Cu removal from wastewater using a polyethersulfone- graphene oxide nanoparticles functionalized with chitosan membrane

Document Type : Research Paper

Authors

1 Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Fars, Iran;

2 Department of Chemical Engineering, Darab Branch, Islamic Azad University, Darab, Fars, Iran;

Abstract

In this study, graphene oxide (GO) nanoparticles were synthesized from a graphite precursor using a simplified Hummer method, and their surfaces were functionalized with chitosan to improve their dispersion and compatibility with the polymer matrix. The functionalized nanoparticles were then incorporated into polyethersulphone (PES) membranes to enhance their properties and provide mixed-matrix membranes. For the fabrication of the polyethersulfone membranes and their performance, an experimental design was performed using Minitab 17 software, applying the Taguchi method with an L9 orthogonal array. The parameters influencing membrane performance, including the polymer and GO concentrations in the membrane casting solution and operating pressure during the separation process, were selected at three levels. The results showed that increasing the polymer concentration enhanced Cu removal but reduced the permeate flux, whereas higher pressure increased the flux but decreased the separation efficiency. In addition, contour plots representing the permeate flux and Cu removal% as a function of the polymer concentration and the operating pressure indicated that the maximum Cu removal (> 70 wt. %) occurred within the pressure range of 6 to 6.2 bar and polymer concentration of 18 to 20 wt.% in the casting solution.

Graphical Abstract

Cu removal from wastewater using a polyethersulfone- graphene oxide nanoparticles functionalized with chitosan membrane

