An in-depth review of sustainable technologies for heavy metal removal from industrial wastewater: Current approaches and prospective challenges

Document Type : Review Paper

Author

Department of Environmental Engineering, College of Civil Engineering, University of Technology, P. O. Box: 35010, Baghdad, Iraq

Abstract

Water sources contamination with heavy metals is a global source of anxiety. Heavy metals poses a real threat to ecosystems and human health. These metals such as lead, cadmium, and mercury are recognized as highly toxic and persistent pollutants due to their ability to accumulate in biological systems. This research explores and critically assesses cutting-edge technologies for the removal of heavy metals from industrial wastewater, aiming to reduce their harmful environmental and public health effects. The study first outlines the environmental and health hazards associated with these contaminants, followed by an overview of conventional treatment methods—including chemical precipitation, adsorption, ion exchange, and filtration. While these traditional approaches have proven effective, they are often hindered by the need for large quantities of reagents, as well as high operational and waste management costs. To address these limitations, the research shifts focus toward innovative treatment strategies, including nanotechnology, photocatalytic oxidation, advanced membrane technologies, and biological treatments. Recent literature is examined to highlight the performance, advantages, and limitations of these modern techniques. For example, nanomaterials demonstrate exceptional adsorption capabilities due to their high surface area, though challenges such as material recovery and economic viability remain significant. Similarly, membrane-based processes offer high efficiency but are often associated with high operational costs. The study also proposes strategies for overcoming these limitations, such as improving nanomaterial reuse and reducing energy consumption in membrane operations. A comparative analysis of the discussed methods is presented to support practitioners and researchers in selecting appropriate solutions based on factors such as contaminant characteristics, economic constraints, and technological readiness. Ultimately, this work aims to serve as a valuable resource for professionals and scholars engaged in industrial wastewater management, promoting informed choices and sustainable heavy metal remediation.

Graphical Abstract

An in-depth review of sustainable technologies for heavy metal removal from industrial wastewater: Current approaches and prospective challenges

Keywords

Main Subjects


  • [1] Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60-72. https://doi.org/10.2478/intox-2014-0009.

    [2] He, Z. L., Yang, X. E., Stoffella, P. J. (2017). Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology, 15(2-3), 116-124.https://doi.org/10.1016/j.jtemb.2005.02.010.

    [3] Mergler, D., Anderson, H. A., Chan, L. H. M., Mahaffey, K. R., Murray, M., Sakamoto, M., & Stern, A. H. (2007). Methylmercury exposure and health effects in humans: A worldwide concern. Ambio, 36(1), 3-11.https://www.jstor.org/stable/4315779.

    [4] Fu, F., Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407-418. https://doi.org/10.1016/j.jenvman.2010.11.011.

    [5] European Union (IED) - Industrial Emissions Directive : Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). http://data.europa.eu/eli/dir/2010/75/oj

    [6] WHO (2006). Guidelines for the Safe Use of Wastewater, Excreta and Greywater (Volumes relevant to reuse and discharge).

    [7] Yang, J., Hou, B., Wang, J., Tian, B., Bi, J., Wang, N., Li, X., Huang, X. (2019). Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomaterials, 9(3), 424.https://doi.org/10.3390/nano9030424.

    [8] Mauter, M. S., Elimelech, M. (2008). Environmental applications of carbon-based nanomaterials. Environmental Science & Technology, 42(16), 5843-5859. https://doi.org/10.1021/es8006904

    [9] Aguilar-Ascón, E., Marrufo-Saldaña, L., Neyra-Ascón, W. (2024). Enhanced chromium removal from tannery wastewater through electrocoagulation with iron electrodes: Leveraging the Box-Behnken design for optimization. Heliyon, 23;10(3):e24647. https://doi: 10.1016/j.heliyon.2024.e24647

    [10] Mahtab, Md, Asma, B., Salman, K., Mohd, A., Ullah Khan, S. (2024). Nickel (II) removal from real electroplating wastewater in an electrocoagulation reactor: parametric optimization by response surface methodology. Water Science & Technology, 90, 8, 2266. https://doi: 10.2166/wst.2024.331.

    [11] Evelyn, M., Caleb, M., Jeffrey, K., Michael, E., Colton, L.,Carli, S. et al., (2024). High Efficacy Two-Stage Metal Treatment Incorporating Basic Oxygen Furnace Slag and Microbiological Sulfate Reduction. ACSESTEngg, 4, 433−444. https://doi.org/10.1021/acsestengg.3c00381.

    [12] Rajesh, J., Raja, S., Vytla, R. (2024). Efficient removal of hexavalent chromium from wastewater using a novel magnetic biochar composite adsorbent. Journal of Water Process Engineering, 66, 105908.  https://doi.org/10.1016/j.jwpe.2024.105908.

    [13] Ziguo, L., Miao, L., Wei, Z., Ye, L., Bolin, L., Dongxue, L., Chang, L. (2023). Synthesis of magnetic Fe3O4@SiO2-(-NH2/-COOH) nanoparticles and their application for the removal of heavy metals from wastewater. Ceramics International, 49, 12, 20470-20479.  https://doi.org/10.1016/j.ceramint.2023.03.177.

    [14] Zhang, L., Linxin Q., Lanting, M., Zhe, S., Yabin, J. and Si, C. (2024). Treatment of electroplating wastewater using electrocoagulation and integrated membrane. Water Science & Technology, Vol 89 No 9, 2538. https://doi: 10.2166/wst.2024.136.

    [15] Eman, M., Mohammed, F. Eman, M., Ahmad, A. (2024). Hexavalent chromium ion removal from wastewater using novel nanocomposite based on the impregnation of zero-valent iron nanoparticles into polyurethane foam. Sci Rep 14, 5387. https://doi.org/10.1038/s41598-024-55803-1.

    [16] Charbel, A., Lucie, M., Sanaz, M., Seyedeh, L., Konstantin, V., Saviz, M.,and Ihsen, B. (2024). Removal of heavy metals from mine water using a hybrid electrocoagulation-ceramic membrane filtration process. Desalination and Water Treatment, 320, 100730.

    https://doi.org/10.1016/j.dwt.2024-.100730.

