Polydopamine functionalized halloysite nanotubes incorporated polyethersulfone hollow fiber membranes for the removal of arsenic (as-v) from water

Document Type : Research Paper

Authors

1 Membrane and Separation Technology Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, India

2 Department of Chemistry, National Institute of Technology Karnataka, Surathkal, India

Abstract

Polyethersulfone (PES) based hollow fiber membranes containing polydopamine-functionalized halloysite nanotubes (FHNTs) were fabricated in different concentrations employing a dry-wet approach and using phase inversion methodology. Thus, the prepared nanocomposite hollow fiber membranes were characterized using FE-SEM (Field Emission Scanning Electron Microscopy), AFM (Atomic Force Microscopy), ATR-IR, Zeta Potential, and contact angle for studying membrane surface morphology, topography, presence of functional groups, surface charge, and hydrophilicity, respectively. Filtration studies such as pure water permeability, fouling resistance, and heavy metal rejection (arsenic) were performed at a 2 bar pressure. It was found that as the concentration of FHNTs increased in the membrane, the pure water flux also increased, indicating an increase in hydrophilicity. The membrane PPD-4, with the highest percentage of FHNTs, showed the maximum heavy metal removal. It was confirmed by the values of arsenic removal by the membranes containing FHNTs at 0 wt%, 0.2 wt%, 0.6 wt%, and 1 wt% that were found to be 24.80%, 33.18%, 35.54%, and 39.65%, respectively.

Graphical Abstract

Polydopamine functionalized halloysite nanotubes incorporated polyethersulfone hollow fiber membranes for the removal of arsenic (as-v) from water

