[1] MacCarthy, P., Klusman, R. W., Cowling, S. W., & Rice, J. A. (1995). Water analysis. Analytical chemistry, 67(12), 525-582.
https://doi.org/ 10.1021/ac00012a014
[2] Renge, V. C., Khedkar, S. V., & Pande, S. V. (2012). Removal of heavy metals from wastewater using low cost adsorbents: a review. Sci. Revs. Chem. Commun, 2(4), 580-584.
[3] Srisuwan, G., & Thongchai, P. (2002). Removal of heavy metals from electroplating wastewater by membrane. Songklanakarin J Sci Technol, 24(Suppl), 965-76.
[4] Mulungulungu, G. A., Mao, T., & Han, K. (2021). Efficient removal of high-concentration copper ions from wastewater via 2D g-C3N4 photocatalytic membrane filtration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 623, 126714.
https://doi.org/10.1016/j.colsurfa.2021.126714
[5] Liu, N., Lu, N., Su, Y., Wang, P., & Quan, X. (2019). Fabrication of g-C3N4/Ti3C2 composite and its visible-light photocatalytic capability for ciprofloxacin degradation. Separation and Purification Technology, 211, 782-789.
https://doi.org/10.1016/j.seppur.2018.10.027
[6] Ali, A., Ahmed, A.T., & Gad, A.A.M. (2016). Removal of Pb2+, Cu2+, and Cd2+ from wastewater using ceramic membrane, The 8th Int. conf. for Development and Environment in the Arab world, Assiut University Center for Environmental Studies-Egypt, 223-234.
[7] Varma V, G., & Misra, A. K. (2018). Copper contaminated wastewater–an evaluation of bioremedial options. Indoor and Built Environment, 27(1), 84-95.
https://doi.org/10.1177/1420326X16669397
[8] Dermentzis, K., Davidis, A., Papadopoulou, D., Christoforidis, A., & Ouzounis, K. (2009). Copper removal from industrial wastewaters by means of electrostatic shielding driven electrodeionization. Journal of Engineering Science & Technology Review, 2(1).
https://doi.org/10.25103/jestr.021.24
[9] Wang, X. S. (2009). Equilibrium and Kinetic Analysis for Cu2+ and Ni2+ adsorption onto Na-Mordenite. The Open Environmental Pollution & Toxicology Journal, 1, 107-111.
https://doi.org/10.2174/18763979009010100107
[10] Taylor, A. A., Tsuji, J. S., Garry, M. R., McArdle, M. E., Goodfellow, W. L., Adams, W. J., & Menzie, C. A. (2020). Critical review of exposure and effects: implications for setting regulatory health criteria for ingested copper. Environmental management, 65, 131-159.
https://doi.org/ 10.1007/s00267-019-01234-y
[11] Arbabi, M., & Golshani, N. (2016). Removal of copper ions Cu (II) from industrial wastewater: A review of removal methods. Epidemiology and Health System Journal, 3(3), 283-293.
[12] Barekat, A., & Mirzaei, M. (2017). Removal of copper (II) from aqueous solutions by sodium alginate/hydroxy apatite hydrogel modified by Zeolite. Advances in Environmental Technology, 3(4), 185-192.
https://doi.org/ 10.22104/AET.2017.621
[13] Shooshtary, H., Hajiaghababaei, L., Badiei, A., Ganjali, M. R., & Mohammadi Ziarani, G. (2018). Efficient removal of Ag+ and Cu2+ using imine-modified/mesoporous silica-coated magnetic nanoparticles. Advances in Environmental Technology, 4(4), 223-231.
https://doi.org/10.22104/AET.2019.3324.1164
[14] Wołowicz, A., Staszak, K., & Hubicki, Z. (2022). Removal of copper (II) in the presence of sodium dodecylobenzene sulfonate from acidic effluents using adsorption on ion exchangers and micellar-enhanced ultrafiltration methods. Molecules, 27(8), 2430.
https://doi.org/10.3390/molecules27082430
[15] Zou, Y. (2024). Cu2+, Cd+, and Pb2+ ions adsorption from wastewater using polysaccharide hydrogels made of oxidized carboxymethyl cellulose and chitosan grafted with catechol groups. Iranian Polymer Journal, 33(1), 57-66.