    [17] Manoj, K., Kannan, P. (2021). Continuous removal and recovery of metals from wastewater using inverse fluidized bed sulfidogenic bioreactor. Journal of Cleaner Production, 15, 124769.

    https://doi.org/10.1016/j.jclepro.2020.124769.

    [18] Zheng, Li, Zhao, He., (2025). Sulfate-driven microbial collaboration for synergistic remediation of chloroethene-heavy metal pollution. Water Research, 268, Part B, 122738.

    https://doi.org/10.1016/j.watres.2024.122738.

    [19] EPA (Environmental Protection Agency). Introduction to Water Quality Standards. EPA, 2022.

    https://www.epa.gov/sites/default/files/2021-04/documents/intro_to_wqs.

    [20] Azimi, A., et al. (2017). Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Reviews, 4, 1, 37-59.

    https://doi.org/10.1002/cben.201600010.

    [21] Abbaspour, P. (2022). Metal Plating Industry and Environmental Pollution. Asian Research Journal of Current Science, 4(1), 1–6.

    https://jofscience.com/index.php/ARJOCS/article/view/65.

    [22] Clarkson, T. W., Magos, L. The toxicology of mercury and its chemical compounds. Critical Reviews in Toxicology, 36, 8, 609-662.

    https://doi: 10.1080/10408440600845619.

    [23] David, C., Ashley, M., Robert, O. (2018). Chapter One - The Neurodevelopmental Toxicity of Lead: History, Epidemiology, and Public Health Implications. Advances in Neurotoxicology, 2, 1-26.

    https://doi.org/10.1016/bs.ant.2018.03.009.

    [24] Nordberg, G. F., et al. (2023). Cadmium and Human Health: A Perspective Based on Recent Studies in China. Environmental Health Perspectives, 120, 5, 688-694.

    https://doi.org/10.1002/jtra.10039.

    [25] Welz, B., & Sperling, M. (1999). Atomic Absorption Spectrometry. Wiley-VCH.

    https://doi:10.1002/9783527611690.

    [26] Boss, C., & Fredeen, K. (2004). Concepts, Instrumentation and Techniques in Inductively Coupled Plasma Optical Emission Spectroscopy. Third ed., PerkinElmer.

    [27] Skoog, D. A., Holler, F. J., & Crouch, S. R. (2017). Principles of Instrumental Analysis. Seventh ed., Cengage Learning.

    [28] Jenkins, R. (1999). X-ray Fluorescence Spectrometry. Second ed., John Wiley & Sons, Inc.

    [29] Bard, A. J., & Faulkner, L. R. (2001). Electrochemical Methods: Fundamentals and Applications. Second ed., John Wiley & Sons, Hoboken, NJ.

    [30] Rao, C., Müller, A., Cheetham, A. 2004. The Chemistry of Nanomaterials: Synthesis, Properties and Applications. First ed., Wiley-VCH Verlag, Weinheim.

    [31] Işık, K., Olcay, T. (2023). Hexavalent Chromium Removal from Water and Wastewaters by Electrochemical Processes: Review. Molecules, 28(5): 2411.

    https://doi.org/10.3390/molecules28052411

    [32] Xubiao, Y., Ronghua, X., Chaohai, W.Haizhen, W., (2016). Removal of cyanide compounds from coking wastewater by ferroussulfate: Improvement of biodegradability. Journal of Hazardous Materials, 302, 468-474.

    https://doi.10.1016/j.jhazmat.2015.10.013.

    [33] Kurniawan, T., Chan, G., Lo, W.-H., Babel, S. (2006). Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 118, 83–98. https://doi.org/10.1016/j.cej.2006.01.015.

    [34] Aziz, A., Adlan, N., and Ariffin S. (2008). Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: post treatment by high quality limestone Bioresour. Technol., 99,1578-1583. https://doi.org/10.1016/j.biortech.2007.04.007

    [35] Park, J.-H., Choi, G., Kim, S. (2014). Effects of pH and slow mixing conditions on heavy metal hydroxide precipitation. J. Korea. Org. Res. Recycl. Assos. 22, 50–56. https://doi.org/10.17137/Korrae.2014.22.2.50

    [36] Anik, C., Animesh, P., and Bidyut, B. (2022). A Critical Review of the Removal of Radionuclides fromWastewater Employing Activated Carbon as an Adsorbent. Materials 15, 8818.

    https://doi.org/10.3390/ma15248818.

    [37] Mohan, D., Pittman, C. U. (2007). Arsenic removal from water/wastewater using adsorbents—A critical review. Journal of Hazardous Materials, 142(1-2), 1-53. https://doi.org/10.1016/j.jhazmat.2007.01.006

    [38] Babel, S., Kurniawan, T. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, 97(1-3), 219-243. https://doi.org/10.1016/S0304-3894(02)00263-7.

    [39] Politaeva, N., Smyatskaya, Y.A., Tatarintseva, E. (2020). Using adsorption material based on the residual biomass of Chlorella sorokinianamicroalgae for wastewater purification to remove heavy metal ions. Chem. Pet. Eng. 55, 907–912. https://doi.org/10.1007/s10556-020-00712-z

    [40] Wang, J., Chen, R., Fan, L., Cui, L., Zhang, Y., Cheng, J., Wu, X., Zeng, W., Tian, Q., Shen, L. (2021). Construction of fungi-microalgaesymbiotic system and adsorption study of heavy metal ions. Purif. Technol. 268, 118689. https://doi.org/10.1016/j.seppur.2021.118689

    [41] Gryko, K., Kalinowska, M., ́Swiderski, G. (2021). The Use of apple pomace in removing heavy metals from water and sewage. Environ.Sci. Proc. 9, 24. https://doi.10.3390/environsciproc2021009024.

