[1] Fernández-Luqueño, F., López-Valdez, F., Gamero-Melo, P., Luna-Suárez, S., Aguilera-González, E. N., Martínez, A. I., García-Guillermo, M. D. S., Hernández-Martínez, G., Herrera-Mendoza, R., Álvarez-Garza, M. A., & Pérez-Velázquez, I. R. (2013). Heavy metal pollution in drinking water – a global risk for human health: A review. African Journal of Environmental Science and Technology, 7(7), 567–584.
[2] Mishra, S., Bharagava, R. N., More, N., Yadav, A., Zainith, S., Mani, S., & Chowdhary, P. (2019). Heavy metal contamination: An alarming threat to environment and human health. In R. C. Sobti, N. K. Arora, & R. Kothari (Eds.), Environmental biotechnology: For sustainable future (pp. 103–125). Springer Singapore.
https://doi.org/10.1007/978-981-10-7284-0_5
[3] Mohod, C. V., & Dhote, J. (2013). Review of heavy metals in drinking water and their effect on human health. International Journal of Innovative Research in Science, Engineering and Technology, 2(7), 2992–2996.
[4] Sankhla, M. S., Kumari, M., Nandan, M., Kumar, R., & Agrawal, P. (2016). Heavy metals contamination in water and their hazardous effect on human health: A review. International Journal of Current Microbiology and Applied Sciences, 5(10), 759–766.
http://dx.doi.org/10.20546/ijcmas.2016.510.082
[5] Sonone, S. S., Jadhav, S., Sankhla, M. S., & Kumar, R. (2020). Water contamination by heavy metals and their toxic effect on aquaculture and human health through the food chain. Letters in Applied NanoBioScience, 10(2), 2148–2166.
[6] Zahra, N., & Kalim, I. (2017). Perilous effects of heavy metals contamination on human health. Pakistan Journal of Analytical & Environmental Chemistry, 18(1), 1–17.
https://doi.org/10.21743/pjaec/2017.06.01
[7] Abdullayev, E., & Lvov, Y. (2010). Clay nanotubes for corrosion inhibitor encapsulation: Release control with end stoppers. Journal of Materials Chemistry, 20(32), 6681–6687.
https://doi.org/10.1039/C0JM00810A
[8] Zhang, J., Zhang, Y., Chen, Y., Du, L., Zhang, B., Zhang, H., Liu, J., & Wang, K. (2012). Preparation and characterization of novel polyethersulfone hybrid ultrafiltration membranes bending with modified halloysite nanotubes loaded with silver nanoparticles. Industrial & Engineering Chemistry Research, 51(7), 3081–3090.
https://doi.org/10.1021/ie202473u
[9] Wang, Z., Wang, H., Liu, J., & Zhang, Y. (2014). Preparation and antifouling property of polyethersulfone ultrafiltration hybrid membrane containing halloysite nanotubes grafted with MPC via RATRP method. Desalination, 344, 313–320.
https://doi.org/10.1016/j.desal.2014.03.040
[10] Pandey, G., Tharmavaram, M., & Rawtani, D. (2020). Chapter 15 - Functionalized halloysite nanotubes: An “ecofriendly” nanomaterial in the environmental industry. In C. Mustansar Hussain (Ed.), Handbook of functionalized nanomaterials for industrial applications (pp. 417–433). Micro and Nano Technologies, Elsevier.
https://doi.org/10.1016/B978-0-12-816787-8.00015-6
[11] Satishkumar, P., Isloor, A. M., Rao, L. N., & Farnood, R. (2024). Fabrication of 2D vanadium MXene polyphenylsulfone ultrafiltration membrane for enhancing the water flux and for effective separation of humic acid and dyes from wastewater. ACS Omega, 9(24), 25766–25778.
https://doi.org/10.1021/acsomega.3c10078
[12] Lecouvet, B., Sclavons, M., Bourbigot, S., & Bailly, C. (2013). Thermal and flammability properties of polyethersulfone/halloysite nanocomposites prepared by melt compounding. Polymer Degradation and Stability, 98(10), 1993–2004.