https://doi.org/10.1007/s13726-023-01234-0
[16] Kraiem, N. B., Rhimi, A., Zlaoui, K., Horchani-Naifer, K., Hafiane, A., & Ennigrou, D. J. (2024). Development of polysulfone membranes and their application for removing rare earth ions from aqueous solutions by polyvinyl alcohol-enhanced ultrafiltration. Iranian Polymer Journal, 33(10), 1481-1491.
https://doi.org/10.1007/s13726-024-01325-6
[17] Xiong, X., Wang, C., Wang, R., & Duan, Y. (2024). Modification of polyvinylidene fluoride through homogeneous reaction for preparation of hydrophilic membrane. Iranian Polymer Journal, 33(7), 901-914.
https://doi.org/10.1007/s13726-024-01284-y
[18] Fallahnejad, Z., Bakeri, G., & Fauzi Ismail, A. (2024). Internally functionalized MnO2 nanotubes in modification of thin-film nanocomposite membranes for water and wastewater treatment. Iranian Polymer Journal, 33(4), 493-509.
https://doi.org/10.1007/s13726-023-01264-8
[19] Quist-Jensen, C. A., Macedonio, F., & Drioli, E. (2015). Membrane technology for water production in agriculture: Desalination and wastewater reuse. Desalination, 364, 17-32.
https://doi.org/10.1016/j.desal.2015.03.001
[20] Singh, R., & Hankins, N. (Eds.). (2016). Emerging membrane technology for sustainable water treatment. Elsevier.
[21] Zunita, M., Irawanti, R., Koesmawati, T. A., Lugito, G., & Wentena, I. G. (2020). Graphene oxide (Go) membrane in removing heavy metals from wastewater: a review. Chemical Engineering Transactions, 82, 415-420.
https://doi.org/10.3303/CET2082070
[22] Abdullah, W. N. A. S., Tiandee, S., Lau, W., Aziz, F., & Ismail, A. F. (2020). Potential use of nanofiltration like-forward osmosis membranes for copper ion removal. Chinese Journal of Chemical Engineering, 28(2), 420-428.
https://doi.org/10.1016/j.cjche.2019.05.016
[23] Mondal, M., Dutta, M., & De, S. (2017). A novel ultrafiltration grade nickel iron oxide doped hollow fiber mixed matrix membrane: Spinning, characterization and application in heavy metal removal. Separation and Purification Technology, 188, 155-166.
https://doi.org/10.1016/j.seppur.2017.07.013
[24] Abd Hamid, S., Shahadat, M., Ballinger, B., Azha, S. F., Ismail, S., Ali, S. W., & Ahammad, S. Z. (2020). Role of clay-based membrane for removal of copper from aqueous solution. Journal of Saudi Chemical Society, 24(10), 785-798.
https://doi.org/10.1016/j.jscs.2020.08.007
[25] Qdais, H. A., & Moussa, H. (2004). Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination, 164(2), 105-110.
https://doi.org/10.1016/S0011-9164(04)00169-9
[26] Ncib, S., Chibani, A., Barhoumi, A., Larchet, C., Dammak, L., Elaloui, E., & Bouguerra, W. (2023). Separation of copper and nickel from synthetic wastewater by polymer inclusion membrane containing di (2-ethylhexyl) phosphoric acid. Polymer Bulletin, 80(11), 12177-12192.
https://doi.org/10.1007/s00289-022-04634-z
[27] Hasan, A. A., & Hassoon, A. F. (2021, September). Removal of Copper ion (CU2+) from Dairy wastewater by using Membrane Distillation (MD). In 2021 4th International Iraqi Conference on Engineering Technology and Their Applications (IICETA) (pp. 190-194). IEEE.
https://doi.org/10.1109/IICETA51758.2021.9717714
[28] Nawaz, R., Ali, K., & Khan, M. (2016). Extraction of copper from wastewater through supported liquid membrane using tri-ethanolamine as a carrier. Desalination and Water Treatment, 57(46), 21827-21841.
https://doi.org/10.1080/19443994.2015.1128986
[29] Yang, Q., & Kocherginsky, N. M. (2007). Copper removal from ammoniacal wastewater through a hollow fiber supported liquid membrane system: modeling and experimental verification. Journal of Membrane Science, 297(1-2), 121-129.