    [42] Ahmad, S., Zhu, X., Wang, Q., Wei, X., Zhang, S. (2021). Microwave-assisted hydrothermal treatment of soybean residue and chi-tosan: Characterization of hydrochars and role of N and P transformation for Pb (II) removal. J. Anal. Appl. Pyrolysis,160, 105330. https://doi.org/10.1016/j.jaap.2021.105330.

    [43] Arachchige, M., Mu, T., Ma, M. (2021). Effect of high hydrostatic pressure-assisted pectinase modification on the Pb2+ adsorptioncapacity of pectin isolated from sweet potato residue. Chemosphere, 262, 128102.  https://doi.org/10.1016/j.chemosphere.2020.128102.

    [44] Shen, B., Guo, Z., Huang, B., Zhang, G., Fei, P., Hu, S. (2022). Preparation of hydrogels based on pectin with different esterification degreesand evaluation of their structure and adsorption properties. Int. J. Biol. Macromol, 202, 397–406.

    https://doi.org/10.1016/j.ijbiomac.2021.12.160

    [45] Krishna, B. S., & Swamy, A. V. V. S. (2011). Removal of heavy metals from wastewater using natural adsorbents. Research Journal of Chemical Sciences, 1(7), 13-20. https://doi.10.5772/intechopen.95841.

    [46] Lesley J., Byung-Moon J.Joseph R.Chang M.Yeomin Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229, 142-159. https://doi.org/10.1016/j.chemosphere.2019.04.198.

    [47] Mohammed A., Mahmood S. (2023). Removal of Cu2+, Pb2+, And Ni2+ Ions from Simulated Waste Water By Ion Exchange Method On Zeolite And Purolite C105 Resin. Journal of Engineering, 19(10), 1327–1340.  https://doi:10.31026/j.eng.2013.10.10.

    [48] Qasem, N., Mohammed, R. & Lawal, D. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. npj Clean Water 4, 36. https://doi.org/10.1038/s41545-021-00127-0.

    [49] Ahalya, N., Kanamadi, R. D., & Ramachandra, T. V. (2003). Biosorption of heavy metals. Research Journal of Chemistry and Environment, 7(4), 71-79.

    http://wgbis.ces.iisc.ernet.in/energy/water/paper/biosorption/biosorption.htm

    [50] Tansel, B. (2008). New technologies for water and wastewater treatment: a survey of recent patents. Recent Patents on Chemical Engineering, 1(1), 17-26.

    https://doi.10.2174/1874478810801010017

    [51] Alnasrawy, S. (2023). Adsorption Efficiency, Isotherms, and Kinetics for Cationic Dye Removal Using Biowaste Adsorbent. J. Hazard. Toxic Radioact. Waste, 27(1), 04022040. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000735.

    [52] Gholamreza G., Mahdiye M., Fakhriye O. (2014). Applications of nanomaterials in water treatment and environmental remediation. Frontiers of Environmental Science & Engineering, 8, 471–482. https://doi.10.1007/s11783-014-0654-0

    [53] Bhateria, R., Singh, R. (2019). A review on nanotechnological application of magnetic iron oxides for heavy metal removal. Journal of Water Process Engineering, 31, 100845.

    https://doi.org/10.1016/j.jwpe.2019.100845.

    [54] Cao, Y., et al. (2018). Feasibility of nanoscale zero-valent iron to enhance the removal efficiencies of heavy metals from polluted soils by organic acids. Ecotoxicology and Environmental Safety, 162, 464-473. https://doi.org/10.1016/j.ecoenv.2018.07.036

    [55] Briffa, J., et al. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9): e04691.https://doi.10.1016/j.heliyon.2020.e04691.

    [56] Auffan, M., Rose, J., Bottero, J., Lowry, G., Jolivet, P., Wiesner, M. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4(10), 634-641.https://doi.10.1038/nnano.2009.242.

    [57] Sun, Y., Li, X., Cao, J., Zhang, W., & Wang, H. (2006). Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science, 120(1-3), 47-56. https://doi.org/10.1016/j.cis.2006.03.001.

    [58] Karn, B., Kuiken, T., Otto, M. (2009). Nanotechnology and in situ remediation: A review of the benefits and potential risks. Ciencia & Saude Coletiva, 14(2), 1071-1080.

    https://doi.10.1289/ehp.0900793.

    [59] Gottschalk, F., Sun, T., Nowack, B. (2013). Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies. Environmental Pollution, 181, 287-300.

    https://doi.org/10.1016/j.envpol.2013.06.003

    [60] Phenrat, T., Long, T. C., Lowry, G. V., Veronesi, B. (2009). Partial oxidation ("aging") and surface modification decrease the toxicity of nanosized zero-valent iron. Environmental Science & Technology, 43(1), 195-200. https://doi.10.1021/es801955n.

    [61] Mishu S. (2023). Nano-adsorbents for the Effective Removal of Heavy Metal Ions from Domestic and Industrial Wastewater: A Review of Current Scenario JAC : A Journal Of Composition Theory, XVI(XI), 51-64. https://doi.10.13140/RG.2.2.15264.56322.

    [62] El-sayed, M.E.A. (2020). Nanoadsorbents for water and wastewater remediation. Sci. Total Environ., 739, 139903. https://doi.org/10.1016/j.scitotenv.2020.139903.

    [63] Menezes, B., Rodrigues, K., Fonseca, B., Ribas, R., Montanheiro, T., Thim, G.P. (2019). Recent advances in the use of carbon nanotubes as smart biomaterials. J. Mater.Chem. B, 7, 1343–1360.

    https://doi.org/10.1039/C8TB02419G.

    [64] Hur, J., Shin, J., Yoo, J., Seo, Y.-S. (2015). Competitive Adsorption of Metals onto Magnetic Graphene Oxide: Comparison with Other Carbonaceous Adsorbents. Sci. World J., 836287.

    https://doi.org/10.1155/2015/836287.

    [65] Farghali, A., Abdel Tawab, H., Abdel Moaty, S., Khaled, R. (2017). Functionalization of acidified multi-walled carbon nanotubes for removal of heavy metals in aqueous solutions. J.Nanostruct. Chem., 7, 101–111. https://doi.org/10.1007/s40097-017-0227-4.

