References
[1] Tian, X., Song, Y., Shen, Z., Zhou, Y., Wang, K., Jin, X., ... & Liu, T. (2020). A comprehensive review on toxic petrochemical wastewater pretreatment and advanced treatment. Journal of cleaner production, 245, 118692.
https://doi.org/10.1016/j.jclepro.2019.118692
[2] Liu, L., Shen, Y., Jiang, X., Zhuang, X., Liu, C., Pan, J., & Liu, F. (2025). Microplastics in petrochemical wastewater: A comprehensive review of removal mechanism, influencing factors and effects on wastewater reuse process. Separation and Purification Technology, 131832.
https://doi.org/10.1016/j.seppur.2025.131832
[3] Kondaveeti, S., Govindarajan, D., Mohanakrishna, G., Thatikayala, D., Abu-Reesh, I. M., Min, B., ... & Aminabhavi, T. M. (2023). Sustainable bioelectrochemical systems for bioenergy generation via waste treatment from petroleum industries. Fuel, 331, 125632.
https://doi.org/10.1016/j.fuel.2022.125632
[4] Andreides, D., Varga, Z., Pokorna, D., & Zabranska, J. (2021). Performance evaluation of sulfide-based autotrophic denitrification for petrochemical industry wastewater. Journal of Water Process Engineering, 40, 101834.
https://doi.org/10.1016/j.jwpe.2020.101834
[5] Wang, K., Chen, X., Yan, D., Xu, Z., Hu, P., & Li, H. (2022). Petrochemical and municipal wastewater treatment plants activated sludge each own distinct core bacteria driven by their specific incoming wastewater. Science of The Total Environment, 826, 153962.
https://doi.org/10.1016/j.scitotenv.2022.153962
[6] Gholami, A., Mousavi, S. B., Heris, S. Z., & Mohammadpourfard, M. (2024). Highly efficient treatment of petrochemical spent caustic effluent via electro-Fenton process for COD and TOC removal: optimization and experimental. Biomass Conversion and Biorefinery, 14(15), 17481-17497.
https://doi.org/10.1007/s13399-023-03772-2
[7] Natarajan, P., Jayavel, K., Somasundaram, S., & Ganesan, S. (2021). Integrated catalytic oxidation and biological treatment of spent caustic wastewater discharged from petrochemical industries. Energy, Ecology and Environment, 6(2), 160-169.
https://doi.org/10.1007/s40974-020-00178-y
[8] Jiang, Y., Li, C., Hou, Z., Shi, X., Zhang, X., Gao, Y., & Deng, S. H. (2023). Pollutants removal and connections among sludge properties, metabolism potential and microbial characteristics in aerobic granular sequencing batch reactor for petrochemical wastewater treatment. Journal of Environmental Management, 344, 118715.
https://doi.org/10.1016/j.jenvman.2023.118715
[9] Agarwal, M., & Sudharsan, J. (2021). A comprehensive review on scavenging H2S compounds in oil and gas industry by using nanomaterials. Materials Today: Proceedings, 44, 1504-1510.
https://doi.org/10.1016/j.matpr.2020.11.693
[10] Bayout, A., Cammarano, C., Costa, I. M., Veryasov, G., & Hulea, V. (2024). Management of methyl mercaptan contained in waste gases—an overview. Environmental Science and Pollution Research, 31(32), 44669-44690.
https://doi.org/10.1007/s11356-024-34112-0
[11] Wang, H., Sun, S., Nie, L., Zhang, Z., Li, W., & Hao, Z. (2023). A review of whole-process control of industrial volatile organic compounds in China. Journal of Environmental Sciences, 123, 127-139.
https://doi.org/10.1016/j.jes.2022.02.037
[12] Shokri, A., & Nasernejad, B. (2023). Treatment of spent caustic wastewater by electro-Fenton process: kinetics and cost analysis. Process Safety and Environmental Protection, 172, 836-845.
https://doi.org/10.1016/j.psep.2023.02.077
[13] Ahmadpour, A., Bozorgian, A., Eslamimanesh, A., & Mohammadi, A. H. (2022). Photocatalytic treatment of spontaneous petrochemical effluents by TiO2 CTAB synthetic nanoparticles. Desalination and Water Treatment, 249, 297-308.