Keywords

Main Subjects


[1] Fernández-Luqueño, F., López-Valdez, F., Gamero-Melo, P., Luna-Suárez, S., Aguilera-González, E. N., Martínez, A. I., García-Guillermo, M. D. S., Hernández-Martínez, G., Herrera-Mendoza, R., Álvarez-Garza, M. A., & Pérez-Velázquez, I. R. (2013). Heavy metal pollution in drinking water – a global risk for human health: A review. African Journal of Environmental Science and Technology, 7(7), 567–584.
[2] Mishra, S., Bharagava, R. N., More, N., Yadav, A., Zainith, S., Mani, S., & Chowdhary, P. (2019). Heavy metal contamination: An alarming threat to environment and human health. In R. C. Sobti, N. K. Arora, & R. Kothari (Eds.), Environmental biotechnology: For sustainable future (pp. 103–125). Springer Singapore.
https://doi.org/10.1007/978-981-10-7284-0_5
[3]    Mohod, C. V., & Dhote, J. (2013). Review of heavy metals in drinking water and their effect on human health. International Journal of Innovative Research in Science, Engineering and Technology, 2(7), 2992–2996.
[4]    Sankhla, M. S., Kumari, M., Nandan, M., Kumar, R., & Agrawal, P. (2016). Heavy metals contamination in water and their hazardous effect on human health: A review. International Journal of Current Microbiology and Applied Sciences, 5(10), 759–766.
http://dx.doi.org/10.20546/ijcmas.2016.510.082
[5]    Sonone, S. S., Jadhav, S., Sankhla, M. S., & Kumar, R. (2020). Water contamination by heavy metals and their toxic effect on aquaculture and human health through the food chain. Letters in Applied NanoBioScience, 10(2), 2148–2166.
[6]    Zahra, N., & Kalim, I. (2017). Perilous effects of heavy metals contamination on human health. Pakistan Journal of Analytical & Environmental Chemistry, 18(1), 1–17.
https://doi.org/10.21743/pjaec/2017.06.01
[7]    Abdullayev, E., & Lvov, Y. (2010). Clay nanotubes for corrosion inhibitor encapsulation: Release control with end stoppers. Journal of Materials Chemistry, 20(32), 6681–6687.
https://doi.org/10.1039/C0JM00810A
[8]    Zhang, J., Zhang, Y., Chen, Y., Du, L., Zhang, B., Zhang, H., Liu, J., & Wang, K. (2012). Preparation and characterization of novel polyethersulfone hybrid ultrafiltration membranes bending with modified halloysite nanotubes loaded with silver nanoparticles. Industrial & Engineering Chemistry Research, 51(7), 3081–3090.
 https://doi.org/10.1021/ie202473u
[9]    Wang, Z., Wang, H., Liu, J., & Zhang, Y. (2014). Preparation and antifouling property of polyethersulfone ultrafiltration hybrid membrane containing halloysite nanotubes grafted with MPC via RATRP method. Desalination, 344, 313–320.
https://doi.org/10.1016/j.desal.2014.03.040
[10]  Pandey, G., Tharmavaram, M., & Rawtani, D. (2020). Chapter 15 - Functionalized halloysite nanotubes: An “ecofriendly” nanomaterial in the environmental industry. In C. Mustansar Hussain (Ed.), Handbook of functionalized nanomaterials for industrial applications (pp. 417–433). Micro and Nano Technologies, Elsevier.
https://doi.org/10.1016/B978-0-12-816787-8.00015-6
[11]  Satishkumar, P., Isloor, A. M., Rao, L. N., & Farnood, R. (2024). Fabrication of 2D vanadium MXene polyphenylsulfone ultrafiltration membrane for enhancing the water flux and for effective separation of humic acid and dyes from wastewater. ACS Omega, 9(24), 25766–25778.
https://doi.org/10.1021/acsomega.3c10078
[12]  Lecouvet, B., Sclavons, M., Bourbigot, S., & Bailly, C. (2013). Thermal and flammability properties of polyethersulfone/halloysite nanocomposites prepared by melt compounding. Polymer Degradation and Stability, 98(10), 1993–2004.
https://doi.org/10.1016/j.polymdegradstab.2013.07.013
[13]  Barclay, T. G., Hegab, H. M., Michelmore, A., Weeks, M., & Ginic-Markovic, M. (2018). Multidentate polyzwitterion attachment to polydopamine modified ultrafiltration membranes for dairy processing: Characterization, performance, and durability. Journal of Industrial and Engineering Chemistry, 61, 356–367.
https://doi.org/10.1016/j.jiec.2017.12.035
[14]  Nasrollahi, N., Vatanpour, V., Aber, S., & Mahmoodi, N. M. (2018). Preparation and characterization of a novel polyethersulfone (PES) ultrafiltration membrane modified with a CuO/ZnO nanocomposite to improve permeability and antifouling properties. Separation and Purification Technology, 192, 369–382.
https://doi.org/10.1016/j.seppur.2017.10.034
[15]  Rezania, H., Vatanpour, V., Arabpour, A., Shockravi, A., & Ehsani, M. (2020). Structural manipulation of PES constituents to prepare advanced alternative polymer for ultrafiltration membrane. Journal of Applied Polymer Science, 137(20), 48690.
https://doi.org/10.1002/app.48690
[16]  Zhu, X., Dudchenko, A., Gu, X., & Jassby, D. (2017). Surfactant-stabilized oil separation from water using ultrafiltration and nanofiltration. Journal of Membrane Science, 529, 159–169.
https://doi.org/10.1016/j.memsci.2017.02.004
[17]  Kumar, M., Rao, T. S., Isloor, A. M., Ibrahim, G. S., Ismail, N., Ismail, A. F., & Asiri, A. M. (2019). Use of cellulose acetate/polyphenylsulfone derivatives to fabricate ultrafiltration hollow fiber membranes for the removal of arsenic from drinking water. International Journal of Biological Macromolecules, 129, 715–727.
https://doi.org/10.1016/j.ijbiomac.2019.02.017
[18]  Kumar, M., Isloor, A. M., Rao, T. S., Ismail, A. F., Farnood, R., & Nambissan, P. M. G. (2020). Removal of toxic arsenic from aqueous media using polyphenylsulfone/cellulose acetate hollow fiber membranes containing zirconium oxide. Chemical Engineering Journal, 393, 124367.