    [66] Mallakpour, S., Khadem, E. (2019) Carbon nanotubes for heavy metals removal. In Composite Nanoadsorbents. Kyzas, G.Z., Mitropoulos,A.C., Eds., 181–210.  

    https://doi.org/10.1016/B978-0-12-814132-8.00009-5.

    [67] Woo, Y., Kim, S., Shon, H., Tijing, L. (2019). Introduction: Membrane Desalination Today, Past, and Future. In Current Trends and Future Developments on (Bio-) Membranes. Basile, A., Curcio, E., Inamuddin, Eds., xxv–xlvi.

    https://doi.org/10.1016/B978-0-12-813551-8.00028-0.

    [68] Xu, L., Wang, J. (2017). The application of graphene-based materials for the removal of heavy metal sand radionuclides from water and wastewater. Crit. Rev. Environ. Sci. Technol. 47,1042–1105. https://doi.org/10.1080/10643389.2017.1342514.

    [69] Ali, I., Basheer, A., Mbianda, X., Burakov, A., Galunin, E., Burakova, I., Mkrtchyan,E., Tkachev, A., Grachev, V. (2021). Graphene based adsorbents for remediation of noxiouspollutants from wastewater. Environ. Int., 127, 160–180. Processes, 9, 1379 25 of29.

    https://doi.org/10.1016/j.envint.2019.03.029

    [70] Linh, Q., Anh,-T., Thu, D., Chinh, D., and Hoang, V. (2024). Fe3O4/Graphene Oxide/Chitosan Nanocomposite: A Smart Nanosorbent for Lead(II) Ion Removal from Contaminated Water. ACS Omega. 3;9(15):17506–17517.  https://doi: 10.1021/acsomega.4c00486.

    [71] Maria, R., Yulia, R., Artyom, P, Roman, A., et al. (2025). A fixed-bed-column study on arsenic removal from water using an in situ-synthesized nanocomposite of magnetite and reduced graphene oxide. Nano-Structures & Nano-Objects, 41(1): 101431.

    https://doi:10.1016/j.nanoso.2025.101431.

    [72] Aslam, M., Kuo, H.-W., Den, W., Usman, M., Sultan, M., Ashraf, H. (2021). Functionalized Carbon Nanotubes (CNTs) for Water and Wastewater Treatment: Preparation to Application. Sustainability, 13(10), 5717.  https://doi.org/10.3390/su13105717.

    [73] Guo, Z., Pang, J. and Liu, Z. (2022). On the journey exploring nanoscale packing materials for ultra-efficient liquid chromatographic separation. Journal of Chromatography Open, 2, 100033.

    https://doi.org/10.1016/j.jcoa.2022.100033.

    [74] Narayan, R., Nayak, U. Y., Raichur, A. M. and Garg, S. (2018). Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances. Pharmaceutics, 10(3), 118. https://doi.org/10.3390/pharmaceutics10030118

    [75] Kordasht, H., Pazhuhi, M., P. Pashazadeh-Panahi, Hasanzadeh, M. and Shadjou, N. (2020). Multifunctional aptasensors based on mesoporous silica nanoparticles as an efficient platform for bioanalytical applications: Recent advances. TrAC Trends in Analytical Chemistry, 124, 115778.

    https://doi.org/10.1016/j.trac.2019.115778.

    [76] Madhu, P., Syed, S., Nao, Ts., Sourav, D., and Mahuya, B. (2023) Extraction of heavy metals from wastewater using amine‑modifiedmesoporous silica. Environmental Science and Pollution Research, 30:113409–113423. https://doi.org/10.1007/s11356-023-30092-9.

    [77] Etale, A.; Tutu, H.; Drake, D.C. (2016). The effect of silica and maghemite nanoparticles on remediation of Cu(II)-, Mn(II)- and U(VI)-contaminated water by Acutodesmus sp. J. Appl.Phycol., 28, 251–260.https://doi.org/10.1007/s10811-015-0555-z.

    [78] Tutijärvi, T., Lu, J., Sillanpää, M., Chen, G. (2009). As(V) adsorption on maghemite nanoparticles. J. Hazard. Mater, 166, 1415–1420.https://doi.org/10.1016/j.jhazmat.2008.12.069

    [79] Mourdikoudis, S., Kostopoulou, A., LaGrow, A.P. (2021). Magnetic Nanoparticle Composites: Synergistic Effects and Applications. Adv.Sci., 8, 2004951.

    https://doi.org/10.1016/j.jhazmat.2008.12.069

    [80] Mutairah, S., Marwa, M., Mariam, E., Eida, S., Hussein, M. (2025). Preparation and characterization of a novelmagnetic nano adsorbent for removal of metalions. PLoS One 20(8): e0329686.

    https://doi. org/10.1371/journal.pone.0329686.

    [81]Adina, S., Catalin, N., Gabriela, V., Claudiu, C., Maria, M., Cornelia, M. & Ioan G. (2022). Highly efficient engineered waste eggshell‑fly ash for cadmium removal from aqueous solution. Scientific Reports, 12, 9676.

    https://doi.org/10.1038/s41598-022-13664-6.

    [82] Liosis, C., Papadopoulou, A., Karvelas, E., Karakasidis, T. E., & Sarris, I. E. (2021). Heavy Metal Adsorption Using Magnetic Nanoparticles for Water Purification: A Critical Review. Materials, 14(24), 7500.

    https://doi.org/10.3390/ma14247500.