https://doi.org/10.5004/dwt.2022.28051
[14] Shokri, A., & Fard, M. S. (2023). Kinetic, statistical, and cost evaluations in the remediation of spent caustic wastewater by photo-electro-Fenton process. International Journal of Environmental Science and Technology, 20(10), 11207-11218.
https://doi.org/10.1007/s13762-023-05149-4
[15] Bahadoran, A., De Lile, J. R., Masudy-Panah, S., Sadeghi, B., Li, J., Sabzalian, M. H., ... & Gopinathan, A. (2022). Photocatalytic materials obtained from e-waste recycling: Review, techniques, critique, and update. Journal of Manufacturing and Materials Processing, 6(4), 69.
https://doi.org/10.3390/jmmp6040069
[16] Zhang, Y., Wang, Y., Xie, R., Huang, H., Leung, M. K., Li, J., & Leung, D. Y. (2022). Photocatalytic oxidation for volatile organic compounds elimination: from fundamental research to practical applications. Environmental Science & Technology, 56(23), 16582-16601.
https://doi.org/10.1021/acs.est.2c05444
[17] Elmi, R., Nejaei, A., Farshi, A., Ramazani, M. E., & Alaie, E. (2021). Comparison of two methods of neutralization and wet air oxidation for treating wastewater spent caustic produced by oil refineries. Environmental Monitoring and Assessment, 193, 1-24.
https://doi.org/10.1007/s10661-021-09625-7
[18] Tian, X., Rao, F., León-Patiño, C. A., & Song, S. (2021). Co-disposal of MSWI fly ash and spent caustic through alkaline-activation consolidation. Cement and Concrete Composites, 116, 103888.
https://doi.org/10.1016/j.cemconcomp.2020.103888
[19] Shokri, A., & Nasernejad, B. (2024). Electrocoagulation process for spent caustic treatment: Optimization, sludge analysis and economic studies. Journal of Industrial and Engineering Chemistry, 135, 471-479.
https://doi.org/10.1016/j.jiec.2024.01.058
[20] Hashemi, S. R., Heydarinasab, A., & Amoozegar, M. A. (2020). Modified biological treatment of spent caustic effluent from liquefied petroleum gas plants. Chemical Engineering & Technology, 43(2), 380-385.
https://doi.org/10.1002/ceat.201900368
[21] Chen, F., Jiang, F., Zhu, Y., Hua, Z., Wang, L., Ma, J., ... & Tsiakaras, P. (2024). Three-dimensional electro-Fenton system with steel-slag based particle electrode for the treatment of refinery spent caustic. Journal of Environmental Chemical Engineering, 12(2), 112429.
https://doi.org/10.1016/j.jece.2024.112429
[22] Fatehbasharzad, P., Aliasghari, S., Bazargan, A., & Moftakhari Anasori Movahed, S. (2021). Removing sulfide from spent caustic petrochemical wastewater with electro-Fenton treatment. Journal of Applied Water Engineering and Research, 9(4), 315-323.
https://doi.org/10.1080/23249676.2021.1947401
[23] Wang, H., Li, X., Zhao, X., Li, C., Song, X., Zhang, P., & Huo, P. (2022). A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies. Chinese Journal of Catalysis, 43(2), 178-214.
https://doi.org/10.1016/S1872-2067(21)63910-4
[24] Li, J., Wang, Q., Liang, J., Li, H., Guo, S., El-Din, M. G., & Chen, C. (2021). An enhanced disintegration using refinery spent caustic for anaerobic digestion of refinery waste activated sludge. Journal of Environmental Management, 284, 112022.
https://doi.org/10.1016/j.jenvman.2021.112022
[25] Tong, Y., Wang, X., Zhang, Y., Xu, J., & Sun, C. (2024). Reactive species in peracetic acid-based AOPs: A critical review of their formation mechanisms, identification methods and oxidation performances. Water Research, 122917.