Keywords

Main Subjects


[1]       MacCarthy, P., Klusman, R. W., Cowling, S. W., & Rice, J. A. (1995). Water analysis. Analytical chemistry, 67(12), 525-582.
https://doi.org/ 10.1021/ac00012a014
[2]       Renge, V. C., Khedkar, S. V., & Pande, S. V. (2012). Removal of heavy metals from wastewater using low cost adsorbents: a review. Sci. Revs. Chem. Commun, 2(4), 580-584.
[3]       Srisuwan, G., & Thongchai, P. (2002). Removal of heavy metals from electroplating wastewater by membrane. Songklanakarin J Sci Technol, 24(Suppl), 965-76.
[4]       Mulungulungu, G. A., Mao, T., & Han, K. (2021). Efficient removal of high-concentration copper ions from wastewater via 2D g-C3N4 photocatalytic membrane filtration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 623, 126714.
https://doi.org/10.1016/j.colsurfa.2021.126714
[5]       Liu, N., Lu, N., Su, Y., Wang, P., & Quan, X. (2019). Fabrication of g-C3N4/Ti3C2 composite and its visible-light photocatalytic capability for ciprofloxacin degradation. Separation and Purification Technology, 211, 782-789.
https://doi.org/10.1016/j.seppur.2018.10.027
[6]       Ali, A., Ahmed, A.T., & Gad, A.A.M. (2016). Removal of Pb2+, Cu2+, and Cd2+ from wastewater using ceramic membrane, The 8th Int. conf. for Development and Environment in the Arab world, Assiut University Center for Environmental Studies-Egypt, 223-234.
[7]       Varma V, G., & Misra, A. K. (2018). Copper contaminated wastewater–an evaluation of bioremedial options. Indoor and Built Environment, 27(1), 84-95.
https://doi.org/10.1177/1420326X16669397
[8]       Dermentzis, K., Davidis, A., Papadopoulou, D., Christoforidis, A., & Ouzounis, K. (2009). Copper removal from industrial wastewaters by means of electrostatic shielding driven electrodeionization. Journal of Engineering Science & Technology Review, 2(1).
https://doi.org/10.25103/jestr.021.24
[9]       Wang, X. S. (2009). Equilibrium and Kinetic Analysis for Cu2+ and Ni2+ adsorption onto Na-Mordenite. The Open Environmental Pollution & Toxicology Journal, 1, 107-111.
https://doi.org/10.2174/18763979009010100107
[10]     Taylor, A. A., Tsuji, J. S., Garry, M. R., McArdle, M. E., Goodfellow, W. L., Adams, W. J., & Menzie, C. A. (2020). Critical review of exposure and effects: implications for setting regulatory health criteria for ingested copper. Environmental management, 65, 131-159.
https://doi.org/ 10.1007/s00267-019-01234-y
[11]     Arbabi, M., & Golshani, N. (2016). Removal of copper ions Cu (II) from industrial wastewater: A review of removal methods. Epidemiology and Health System Journal, 3(3), 283-293.
[12]     Barekat, A., & Mirzaei, M. (2017). Removal of copper (II) from aqueous solutions by sodium alginate/hydroxy apatite hydrogel modified by Zeolite. Advances in Environmental Technology, 3(4), 185-192.
https://doi.org/ 10.22104/AET.2017.621
[13]     Shooshtary, H., Hajiaghababaei, L., Badiei, A., Ganjali, M. R., & Mohammadi Ziarani, G. (2018). Efficient removal of Ag+ and Cu2+ using imine-modified/mesoporous silica-coated magnetic nanoparticles. Advances in Environmental Technology, 4(4), 223-231.
https://doi.org/10.22104/AET.2019.3324.1164
[14]     WoĹ‚owicz, A., Staszak, K., & Hubicki, Z. (2022). Removal of copper (II) in the presence of sodium dodecylobenzene sulfonate from acidic effluents using adsorption on ion exchangers and micellar-enhanced ultrafiltration methods. Molecules, 27(8), 2430.
https://doi.org/10.3390/molecules27082430
[15]     Zou, Y. (2024). Cu2+, Cd+, and Pb2+ ions adsorption from wastewater using polysaccharide hydrogels made of oxidized carboxymethyl cellulose and chitosan grafted with catechol groups. Iranian Polymer Journal, 33(1), 57-66.
https://doi.org/10.1007/s13726-023-01234-0
[16]     Kraiem, N. B., Rhimi, A., Zlaoui, K., Horchani-Naifer, K., Hafiane, A., & Ennigrou, D. J. (2024). Development of polysulfone membranes and their application for removing rare earth ions from aqueous solutions by polyvinyl alcohol-enhanced ultrafiltration. Iranian Polymer Journal, 33(10), 1481-1491.
https://doi.org/10.1007/s13726-024-01325-6
[17]     Xiong, X., Wang, C., Wang, R., & Duan, Y. (2024). Modification of polyvinylidene fluoride through homogeneous reaction for preparation of hydrophilic membrane. Iranian Polymer Journal, 33(7), 901-914.
https://doi.org/10.1007/s13726-024-01284-y
[18]     Fallahnejad, Z., Bakeri, G., & Fauzi Ismail, A. (2024). Internally functionalized MnO2 nanotubes in modification of thin-film nanocomposite membranes for water and wastewater treatment. Iranian Polymer Journal, 33(4), 493-509.
https://doi.org/10.1007/s13726-023-01264-8
[19]     Quist-Jensen, C. A., Macedonio, F., & Drioli, E. (2015). Membrane technology for water production in agriculture: Desalination and wastewater reuse. Desalination, 364, 17-32.
https://doi.org/10.1016/j.desal.2015.03.001
[20]     Singh, R., & Hankins, N. (Eds.). (2016). Emerging membrane technology for sustainable water treatment. Elsevier.
[21]     Zunita, M., Irawanti, R., Koesmawati, T. A., Lugito, G., & Wentena, I. G. (2020). Graphene oxide (Go) membrane in removing heavy metals from wastewater: a review. Chemical Engineering Transactions, 82, 415-420.
https://doi.org/10.3303/CET2082070
[22]     Abdullah, W. N. A. S., Tiandee, S., Lau, W., Aziz, F., & Ismail, A. F. (2020). Potential use of nanofiltration like-forward osmosis membranes for copper ion removal. Chinese Journal of Chemical Engineering, 28(2), 420-428.
https://doi.org/10.1016/j.cjche.2019.05.016