    [83] Alijani, H., Shariatinia, Z. (2018). Synthesis of high growth rate SWCNTs and their magnetite cobaltsulfide nanohybrid as super adsorbent for mercury removal. Chem. Eng. Res. Des., 129,132–149.

    https://doi.org/10.1016/j.cherd.2017.11.014

    [84] Yu, G., Lu, Y., Guo, J., Patel, M., Bafana, A.;Wang, X., Qiu, B., Jeffryes, C., Wei, S., Guo,Z., et al. (2018). Carbon nanotubes, graphene, and their derivatives for heavy metal removal. Adv.Compos. Hybrid. Mater, 1, 56–78.

    https://doi.org/10.1007/s42114-017-0004-3

    [85] Bassyouni, M., Mansi, A., Elgabry, A., Ibrahim, B., Kassem, O., Alhebeshy, R. (2019). Utilization of carbon nanotubes in the removal of heavy metals from wastewater: A review of the CNTs’ potential and current challenges. Appl. Phys., 126, 38.

    https://doi.org/10.1007/s00339-019-3211-7.

    [86] Azam, A., Mohammed, L., Sallam., A., Sitohy, M., El-hadary, A., Mohamed, M. (2023). Environmentally friendly cost-effective removal of heavy metals from polluted water by carbon nanotube. Int. J. Environ. Sci. Technol. 20, 9143–9160.

    https://doi.org/10.1007/s13762-022-04599-6

    [87] Zhang, C.-Z., Chen, B., Bai, Y., Xie, J. (2018). A new functionalized reduced graphene oxide adsorbent for removing heavy metal ions in water via coordination and ion exchange. Sep.Sci. Technol., 53, 2896–2905.

    https://doi.org/10.1080/01496395.2018.1497655

    [88] Tabish, T., Memon, F., Gomez, D., Horsell, D., Zhang, S. (2018). A facile synthesis ofporous graphene for efficient water and wastewater treatment. Sci. Rep., 8, 1817.

    https://doi.org/10.1038/s41598-018-19978-8

    [89] Zheng, S., Hao, L., Zhang, L., Wang, K., Zheng, W., Wang, X., Zhou, X., Li, W., Zhang, L.Tea (2018). Polyphenols Functionalized and Reduced Graphene Oxide-ZnO Composites for Selective Pb2+ Removal and Enhanced Antibacterial Activity. J. Biomed.Nanotechnol., 14,1263–1276.

    https://doi.org/10.1166/jbn.2018.2584

    [90] Arshad, F., Selvaraj, M., Zain, J., Banat, F., Haija, M.A. (2019). Polyethylenimine modified graphene oxide hydrogel composite as an efficient adsorbent for heavy metal ions. Sep. Purif. Technol., 209, 870–880.

    https://doi.org/10.1016/j.seppur.2018.06.035

    • Awad, F., AbouZied, K., Abou El-Maaty, W., El-Wakil, A., Samy El-Shall, M. (2020). Effective removal of mercury (II) from aqueous solutions by chemically modified graphene oxide nanosheets. J. Chem., 13, 2659–2670.

    https://doi.org/10.1016/j.arabjc.2018.06.018

    • Nguyen, T., Ma, H., Avti, P., Bashir, M., Ng, C., Wong, L., Jun, H., Ngo, Q., Tran, N. (2019). Adsorptive Removal of Iron Using SiO2 Nanoparticles Extracted from Rice Husk Ash. Anal. Methods Chem., 6210240.

    https://doi.org/10.1155/2019/6210240

    • Huang, X., Wang, L., Chen, J., Jiang, C., Wu, S., Wang, H. (2020). Effective removal of heavy metals with amino-functionalized silica gel in tea polyphenol extracts. Food Meas. Charact., 14, 2134–2144.

    https://doi.org/10.1007/s11694-020-00460-x

    [94] Saqr, A., El-Qanni, A., Al-Qalaq, H., Maryam, H., Al-Zerei, W., (2020). Effective adsorptive removal of Zn2+, Cu2+, and Cr3+ heavy metals from aqueous solutions using silica-based embedded with NiO and MgO nanoparticles. Journal of Environmental Management, 268, 110713.

    https://doi.org/10.1016/j.jenvman.2020.110713

    [95] Deepa, S., Aiyagari, R., Gopal, D. (2021). Green synthesis of silica nanoparticles from leaf biomass and its application to remove heavy metals from synthetic wastewater: A comparative analysis. Environmental Nanotechnology, Monitoring & Management, 16, 100467.

    https://doi.org/10.1016/j.enmm.2021.100467

    [96] Thirupathi, K., Santhamoorthy, M., Suresh, R., Mohammad A.Mei-Ching L.Seong-Cheol K.Keerthika, K. & Thi, T. (2024). Synthesis of bis (2-aminoethyl) amine functionalized mesoporous silica (SBA-15) adsorbent for selective adsorption of Pb2+ ions from wastewater. Environ Geochem Health, 46, 357.

    https://doi.org/10.1007/s10653-024-02137-6

    [97] Naira, M.Eslam, S.Mohamed, F Soheair, G.Mona, O., (2024). Synthesis of Nano-silica Oxide for Heavy Metal Decontamination from Aqueous Solutions. Water Air Soil Pollut 235, 154.

    https://doi.org/10.1007/s11270-024-06944-6.

    [98] El-Shafey, S.E., Obada, M.K., El-Shamy, A.M. et al. (2024). Silica/klucel nanocomposite as promising durable adsorbent for lead removal from industrial effluents. Sci Rep 14, 26095.

    https://doi.org/10.1038/s41598-024-74680-2.

    [99] Nicola, R., Costi ̧sor, O., Ciopec, M., Negrea, A., Lazau, R., Iana ̧si, C., Picioru ̧s, E.-M., Len, A., Almásy, L., Szerb, E.I. (2020). Silica-Coated Magnetic Nanocomposites for Pb2+Removal from Aqueous Solution. Appl. Sci., 10, 2726.

    https://doi.org/10.3390/app10082726

    [100] Nejati, P., Somayyeh, R., Nastaran, S. (2022). Synthesis and Characterization of a Nanomagnetic Adsorbent Modified with Thiol for Magnetic and its Adsorption Behavior for Effective Elimination of Heavy Metal Ions. Advanced Journal of Chemistry-Section A, 5(1), 31-44.

    https://doi.org/10.22034/AJCA.2021.308695.1283

    [101] Al-Timimi, Z., Zeina, J., (2022). Utilizing nanomagnetic materials to eliminate Pb2+ and Cd2+ from aqueous mixtures. Current Research in Green and Sustainable Chemistry, 5, 100290.

    https://doi.org/10.1016/j.crgsc.2022.100290.