https://doi.org/10.1016/j.polymdegradstab.2013.07.013
[13] Barclay, T. G., Hegab, H. M., Michelmore, A., Weeks, M., & Ginic-Markovic, M. (2018). Multidentate polyzwitterion attachment to polydopamine modified ultrafiltration membranes for dairy processing: Characterization, performance, and durability. Journal of Industrial and Engineering Chemistry, 61, 356–367.
https://doi.org/10.1016/j.jiec.2017.12.035
[14] Nasrollahi, N., Vatanpour, V., Aber, S., & Mahmoodi, N. M. (2018). Preparation and characterization of a novel polyethersulfone (PES) ultrafiltration membrane modified with a CuO/ZnO nanocomposite to improve permeability and antifouling properties. Separation and Purification Technology, 192, 369–382.
https://doi.org/10.1016/j.seppur.2017.10.034
[15] Rezania, H., Vatanpour, V., Arabpour, A., Shockravi, A., & Ehsani, M. (2020). Structural manipulation of PES constituents to prepare advanced alternative polymer for ultrafiltration membrane. Journal of Applied Polymer Science, 137(20), 48690.
https://doi.org/10.1002/app.48690
[16] Zhu, X., Dudchenko, A., Gu, X., & Jassby, D. (2017). Surfactant-stabilized oil separation from water using ultrafiltration and nanofiltration. Journal of Membrane Science, 529, 159–169.
https://doi.org/10.1016/j.memsci.2017.02.004
[17] Kumar, M., Rao, T. S., Isloor, A. M., Ibrahim, G. S., Ismail, N., Ismail, A. F., & Asiri, A. M. (2019). Use of cellulose acetate/polyphenylsulfone derivatives to fabricate ultrafiltration hollow fiber membranes for the removal of arsenic from drinking water. International Journal of Biological Macromolecules, 129, 715–727.
https://doi.org/10.1016/j.ijbiomac.2019.02.017
[18] Kumar, M., Isloor, A. M., Rao, T. S., Ismail, A. F., Farnood, R., & Nambissan, P. M. G. (2020). Removal of toxic arsenic from aqueous media using polyphenylsulfone/cellulose acetate hollow fiber membranes containing zirconium oxide. Chemical Engineering Journal, 393, 124367.
https://doi.org/10.1016/j.cej.2020.124367
[19] Koli, M., & Singh, S. (2023). Surface-modified ultrafiltration and nanofiltration membranes for the selective removal of heavy metals and inorganic groundwater contaminants: A review. Environmental Science: Water Research & Technology, 9(11), 2803–2829.
https://doi.org/10.1039/D3EW00266G
[20] Kumar, M., Isloor, A. M., Todeti, S. R., Nagaraja, H. S., Ismail, A. F., & Susanti, R. (2021). Effect of binary zinc-magnesium oxides on polyphenylsulfone/cellulose acetate derivatives hollow fiber membranes for the decontamination of arsenic from drinking water. Chemical Engineering Journal, 405, 126809.
https://doi.org/10.1016/j.cej.2020.126809
[21] Kumar, M., Isloor, A. M., Todeti, S. R., Ismail, A. F., & Farnood, R. (2021). Hydrophilic nano-aluminum oxide containing polyphenylsulfone hollow fiber membranes for the extraction of arsenic (As-V) from drinking water. Journal of Water Process Engineering, 44, 102357.
https://doi.org/10.1016/j.jwpe.2021.102357
[22] Hebbar, R. S., Isloor, A. M., Ananda, K., & Ismail, A. F. (2016). Fabrication of polydopamine functionalized halloysite nanotube/polyetherimide membranes for heavy metal removal. Journal of Materials Chemistry A, 4(3), 764–774.
https://doi.org/10.1039/C5TA09281G
[23] Nayak, M., Chandrashekhar, A. M., Isloor, A. M., Moslehyani, N., Ismail, N., & Ismail, A. F. (2018). Fabrication of novel PPSU/ZSM-5 ultrafiltration hollow fiber membranes for separation of proteins and hazardous reactive dyes. Journal of the Taiwan Institute of Chemical Engineers, 82, 342–350.