[23]     Mondal, M., Dutta, M., & De, S. (2017). A novel ultrafiltration grade nickel iron oxide doped hollow fiber mixed matrix membrane: Spinning, characterization and application in heavy metal removal. Separation and Purification Technology, 188, 155-166.
https://doi.org/10.1016/j.seppur.2017.07.013
[24]     Abd Hamid, S., Shahadat, M., Ballinger, B., Azha, S. F., Ismail, S., Ali, S. W., & Ahammad, S. Z. (2020). Role of clay-based membrane for removal of copper from aqueous solution. Journal of Saudi Chemical Society, 24(10), 785-798.
https://doi.org/10.1016/j.jscs.2020.08.007
[25]     Qdais, H. A., & Moussa, H. (2004). Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination, 164(2), 105-110.
https://doi.org/10.1016/S0011-9164(04)00169-9
[26]     Ncib, S., Chibani, A., Barhoumi, A., Larchet, C., Dammak, L., Elaloui, E., & Bouguerra, W. (2023). Separation of copper and nickel from synthetic wastewater by polymer inclusion membrane containing di (2-ethylhexyl) phosphoric acid. Polymer Bulletin, 80(11), 12177-12192.
https://doi.org/10.1007/s00289-022-04634-z
[27]     Hasan, A. A., & Hassoon, A. F. (2021, September). Removal of Copper ion (CU2+) from Dairy wastewater by using Membrane Distillation (MD). In 2021 4th International Iraqi Conference on Engineering Technology and Their Applications (IICETA) (pp. 190-194). IEEE.
https://doi.org/10.1109/IICETA51758.2021.9717714
[28]     Nawaz, R., Ali, K., & Khan, M. (2016). Extraction of copper from wastewater through supported liquid membrane using tri-ethanolamine as a carrier. Desalination and Water Treatment, 57(46), 21827-21841.
https://doi.org/10.1080/19443994.2015.1128986
[29]     Yang, Q., & Kocherginsky, N. M. (2007). Copper removal from ammoniacal wastewater through a hollow fiber supported liquid membrane system: modeling and experimental verification. Journal of Membrane Science, 297(1-2), 121-129.
https://doi.org/10.1016/j.memsci.2007.03.036
[30]     Ncib, S., Barhoumi, A., Bouguerra, W., Larchet, C., Dammak, L., Hamrouni, B., & Elaloui, E. (2020). Copper (II) removal from synthetic wastewater solutions using supported liquid membrane and polymer inclusion membrane. Journal of Environmental Engineering, 146(2), 04019113.
https://doi.org/10.1061/(ASCE)EE.1943-7870.0001643
[31]     Akale, S., & Shaikh, I. N. (2024). Mixed-matrix membrane designed with water channels and sieving effect for effective removal of heavy metals. Environmental Nanotechnology, Monitoring & Management, 22, 100985.
https://doi.org/ 10.1016/j.enmm.2024.100985
[32]     Khodabakhshi, M. R., & Goodarzi, V. (2021). Preparing and analysis an innovative membrane based on polyethersulfone /sulfonated polyethersulfone/organically modified nanoclay: Ability to heavy metal removal. Materials Today Communications, 26, 101957.
https://doi.org/10.1016/j.mtcomm.2020.101957
[33]     Nasr, M., Alfryyan, N., Ali, S. S., Abd El-Salam, H. M., & Shaban, M. (2022). Preparation, characterization, and performance of PES/GO woven mixed matrix nanocomposite forward osmosis membrane for water desalination. RSC advances, 12(39), 25654-25668.
https://doi.org/10.1039/D2RA03832C
[34]     Vatanpour, V., Madaeni, S. S., Moradian, R., Zinadini, S., & Astinchap, B. (2012). Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes. Separation and purification technology, 90, 69-82.
https://doi.org/10.1016/j.seppur.2012.02.014
[35]     Wu, G., Gan, S., Cui, L., & Xu, Y. (2008). Preparation and characterization of PES/TiO2 composite membranes. Applied Surface Science, 254(21), 7080-7086.
https://doi.org/ 10.1016/j.apsusc.2008.05.221
[36]     Wang, Z., Yu, H., Xia, J., Zhang, F., Li, F., Xia, Y., & Li, Y. (2012). Novel GO-blended PVDF ultrafiltration membranes. Desalination, 299, 50-54.
https://doi.org/10.1016/j.desal.2012.05.015
[37]     Zhao, C., Xu, X., Chen, J., & Yang, F. (2013). Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes. Journal of Environmental Chemical Engineering, 1(3), 349-354.
https://doi.org/10.1016/j.jece.2013.05.014
[38]     Peng, W., Li, H., Liu, Y., & Song, S. (2017). A review on heavy metal ions adsorption from water by graphene oxide and its composites. Journal of Molecular Liquids, 230, 496-504.
https://doi.org/10.1016/j.molliq.2017.01.064
[39]     Zhang, C. Z., Chen, B., Bai, Y., & Xie, J. (2018). A new functionalized reduced graphene oxide adsorbent for removing heavy metal ions in water via coordination and ion exchange. Separation Science and Technology, 53(18), 2896-2905.
https://doi.org/10.1080/01496395.2018.1497655
[40]     Allahbakhsh, A., Sharif, F., Mazinani, S., & Kalaee, M. R. (2014). Synthesis and characterization of graphene oxide in suspension and powder forms by chemical exfoliation method.
https://doi.org/10.7508/ijnd.2014.01.002
[41]     Graphene Oxide Synthesis by using Graphite, Sulphuric Acid, Potassium Permanganate and Hydrogen Peroxide via Modified Hummer’s Method - InstaNANO.
https://instanano.com/all/nanomaterial-synthesis/carbon/graphene-oxide-1/ (accessed December 1st, 2024).
[42]     Junaidi, N. F. D., Khalil, N. A., Jahari, A. F., Shaari, N. Z. K., Shahruddin, M. Z., Alias, N. H., & Othman, N. H. (2018, May). Effect of graphene oxide (GO) on the surface morphology & hydrophilicity of polyethersulfone (PES). In IOP Conference Series: Materials Science and Engineering (Vol. 358, p. 012047). IOP Publishing.
https://doi.org/10.1088/1757-899X/358/1/012047
[43]     Trip, A. (1991). Taguchi methods for quality engineering. Kwantitatieve Methoden, 37, 119-135.
[44]     Unal, R., & Dean, E. B. (1990). Taguchi approach to design optimization for quality and cost: an overview. In 1991 Annual conference of the international society of parametric analysts