https://doi.org/10.1016/j.memsci.2007.03.036
[30] Ncib, S., Barhoumi, A., Bouguerra, W., Larchet, C., Dammak, L., Hamrouni, B., & Elaloui, E. (2020). Copper (II) removal from synthetic wastewater solutions using supported liquid membrane and polymer inclusion membrane. Journal of Environmental Engineering, 146(2), 04019113.
https://doi.org/10.1061/(ASCE)EE.1943-7870.0001643
[31] Akale, S., & Shaikh, I. N. (2024). Mixed-matrix membrane designed with water channels and sieving effect for effective removal of heavy metals. Environmental Nanotechnology, Monitoring & Management, 22, 100985.
https://doi.org/ 10.1016/j.enmm.2024.100985
[32] Khodabakhshi, M. R., & Goodarzi, V. (2021). Preparing and analysis an innovative membrane based on polyethersulfone /sulfonated polyethersulfone/organically modified nanoclay: Ability to heavy metal removal. Materials Today Communications, 26, 101957.
https://doi.org/10.1016/j.mtcomm.2020.101957
[33] Nasr, M., Alfryyan, N., Ali, S. S., Abd El-Salam, H. M., & Shaban, M. (2022). Preparation, characterization, and performance of PES/GO woven mixed matrix nanocomposite forward osmosis membrane for water desalination. RSC advances, 12(39), 25654-25668.
https://doi.org/10.1039/D2RA03832C
[34] Vatanpour, V., Madaeni, S. S., Moradian, R., Zinadini, S., & Astinchap, B. (2012). Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes. Separation and purification technology, 90, 69-82.
https://doi.org/10.1016/j.seppur.2012.02.014
[35] Wu, G., Gan, S., Cui, L., & Xu, Y. (2008). Preparation and characterization of PES/TiO2 composite membranes. Applied Surface Science, 254(21), 7080-7086.
https://doi.org/ 10.1016/j.apsusc.2008.05.221
[36] Wang, Z., Yu, H., Xia, J., Zhang, F., Li, F., Xia, Y., & Li, Y. (2012). Novel GO-blended PVDF ultrafiltration membranes. Desalination, 299, 50-54.
https://doi.org/10.1016/j.desal.2012.05.015
[37] Zhao, C., Xu, X., Chen, J., & Yang, F. (2013). Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes. Journal of Environmental Chemical Engineering, 1(3), 349-354.
https://doi.org/10.1016/j.jece.2013.05.014
[38] Peng, W., Li, H., Liu, Y., & Song, S. (2017). A review on heavy metal ions adsorption from water by graphene oxide and its composites. Journal of Molecular Liquids, 230, 496-504.
https://doi.org/10.1016/j.molliq.2017.01.064
[39] Zhang, C. Z., Chen, B., Bai, Y., & Xie, J. (2018). A new functionalized reduced graphene oxide adsorbent for removing heavy metal ions in water via coordination and ion exchange. Separation Science and Technology, 53(18), 2896-2905.
https://doi.org/10.1080/01496395.2018.1497655
[40] Allahbakhsh, A., Sharif, F., Mazinani, S., & Kalaee, M. R. (2014). Synthesis and characterization of graphene oxide in suspension and powder forms by chemical exfoliation method.
https://doi.org/10.7508/ijnd.2014.01.002
[41] Graphene Oxide Synthesis by using Graphite, Sulphuric Acid, Potassium Permanganate and Hydrogen Peroxide via Modified Hummer’s Method - InstaNANO.
https://instanano.com/all/nanomaterial-synthesis/carbon/graphene-oxide-1/ (accessed December 1st, 2024).
[42] Junaidi, N. F. D., Khalil, N. A., Jahari, A. F., Shaari, N. Z. K., Shahruddin, M. Z., Alias, N. H., & Othman, N. H. (2018, May). Effect of graphene oxide (GO) on the surface morphology & hydrophilicity of polyethersulfone (PES). In IOP Conference Series: Materials Science and Engineering (Vol. 358, p. 012047). IOP Publishing.
https://doi.org/10.1088/1757-899X/358/1/012047
[43] Trip, A. (1991). Taguchi methods for quality engineering. Kwantitatieve Methoden, 37, 119-135.
[44] Unal, R., & Dean, E. B. (1990). Taguchi approach to design optimization for quality and cost: an overview. In 1991 Annual conference of the international society of parametric analysts