https://doi.org/10.1016/j.watres.2024.122917
[26] Koundle, P., Nirmalkar, N., Momotko, M., Makowiec, S., & Boczkaj, G. (2024). Tetracycline degradation for wastewater treatment based on ozone nanobubbles advanced oxidation processes (AOPs)–Focus on nanobubbles formation, degradation kinetics, mechanism and effects of water composition. Chemical Engineering Journal, 501, 156236.
https://doi.org/10.1016/j.cej.2024.156236
[27] Xie, Z. H., He, C. S., Pei, D. N., Dong, Y., Yang, S. R., Xiong, Z., ... & Lai, B. (2023). Review of characteristics, generation pathways and detection methods of singlet oxygen generated in advanced oxidation processes (AOPs). Chemical Engineering Journal, 468, 143778.
https://doi.org/10.1016/j.cej.2023.143778
[28] Jabbar, Z. H., & Graimed, B. H. (2022). Recent developments in industrial organic degradation via semiconductor heterojunctions and the parameters affecting the photocatalytic process: A review study. Journal of Water Process Engineering, 47, 102671.
https://doi.org/10.1016/j.jwpe.2022.102671
[29] Al-Tameemi, H. M., Sukkar, K. A., Abbar, A. H., & Kuraimid, Z. K. (2024). Optimization of photocatalytic process with SnO2 catalyst for COD reduction from petroleum refinery wastewater using a slurry bubble photoreactor. Case Studies in Chemical and Environmental Engineering, 9, 100687.
https://doi.org/10.1016/j.cscee.2024.100687
[30] Jasim, M. A., & AlJaberi, F. Y. (2023). Removal of COD from real oily wastewater by electrocoagulation using a new configuration of electrodes. Environmental Monitoring and Assessment, 195(6), 651.
https://doi.org/10.1007/s10661-023-11257-y
[31] Katare, A., & Saha, P. (2024). Efficient removal of COD, BOD, oil & grease, and turbidity from oil-field produced water via electrocoagulation treatment. Environmental Science and Pollution Research, 31(51), 60988-61003.
https://doi.org/10.1007/s11356-024-35294-3
[32] Abdelfattah, I., & Ismail, A. A. (2023). Reduction of COD concentration and complete removal of phenol in industrial wastewater utilizing mesoporous TiO2 nanoparticles under UVA illumination. Optical Materials, 145, 114410.
https://doi.org/10.1016/j.optmat.2023.114410
[33] Munien, C., Kweinor Tetteh, E., Govender, T., Jairajh, S., Mguni, L. L., & Rathilal, S. (2023). Turbidity and COD removal from municipal wastewater using a TiO2 photocatalyst—a comparative study of UV and visible light. Applied Sciences, 13(8), 4766.
https://doi.org/10.3390/app13084766
[34] Fathirad, F. (2023). Ni and Fe mixed oxide anchored on CNTs, GONRs, and Ti3C2 Mxene as efficient nanocatalysts for direct power generation from methanol electro-oxidation. Materials Chemistry and Physics, 305, 127976.
https://doi.org/10.1016/j.matchemphys.2023.127976
[35] Karami, M., & Fathirad, F. (2023). Cobalt ferrite nanoparticles anchored on reduced graphene oxide nanoribbons (0D/1D CoFe2O4/rGONRs) as an efficient catalyst for hydrogen generation via NaBH4 hydrolysis. Inorganic Chemistry Communications, 150, 110552.
https://doi.org/10.1016/j.inoche.2023.110552
[36] Zhong, K., Wang, Y., Wu, Q., You, H., Zhang, H., Su, M., ... & Tang, J. (2020). Highly conductive skeleton Graphitic-C3N4 assisted Fe-based metal-organic frameworks derived porous bimetallic carbon nanofiber for enhanced oxygen-reduction performance in microbial fuel cells. Journal of Power Sources, 467, 228313.
https://doi.org/10.1016/j.jpowsour.2020.228313
[37] Rana, G., Dhiman, P., Kumar, A., Dawi, E. A., & Sharma, G. (2024). Visible-light driven Z-scheme g-C3N4/Fe-MOF photocatalyst for degradation of organic pollutants. Journal of Inorganic and Organometallic Polymers and Materials, 34(6), 2688-2704.