https://doi.org/10.1016/j.cej.2020.124367
[19]  Koli, M., & Singh, S. (2023). Surface-modified ultrafiltration and nanofiltration membranes for the selective removal of heavy metals and inorganic groundwater contaminants: A review. Environmental Science: Water Research & Technology, 9(11), 2803–2829.
 https://doi.org/10.1039/D3EW00266G
[20]  Kumar, M., Isloor, A. M., Todeti, S. R., Nagaraja, H. S., Ismail, A. F., & Susanti, R. (2021). Effect of binary zinc-magnesium oxides on polyphenylsulfone/cellulose acetate derivatives hollow fiber membranes for the decontamination of arsenic from drinking water. Chemical Engineering Journal, 405, 126809.
https://doi.org/10.1016/j.cej.2020.126809
[21]  Kumar, M., Isloor, A. M., Todeti, S. R., Ismail, A. F., & Farnood, R. (2021). Hydrophilic nano-aluminum oxide containing polyphenylsulfone hollow fiber membranes for the extraction of arsenic (As-V) from drinking water. Journal of Water Process Engineering, 44, 102357.
https://doi.org/10.1016/j.jwpe.2021.102357
[22]  Hebbar, R. S., Isloor, A. M., Ananda, K., & Ismail, A. F. (2016). Fabrication of polydopamine functionalized halloysite nanotube/polyetherimide membranes for heavy metal removal. Journal of Materials Chemistry A, 4(3), 764–774.
https://doi.org/10.1039/C5TA09281G
[23]  Nayak, M., Chandrashekhar, A. M., Isloor, A. M., Moslehyani, N., Ismail, N., & Ismail, A. F. (2018). Fabrication of novel PPSU/ZSM-5 ultrafiltration hollow fiber membranes for separation of proteins and hazardous reactive dyes. Journal of the Taiwan Institute of Chemical Engineers, 82, 342–350.
[24]  Kingsbury, R. S., Bruning, K., Zhu, S., Flotron, S., Miller, C. T., & Coronell, O. (2019). Influence of water uptake, charge, manning parameter, and contact angle on water and salt transport in commercial ion exchange membranes. Industrial & Engineering Chemistry Research, 58(40), 18663–18674.
https://doi.org/10.1021/acs.iecr.9b03200
[25]  Anadão, P., Sato, L. F., Montes, R. R., & De Santis, H. S. (2014). Polysulphone/montmorillonite nanocomposite membranes: Effect of clay addition and polysulphone molecular weight on the membrane properties. Journal of Membrane Science, 455, 187–199.
https://doi.org/10.1016/j.memsci.2013.12.081
[26]  Bagheripour, E., Moghadassi, A. R., Parvizian, F., Hosseini, S. M., & Van der Bruggen, B. (2019). Tailoring the separation performance and fouling reduction of PES based nanofiltration membrane by using a PVA/Fe3O4 coating layer. Chemical Engineering Research and Design, 144, 418–428.
https://doi.org/10.1016/j.cherd.2019.02.028
[27]  Ibrahim, G. P. S., Isloor, A. M., Inamuddin, Asiri, A. M., Ismail, A. F., Kumar, R., & Ahamed, M. I. (2018). Performance intensification of the polysulfone ultrafiltration membrane by blending with a copolymer encompassing a novel derivative of poly(Styrene-Co-Maleic Anhydride) for heavy metal removal from wastewater. Chemical Engineering Journal, 353, 425–435.
https://doi.org/10.1016/j.cej.2018.07.098
[28]  Kadhom, M., & Deng, B. (2019). Thin film nanocomposite membranes filled with bentonite nanoparticles for brackish water desalination: A novel water uptake concept. Microporous and Mesoporous Materials, 279, 82–91.
https://doi.org/10.1016/j.micromeso.2018.12.020
[29]  Chou, S., Wang, R., Shi, L., She, Q., Tang, C., & Fane, A. G. (2012). Thin-film composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density. Journal of Membrane Science, 389, 25–33.
https://doi.org/10.1016/j.memsci.2011.10.002
[30]  Veríssimo, S., Peinemann, K. V., & Bordado, J. (2005). New composite hollow fiber membrane for nanofiltration. Desalination, 184(1-3), 1-11.
https://doi.org/10.1016/j.desal.2005.03.069
[31]  Rana, D., & Matsuura, T. (2010). Surface modifications for antifouling membranes. Chemical Reviews, 110(4), 2448-2471.
https://doi.org/10.1021/cr800208y
[32]  Lu, X., Peng, Y., Qiu, H., Liu, X., & Ge, L. (2017). Anti-fouling membranes by manipulating surface wettability and their anti-fouling mechanism. Desalination, 413, 127–135.
https://doi.org/10.1016/j.desal.2017.02.022
[33]  Jhaveri, J. H., & Murthy, Z. V. P. (2016). A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination, 379, 137–154.
https://doi.org/10.1016/j.desal.2015.11.009
[34]  Zakhar, R., Derco, J., & Čacho, F. (2018). An overview of main arsenic removal technologies. Acta Chimica Slovaca, 11(2), 107–113.
https://doi.org/10.2478/acs-2018-0016
[35]  Shih, M. C. (2005). An overview of arsenic removal by pressure-driven membrane processes. Desalination, 172(1), 85-97.
https://doi.org/10.1016/j.desal.2004.07.031
[36]  Worou, C. N., Chen, Z.-L., & Bacharou, T. (2021). Arsenic removal from water by nanofiltration membrane: Potentials and limitations. Water Practice and Technology, 16(2), 291–319.
https://doi.org/10.2166/wpt.2021.018
[37]  Wang, L., Fields, K. A., & Chen, A. S. (2000). Arsenic removal from drinking water by ion exchange and activated alumina plants (p. 147). National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency.
[38]  Xiao, M., Guo, J., Zhao, S., & Li, S. (2023). Adsorption of As (V) at humic acid-kaolinite-bacteria interfaces: Kinetics, thermodynamics, and mechanisms. Agronomy, 13(2), 611.
https://doi.org/10.3390/agronomy13020611
[39]  Dung, M. D., Nga, T. T. V., Lan, N. T., & Thanh, N. K. (2022). Adsorption behavior and mechanism of As (V) on magnetic Fe3O4–graphene oxide (GO) nanohybrid composite material. Analytical Sciences, 38(2), 427-436.
https://doi.org/10.1007/s44211-022-00064-z