    [102]  Raj, A., Maja, B.Marijana, L., Nena, D., Aleksandra, L.Aljoša, K., (2022). Removal of Pb2+, CrT, and Hg2+ Ions from Aqueous Solutions Using Amino-Functionalized Magnetic Nanoparticles. Int J Mol Sci., 19;23(24):16186.

    https://doi: 10.3390/ijms232416186. PMID: 36555824.

    [103] Kothavale, V., Sharma, A., Dhavale, R., Chavan, V., Shingte, S., Selyshchev, O., Dongae, T., Park, H et. al., (2023). Carboxyl and thiol-functionalized magnetic nanoadsorbents for efficient and simultaneous removal of Pb(II), Cd(II), and Ni(II) heavy metal ions from aqueous solutions: Studies of adsorption, kinetics, and isotherms. Journal of Physics and Chemistry of Solids, 172, 111089.

    https://doi.org/10.1016/j.jpcs.2022.111089.

    [104]Zeng, H., Xiao, S., Siqi, S., Weihua, Z., Ruixia, H., Jie, Z., Dong, L. (2024). A comprehensive study of As(V) removal by starch-coated magnetite nano-adsorbent based on waste iron sludge. Reactive and Functional Polymers, 198, 105879.

    https://doi.org/10.1016/j.reactfunctpolym.2024.105879.

    [105] Feng Z., Xiang-hong R., Jian-you L., Pin L. (2014). Development of Photocatalytic Degradation of Organic Pollutants in Water. Journal of Materials Engineering, 46(10), 9 -19.

     https://doi.org/10.11868/j.issn.1001-4381.2017.000972.

    [106[ Gylen O. and Neil R. (2019). Bridging the gap between laboratory and application in photocatalytic water purification. Catal. Sci. Technol., 9, 533-545.

    https://doi.org/10.1039/C8CY02438C. 

    [107] Gao, X., Meng, X. (2021). Photocatalysis for Heavy Metal Treatment: A Review. Processes, 9, 1729.

    https://doi.org/10.3390/pr9101729.

    [108] Hoffmann, M. R., Martin, S. T., Choi, W., Bahnemann, D. W. (1995). Environmental applications of semiconductor photocatalysis. Chemical Reviews, 95(1), 69-96.

    https://doi/10.1021/cr00033a004.

    [109] Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(1), 1-21.

    https://doi.org/10.1016/S1389-5567(00)00002-2.

    [110] Linsebigler, A. L., Lu, G., & Yates, J. T. (1995). Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews, 95(3), 735-758.

    https://doi/10.1021/cr00035a013.

    [111] Carp, O., Huisman, C. L., & Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32(1-2), 33-177.

    https://doi.org/10.1016/j.progsolidstchem.2004.08.001.

    [112] Mills, A., & Hunte, S. L. (1997). An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 108(1), 1-35.https://doi.org/10.1016/S1010-6030(97)00118-4.

    [113] Chong, M. N., Jin, B., Chow, C. W., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: a review. Water Research, 44(10), 2997-3027.

    https://doi.org/10.1016/j.watres.2010.02.039

    [114] Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2014). Understanding TiO2 photocatalysis: mechanisms and materials. Chemical Reviews, 114(19), 9919-9986. https://doi.org/10.1021/cr5001892.

    [115] Josue, T., Almeida L., Lopes M., Santos O., Lenzi, G. (2020). Cr (VI) reduction by photocatalyic process: Nb2O5 an alternative catalyst. J. Environ. Manag. 268, 110711. https://doi.org/10.1016/j.jenvman.2020.110711

    [116] Yan, R., Luo, D., Fu C., Wang, Y., Zhang, H., Wu, P., Jiang W. (2020). Harmless treatment and selective recovery of acidic Cu (II)-Cr (VI)hybrid wastewater via coupled photo-reduction and ion exchange. Sep. Purif. Technol. 234, 116130. https://doi.org/10.1016/j.seppur.2019.116130.

    [117] Fan, Z.Yue-Hua, L., Jing-Yu, L., Zi-Rong, T., Yi-Jun, X. (2019). 3D graphene-based gel photocatalysts for environmental pollutants degradation. Environ Pollut. 53, 365-376. https://doi.org/10.1016/j.envpol.2019.06.089

    [118] Ma, Q, Li, Y, Tan, Y, Xu, B, Cai, J, Zhang, Y, Wang, Q, Wu, Q, Yang, B, Huang, J. (2023). Recent Advances in Metal-Organic Framework (MOF)-Based Photocatalysts: Design Strategies and Applications in Heavy Metal Control. Molecules, 28(18), 6681. https://doi.org/10.3390/molecules28186681.

    [119] Sharaf Aldeen, E., Mim, R., Hatta, A., Hazril, N., Chowdhury, A., Hassan, N., Rajendran, S. (2023). Environmental remediation of hazardous pollutants using MXene-perovskite-based photocatalysts: A review. Environmental Research, 234, 116576. https://doi.org/10.1016/j.envres.2023.116576

    [120] Farhan, A., Zulfiqar, M., Samiah et al. (2023). Removal of Toxic Metals from Water by Nanocomposites through Advanced Remediation Processes and Photocatalytic Oxidation. Curr Pollution Rep 9, 338–358.  https://doi.org/10.1007/s40726-023-00253-y

    [121] Liu, J., Zhang, Z., Fan, Z., Tang, X., Zhong Q. (2024). Strategies for boosting the photocatalytic reduction of toxic metal ions: Progress and prospects. Journal of Water Process Engineering, 57, 104683. https://doi.org/10.1016/j.jwpe.2023.104683.