https://doi.org/10.1007/s10904-024-03005-7
[38] Fathirad, F., & Sadeghi, E. (2024). NiFe2O4/Ti3C2 nanocomposite as an efficient catalyst for methanol electro-oxidation reaction: investigating annealing temperature and synergetic effect. Fuel, 358, 130130.
https://doi.org/10.1016/j.fuel.2023.130130
[39] Afzali, D., Padash, M., Fathirad, F., & Mostafavi, A. (2015). Determination of trace amounts of antimony (III) based on differential pulse voltammetric method with multi-walled carbon-nanotube-modified carbon paste electrode. Ionics, 21, 565-570.
https://doi.org/10.1007/s11581-014-1200-6
[40] Versteyhe, D., Binnemans, K., & Van Gerven, T. (2025). Recent advancements in centrifugal contactor design for chemical processing. Current Opinion in Chemical Engineering, 47, 101084.
https://doi.org/10.1016/j.coche.2024.101084
[41] Du, S., Yang, X., Zhu, Y., Yan, S., & Bai, Z. (2025). Visualization investigation of bubble dynamic characteristics for different motion mode in a Taylor-Couette reactor. Chemical Engineering Journal, 160099.
https://doi.org/10.1016/j.cej.2025.160099
[42] Schrimpf, M., Esteban, J., Warmeling, H., Färber, T., Behr, A., & Vorholt, A. J. (2021). Taylor‐Couette reactor: Principles, design, and applications. AIChE Journal, 67(5), e17228.
https://doi.org/10.1002/aic.17228
[43] López-Guajardo, E. A., Galluzzi, R., Delgado-Licona, F., & Morales-Menendez, R. (2024). Process intensification of a catalytic-wall Taylor-Couette reactor through unconventional modulation of its angular speed. Chemical Engineering Journal, 489, 151174.
https://doi.org/10.1016/j.cej.2024.151174
[44] Bui, H. K., Nguyen, T. T. H., & Seo, T. S. (2025). Rainbow reactor: Creation of a series of perovskite nanocrystals in a single customizable Couette-Taylor reactor. Chemical Engineering Journal, 161297.
https://doi.org/10.1016/j.cej.2025.161297
[45] Wang, C., Yan, W. C., Ran, X., Pu, Z. W., & Shi, W. D. (2024). Experimental and numerical study of photocatalysis in Taylor photoreactors with carbon-quantum-dots/BiOCl as catalysts. Chemical Engineering Science, 294, 120114.
https://doi.org/10.1016/j.ces.2024.120114
[46] Hawari, A., Ramadan, H., Abu-Reesh, I., & Ouederni, M. (2015). A comparative study of the treatment of ethylene plant spent caustic by neutralization and classical and advanced oxidation. Journal of environmental management, 151, 105-112.
https://doi.org/10.1016/j.jenvman.2014.12.038
[47] Uriarte, S. J., Sanchez-Hornero, M. V., Castillejo, F. M., Castilla, M. I. P., & Hernández, J. A. M. (2024). Carbonaceous materials from a petrol primary oily sludge: Synthesis and catalytic performance in the wet air oxidation of a spent caustic effluent. Journal of Environmental Management, 365, 121606.
https://doi.org/10.1016/j.jenvman.2024.121606
[48] Barge, A. S., & Vaidya, P. D. (2020). Kinetics of wet air oxidation of sodium sulfide over heterogeneous iron catalyst. International Journal of Chemical Kinetics, 52(2), 92-98.
https://doi.org/10.1002/kin.21333
[49] González, C., Pariente, M. I., Molina, R., Espina, L. G., Masa, M. O., Bernal, V., ... & Martinez, F. (2023). Increasing biodegradability of a real amine-contaminated spent caustic problematic stream through WAO and CWAO oxidation using a high specific surface catalyst from petcoke. Chemical Engineering Journal, 460, 141692.
https://doi.org/10.1016/j.cej.2023.141692