[24] Kingsbury, R. S., Bruning, K., Zhu, S., Flotron, S., Miller, C. T., & Coronell, O. (2019). Influence of water uptake, charge, manning parameter, and contact angle on water and salt transport in commercial ion exchange membranes. Industrial & Engineering Chemistry Research, 58(40), 18663–18674.
https://doi.org/10.1021/acs.iecr.9b03200
[25] Anadão, P., Sato, L. F., Montes, R. R., & De Santis, H. S. (2014). Polysulphone/montmorillonite nanocomposite membranes: Effect of clay addition and polysulphone molecular weight on the membrane properties. Journal of Membrane Science, 455, 187–199.
https://doi.org/10.1016/j.memsci.2013.12.081
[26] Bagheripour, E., Moghadassi, A. R., Parvizian, F., Hosseini, S. M., & Van der Bruggen, B. (2019). Tailoring the separation performance and fouling reduction of PES based nanofiltration membrane by using a PVA/Fe3O4 coating layer. Chemical Engineering Research and Design, 144, 418–428.
https://doi.org/10.1016/j.cherd.2019.02.028
[27] Ibrahim, G. P. S., Isloor, A. M., Inamuddin, Asiri, A. M., Ismail, A. F., Kumar, R., & Ahamed, M. I. (2018). Performance intensification of the polysulfone ultrafiltration membrane by blending with a copolymer encompassing a novel derivative of poly(Styrene-Co-Maleic Anhydride) for heavy metal removal from wastewater. Chemical Engineering Journal, 353, 425–435.
https://doi.org/10.1016/j.cej.2018.07.098
[28] Kadhom, M., & Deng, B. (2019). Thin film nanocomposite membranes filled with bentonite nanoparticles for brackish water desalination: A novel water uptake concept. Microporous and Mesoporous Materials, 279, 82–91.
https://doi.org/10.1016/j.micromeso.2018.12.020
[29] Chou, S., Wang, R., Shi, L., She, Q., Tang, C., & Fane, A. G. (2012). Thin-film composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density. Journal of Membrane Science, 389, 25–33.
https://doi.org/10.1016/j.memsci.2011.10.002
[30] Veríssimo, S., Peinemann, K. V., & Bordado, J. (2005). New composite hollow fiber membrane for nanofiltration. Desalination, 184(1-3), 1-11.
https://doi.org/10.1016/j.desal.2005.03.069
[31] Rana, D., & Matsuura, T. (2010). Surface modifications for antifouling membranes. Chemical Reviews, 110(4), 2448-2471.
https://doi.org/10.1021/cr800208y
[32] Lu, X., Peng, Y., Qiu, H., Liu, X., & Ge, L. (2017). Anti-fouling membranes by manipulating surface wettability and their anti-fouling mechanism. Desalination, 413, 127–135.
https://doi.org/10.1016/j.desal.2017.02.022
[33] Jhaveri, J. H., & Murthy, Z. V. P. (2016). A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination, 379, 137–154.
https://doi.org/10.1016/j.desal.2015.11.009
[34] Zakhar, R., Derco, J., & Čacho, F. (2018). An overview of main arsenic removal technologies. Acta Chimica Slovaca, 11(2), 107–113.
https://doi.org/10.2478/acs-2018-0016
[35] Shih, M. C. (2005). An overview of arsenic removal by pressure-driven membrane processes. Desalination, 172(1), 85-97.
https://doi.org/10.1016/j.desal.2004.07.031
[36] Worou, C. N., Chen, Z.-L., & Bacharou, T. (2021). Arsenic removal from water by nanofiltration membrane: Potentials and limitations. Water Practice and Technology, 16(2), 291–319.
https://doi.org/10.2166/wpt.2021.018
[37] Wang, L., Fields, K. A., & Chen, A. S. (2000). Arsenic removal from drinking water by ion exchange and activated alumina plants (p. 147). National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency.
[38] Xiao, M., Guo, J., Zhao, S., & Li, S. (2023). Adsorption of As (V) at humic acid-kaolinite-bacteria interfaces: Kinetics, thermodynamics, and mechanisms. Agronomy, 13(2), 611.
https://doi.org/10.3390/agronomy13020611
[39] Dung, M. D., Nga, T. T. V., Lan, N. T., & Thanh, N. K. (2022). Adsorption behavior and mechanism of As (V) on magnetic Fe3O4–graphene oxide (GO) nanohybrid composite material. Analytical Sciences, 38(2), 427-436.
https://doi.org/10.1007/s44211-022-00064-z