A., Shehu, H., Sa'ad, A. S., Adam, M. R. E., Abdulmalik, H., Hamza, M., Nasser, Saleh, A. D. B., & Azmatullah, N. (2024). Membrane technologies for heavy metals removal from water and wastewater: A mini review. Case Studies in Chemical and Environmental Engineering, 9, 100538.
https://doi.org/10.1016/j.cscee.2023.100538.
[143] Khanzada, N., Raed A., Muzamil K., Farah, E., Yazan, I., and Nidal H. (2024). Sustainability in Membrane Technology: Membrane Recycling and Fabrication Using Recycled Waste. Membranes, 14(2), 52.
https://doi.org/10.3390/membranes14020052
[144]Abdullah, N., Yusof, N., Lau, W.J., Jaafar, J., Ismail, A. (2019). Recent trends of heavy metal removal from water/wastewater by membrane technologies. Journal of Industrial and Engineering Chemistry, 76, 17-38.
https://doi.org/10.1016/j.jiec.2019.03.029.
[145] Khan, S., Mohammad K., Khalid H., Mehdi H., Milad M., Farrukh B., and Izharul H. (2023). Efficacy of Electrocoagulation Treatment for the Abatement of Heavy Metals: An Overview of Critical Processing Factors, Kinetic Models and Cost Analysis. Sustainability, 15, 2, 1708.
https://doi.org/10.3390/su15021708.
[146] Bazrafshan, E., Mohammadi, L., Ansari-Moghaddam, A. et al. (2015). Heavy metals removal from aqueous environments by electrocoagulation process– a systematic review. J Environ Health Sci Engineer, 13, 74.
https://doi.org/10.1186/s40201-015-0233-8.
[147] Mao, Y., Yaqian Z., and Sarah C. (2023). Examining Current and Future Applications of Electrocoagulation in Wastewater Treatment. Water, 15, 8, 1455. https://doi.org/10.3390/w15081455.
[148] Stylianou, M., Etienne, M., Andreas, Z., Irene, C., Konstantinos, D., Agapios, A. (2022). Removal of toxic metals and anions from acid mine drainage (AMD) by electrocoagulation: The case of North Mathiatis open cast mine. Sustainable Chemistry and Pharmacy, 29, 100737.
https://doi.org/10.1016/j.scp.2022.100737.
[149] Shaker, OA, Safwat, SM, Matta, ME. (2023). Nickel removal from wastewater using electrocoagulation process with zinc electrodes under various operating conditions: performance investigation, mechanism exploration, and cost analysis. Environ Sci Pollut Res Int. 30(10):26650-26662.
https://doi.org/10.1007/s11356-022-24101-6.
[150] El-Gawad, H., Hassan, G., Aboelghait, K. et al.(2023). Removal of chromium from tannery industry wastewater using iron-based electrocoagulation process: experimental; kinetics; isotherm and economical studies. Sci Rep 13, 19597.
https://doi.org/10.1038/s41598-023-46848-9
[151] Twizerimana, P., Wu, Y. (2024). Overview of integrated electrocoagulation-adsorption strategies for the removal of heavy metal pollutants from wastewater. Discov Chem Eng., 4, 14.
https://doi.org/10.1007/s43938-024-00053-w
[152] Shestakova, M., Sillanpää, M. (2017). Electrode materials used for electrochemical oxidation of organic compounds in wastewater. Rev Environ Sci Biotechnol, 16, 223–238.
https://doi.org/10.1007/s11157-017-9426-1.
[153] Manna, M., Sen, S. (2023). Advanced oxidation process: a sustainable technology for treating refractory organic compounds present in industrial wastewater. Environ Sci Pollut Res, 30, 25477–25505.
https://doi.org/10.1007/s11356-022-19435-0.
[154] Mirshafee, A., Mohammad, N., and Alireza, S. (2024). Application of electro oxidation process for treating wastewater from petrochemical with mixed metal oxide electrode. Sci Rep, 14, 1760.
https://doi.org/10.1038/s41598-024-52201-5.
[155] Shaogang, H., Jingping, H., Yingfei, S., Qian, Z., Longsheng, W., Bingchuan, L. et al., (2021). Simultaneous heavy metal removal and sludge deep dewatering with Fe(II) assisted electrooxidation technology. Journal of Hazardous Materials, 405, 124072. https://doi.org/10.1016/j.jhazmat.2020.124072
[156] Yujie, F., Lisha, Y., Junfeng, L. and Bruce, E. (2016). Electrochemical technologies for wastewater treatment and resource reclamation. Environ. Sci.: Water Res. Technol., 2, 800-831. https://doi.org/10.1039/C5EW00289C
[157] Xu, Y., Zhenyu, Z., Xianhui, Z., Yuanyuan, Z., Wenting, D., and Yuehui, C. (2023). Novel Materials for Heavy Metal Removal in Capacitive Deionization. Applied Sciences, 13, 9, 5635.https://doi.org/10.3390/app13095635.
[158] Maarof, H., Daud, Wan M. and Aroua, M. (2017). Recent trends in removal and recovery of heavy metals from wastewater by electrochemical technologies. Reviews in Chemical Engineering, 33, 4, 359-386.https://doi.org/10.1515/revce-2016-0021.
[159] Sawadogo, B., Nouhou Moussa, A. W., Konaté, Y., Tiendrebeogo, C., Sossou, S., Sidibé, S. D. S., & Karambiri, H. (2024). Integrated coagulation-flocculation with nanofiltration and reverse osmosis membrane for treating sugar cane industry effluent. Heliyon, 10(23), e40805.https://doi.org/10.1016/j.heliyon.2024.e40805
[160]Genethliou, C., T. Tatoulis, N. Charalampous, S. Dailianis, A.G. Tekerlekopoulou, D. V. Vayenas, (2023). Treatment of raw sanitary landfill leachate using a hybrid pilot-scale system comprising adsorption, electrocoagulation and biological process. J. Environ. Manag., 330, Article 117129.
https://doi.org/10.1016/j.jenvman.2022.117129
[161] Xu, L., S., Liu, S., Zhao, K., Li, A., Cao, J. Wang, (2022). A novel electrocoagulation-membrane stripping hybrid system for simultaneous ammonia recovery and contaminant removal. Sep. Purif. Technol., 296, 121377.https://doi.org/10.1016/j.seppur.2022.121377