    [122] Sara, P., (2019). Tech Note: Removal of Heavy Metals by Photocatalyst. Revista Ingeniería UC, 26, 3, 378-385. http://servicio.bc.uc.edu.ve/ingenieria/revista/v26n3/art12.pdf.

    [123] Wang, J., Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology Advances, 24(5), 427-451. https://doi.org/10.1016/j.biotechadv.2006.03.001

    [124] Vijayaraghavan, K., Yun, Y. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances, 26(3), 266-291. https://doi.org/10.1016/j.biotechadv.2008.02.002

    [125] Gadd, G. M. (2009). Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology & Biotechnology, 84(1), 13-28. https://doi.org/10.1002/jctb.1999.       

    [126] Singh, V., Singh, J., Singh, N. et al. (2023). Simultaneous removal of ternary heavy metal ions by a newly isolated Microbacterium paraoxydans strain VSVM IIT(BHU) from coal washery effluent. Biometals 36, 829–845.

    https://doi.org/10.1007/s10534-022-00476-4.

    [127] Malakootian, M., Yousefi, Z., and Khodashenasimoni, Z. (2016). Removal of zinc from industrial wastewaters using microscopic green algae Chlorella Vulgaris. Journal of ILAM University of medical sciences, 23(6), 40-50. SID.

    https://sid.ir/paper/89994/en.

    [128] Kapoor, A., Viraraghavan, T. (1997). Heavy metal biosorption sites in Aspergillus niger. Bioresource Technology, 61(3), 221-227.

    https://doi.org/10.1016/S0960-8524(97)00055-2

    [129] Văcar, C. L., Covaci, E., Chakraborty, S., Li, B., Weindorf, D. C., Frențiu, T., Pârvu, M., & Podar, D. (2021). Heavy Metal-Resistant Filamentous Fungi as Potential Mercury Bioremediators. Journal of Fungi, 7(5), 386.

    https://doi.org/10.3390/jof7050386

    [130] Alabssawy, A.N., Hashem, A.H. (2024). Bioremediation of hazardous heavy metals by marine microorganisms: a recent review. Archives of Microbiology, 206(1), 103.

    https://doi.org/10.1007/s00203-023-03793-5

    [131] Tufail, M.A., Jawaria I.Tahreem Z.Leeza T.Muhammad B. et. al. (2022). Recent advances in bioremediation of heavy metals and persistent organic pollutants: A review. The Science of The Total Environment, 850(10), 157961.

    https://doi.org/10.1016/j.scitotenv.2022.157961

    [132] Mosa, K., Saadoun, I., Kumar, K., Helmy, M., Dhankher, OP. (2016). Potential Biotechnological Strategies for the Cleanup of Heavy Metals and Metalloids. Front Plant Sci., 15;7:303.

    https://doi.org/10.3389/fpls.2016.00303.

    [133] Pham, V., Kim, J., Chang, S., Chung, W. (2022). Bacterial Biosorbents, an Efficient Heavy Metals Green Clean-Up Strategy: Prospects, Challenges, and Opportunities. Microorganisms, 10, 610.

    https://doi.org/10.3390/microorganisms10030610

    [134] Ullah, N., Maqsood, U., Bashir, A.Irshad A.Muhammad, Y.Muhammad, A.Atta-Ur R. (2022). Assessment of heavy metals accumulation in agricultural soil, vegetables, and associated health risks. PLoS ONE, 17(6), e0267719.

    https://doi.org/10.1371/journal.pone.0267719

    [135] Petersen, R. J. (1993). Composite reverse osmosis and nanofiltration membranes. Journal of Membrane Science, 83(1), 81-150.

    https://doi.org/10.1016/0376-7388(93)80014-O.

    [136] Barakat, M.AF. (2015). Complexation–Ultrafiltration Process for Heavy Metal Removal from Effluents. In: Drioli, E., Giorno, L. (eds) Encyclopedia of Membranes. Springer, Berlin, Heidelberg.

    https://doi.org/10.1007/978-3-642-40872-4_1898-1.

    [137] Alaa El, Din, M., and Esraa, M. (2023). Nanofiltration Membranes for the Removal of Heavy Metals from Aqueous Solutions: Preparations and Applications. Membranes 13, no. 9:

    https://doi.org/10.3390/membranes13090789789

    [138] Xiuzhen, W., Xin, K., Songxue, W., Hai, X., Jiade, W., and Jinyuan, C. (2013). Removal of Heavy Metals from Electroplating Wastewater by Thin-Film Composite Nanofiltration Hollow-Fiber Membranes” Ind. Eng. Chem. Res., 52, 17583−17590.

    https://doi.org/10.1021/ie402387u.

    [139] Basaran, G., Kavak, D., Dizge, N., Asci, Y., Solener, M., Ozbey, B. (2016). Comparative study of the removal of nickel (II) and chromium (VI) heavy metals from metal plating wastewater by two nanofiltration membranes. Desalination and Water Treatment, 57(99), 21870-21880.

    https://doi.org/10.1080/19443994.2015.1127778

    [140] Bharti, V., Chandrajit, B., Manigandan, S., and Sarang, P. (2021). Pressure-Driven Membrane Process: A Review of Advanced Technique for Heavy Metals Remediation. Processes, 9, 5, 752.

    https://doi.org/10.3390/pr9050752.

    [141] Zhao, J., Luo, G., Wu, J., & Xia, H. (2016). New trends in removing heavy metals from wastewater. Appl Microbiol Biotechnol, 100(15) :6509-6518. https://pubmed.ncbi.nlm.nih.gov/27318819/

    [142] Haruna, B. A., Shehu, H., Sa'ad, A. S., Adam, M. R. E., Abdulmalik, H., Hamza, M., Nasser, Saleh, A. D. B., & Azmatullah, N. (2024). Membrane technologies for heavy metals removal from water and wastewater: A mini review. Case Studies in Chemical and Environmental Engineering, 9, 100538.

    https://doi.org/10.1016/j.cscee.2023.100538.

    [143] Khanzada, N., Raed A., Muzamil K., Farah, E., Yazan, I., and Nidal H. (2024). Sustainability in Membrane Technology: Membrane Recycling and Fabrication Using Recycled Waste. Membranes, 14(2), 52.

    https://doi.org/10.3390/membranes14020052

    [144]Abdullah, N., Yusof, N., Lau, W.J., Jaafar, J., Ismail, A. (2019). Recent trends of heavy metal removal from water/wastewater by membrane technologies. Journal of Industrial and Engineering Chemistry, 76, 17-38.

    https://doi.org/10.1016/j.jiec.2019.03.029.

    [145] Khan, S., Mohammad K., Khalid H., Mehdi H., Milad M., Farrukh B., and Izharul H. (2023). Efficacy of Electrocoagulation Treatment for the Abatement of Heavy Metals: An Overview of Critical Processing Factors, Kinetic Models and Cost Analysis. Sustainability, 15, 2, 1708.

    https://doi.org/10.3390/su15021708.

    [146] Bazrafshan, E., Mohammadi, L., Ansari-Moghaddam, A. et al. (2015). Heavy metals removal from aqueous environments by electrocoagulation process– a systematic review. J Environ Health Sci Engineer, 13, 74.

    https://doi.org/10.1186/s40201-015-0233-8.

    [147] Mao, Y., Yaqian Z., and Sarah C. (2023). Examining Current and Future Applications of Electrocoagulation in Wastewater Treatment. Water, 15, 8, 1455. https://doi.org/10.3390/w15081455.

    [148] Stylianou, M., Etienne, M., Andreas, Z., Irene, C., Konstantinos, D., Agapios, A. (2022). Removal of toxic metals and anions from acid mine drainage (AMD) by electrocoagulation: The case of North Mathiatis open cast mine. Sustainable Chemistry and Pharmacy, 29, 100737.

    https://doi.org/10.1016/j.scp.2022.100737.

    [149] Shaker, OA, Safwat, SM, Matta, ME. (2023). Nickel removal from wastewater using electrocoagulation process with zinc electrodes under various operating conditions: performance investigation, mechanism exploration, and cost analysis. Environ Sci Pollut Res Int. 30(10):26650-26662.

    https://doi.org/10.1007/s11356-022-24101-6.

    [150] El-Gawad, H., Hassan, G., Aboelghait, K. et al.(2023). Removal of chromium from tannery industry wastewater using iron-based electrocoagulation process: experimental; kinetics; isotherm and economical studies. Sci Rep 13, 19597.

    https://doi.org/10.1038/s41598-023-46848-9

    [151] Twizerimana, P., Wu, Y. (2024). Overview of integrated electrocoagulation-adsorption strategies for the removal of heavy metal pollutants from wastewater. Discov Chem Eng., 4, 14.

    https://doi.org/10.1007/s43938-024-00053-w

    [152] Shestakova, M., Sillanpää, M. (2017). Electrode materials used for electrochemical oxidation of organic compounds in wastewater. Rev Environ Sci Biotechnol, 16, 223–238.

    https://doi.org/10.1007/s11157-017-9426-1.

    [153] Manna, M., Sen, S. (2023). Advanced oxidation process: a sustainable technology for treating refractory organic compounds present in industrial wastewater. Environ Sci Pollut Res, 30, 25477–25505.

    https://doi.org/10.1007/s11356-022-19435-0.

    [154] Mirshafee, A., Mohammad, N., and Alireza, S. (2024). Application of electro oxidation process for treating wastewater from petrochemical with mixed metal oxide electrode. Sci Rep, 14, 1760.

    https://doi.org/10.1038/s41598-024-52201-5.

    [155] Shaogang, H., Jingping, H., Yingfei, S., Qian, Z., Longsheng, W., Bingchuan, L. et al., (2021). Simultaneous heavy metal removal and sludge deep dewatering with Fe(II) assisted electrooxidation technology. Journal of Hazardous Materials, 405, 124072. https://doi.org/10.1016/j.jhazmat.2020.124072

    [156] Yujie, F., Lisha, Y., Junfeng, L. and Bruce, E. (2016). Electrochemical technologies for wastewater treatment and resource reclamation. Environ. Sci.: Water Res. Technol., 2, 800-831. https://doi.org/10.1039/C5EW00289C 

    [157] Xu, Y., Zhenyu, Z., Xianhui, Z., Yuanyuan, Z., Wenting, D., and Yuehui, C. (2023). Novel Materials for Heavy Metal Removal in Capacitive Deionization. Applied Sciences, 13, 9, 5635.https://doi.org/10.3390/app13095635.

    [158] Maarof, H., Daud, Wan M. and Aroua, M. (2017). Recent trends in removal and recovery of heavy metals from wastewater by electrochemical technologies. Reviews in Chemical Engineering, 33, 4, 359-386.https://doi.org/10.1515/revce-2016-0021.

    [159] Sawadogo, B., Nouhou Moussa, A. W., Konaté, Y., Tiendrebeogo, C., Sossou, S., Sidibé, S. D. S., & Karambiri, H. (2024). Integrated coagulation-flocculation with nanofiltration and reverse osmosis membrane for treating sugar cane industry effluent. Heliyon, 10(23), e40805.https://doi.org/10.1016/j.heliyon.2024.e40805

    [160]Genethliou, C., T. Tatoulis, N. Charalampous, S. Dailianis, A.G. Tekerlekopoulou, D. V. Vayenas, (2023). Treatment of raw sanitary landfill leachate using a hybrid pilot-scale system comprising adsorption, electrocoagulation and biological process. J. Environ. Manag., 330, Article 117129.

    https://doi.org/10.1016/j.jenvman.2022.117129

    [161] Xu, L., S., Liu, S., Zhao, K., Li, A., Cao, J. Wang, (2022). A novel electrocoagulation-membrane stripping hybrid system for simultaneous ammonia recovery and contaminant removal. Sep. Purif. Technol., 296, 121377.https://doi.org/10.1016/j.seppur.2022.121377