Evaluation of seasonal variation of groundwater quality by using the correlation matrices method in Koppal Taluk, Karnataka, India

Document Type : Research Paper

Authors

1 Department of Studies in Physics, Vijayanagara Sri Krishnadevaraya University, Ballari-583 105, Karnataka, India

2 Department of Physics, Vijayanagar PU College, Hosapete - 583 201, Vijayanagara, Karnataka, India

3 Department of Chemistry, Vijayanagar College, Hosapete – 583 201, Vijayanagara, Karnataka, India

Abstract

Groundwater is a vital, renewable resource that provides over 94% of drinking water in most areas and is critical to human health and sustainable development. Groundwater pollution has a significant impact on human health. This study was conducted in Koppal Taluk, Koppal district, Karnataka, India, from December 2022 to November 2023 to assess the physicochemical parameters of groundwater at 25 seasonal sites. Several steel processing industries are located in the study area, and the inhabitants depend on groundwater sources for their daily needs. The study analyzed the parameters of cations and anions as per APHA guidelines. The study started with data standardization using the water quality index (WQI) and subsequent visualization of correlation matrices and mapping of data plots. The method used was ArcGIS 10.8, which visualizes spatial distribution for data quality control, identification of erroneous data, and classification of different data types. WQI values for drinking water ranged from 9.04 to 75.24 and showed three classes that were unsuitable for drinking. The correlation study showed that TDS, TH, Mg2+, Ca2+, and Cl− were more correlated. Most of the limitations were more or less associated with the parameters. Factor analysis suggested the first three principal components (PCs) in this analysis were 96% (Monsoon), 93.50% (Pre-Monsoon), and 87% (Post-Monsoon) of the cumulative variance correspondingly, and TDS was the most representative variable across all seasons.  This study underlined the importance of sustainable development and groundwater protection. The recommendations could help groundwater managers and urban planners to improve and maintain groundwater quality.

Graphical Abstract

Evaluation of seasonal variation of groundwater quality by using the correlation matrices method in Koppal Taluk, Karnataka, India

Keywords

Main Subjects


[1]    Sener, S., Sener, E., & Davraz, A. (2017b). Assessment of groundwater quality and health risk in drinking water basin using GIS. Journal of Water and Health, 15 (1), 112–132.
[2]    Simpi, B., Hiremath, S. M., Murthy, K. N. S., Chandrashekhar, K. N., Patel, A. N., & Puttiah, E. T. (2011). Analysis of water quality using physicochemical parameters, Hosahalli tank in Shimoga district, Karnataka, India. Glob. j. sci. Front. Res., 1(3), 31-34.
https://api.semanticscholar.org/CorpusID:135111774
[3]    Subramani, T., Elango, L., & Damodarasamy, S. R. (2005). Groundwater quality and its suitability for drinking and agricultural use in Chithar River basin, Tamil Nadu, India. Journal of Environmental Geology, 47, 1099–1110.
https://doi.org/10.1007/s00254-005-1243-0
[4]    Griffith, A. J. (2001). Geographic techniques and recent applications of remote sensing to landscape-water quality studies. Water Air Soil Pollution, 138, 181–197.
https://doi.org/10.1023/A:1015546915924
[5]    Vasanthavigar, M., Srinivasamoorthy, K., Vijayaragavan, K., Ganthi, R. R., Chidambaram, S., Anandhan, P., Manivannan, R., & Vasudevan, S. (2010). Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamil Nadu, India. Environ Monit Assess. 171(1–4), 595–609.
https://doi.org/10.1007/s12517-010-0190-6
[6]    Todd, D. K., & Mays, LW. 2005. Groundwater hydrology, third edition, Wiley, Hoboken.
[7]    LaMoreaux, P. E., LaMoreaux, J. W., Soliman, M. M., Memon, B. A., & Assaad, F. A. 2008. Environmental Hydrogeology, 2nd edition, 373, CRC Press: Boca Raton, FL, USA.
[8]    Saeedi, M., Abessi, O., Sharifi, F., & Meraji, H. (2010). Development of groundwater quality index, Environ Monit Assess.
https://doi.org/10.1007/s10661-009-0837-5
[9]    Shyamala, R., Shanthi, M., & Lalitha, P. (2008). Physicochemical analysis of bore well water samples of Telungupalayam area in Coimbatore district, Tamil Nadu, India. E-Journal of Chemistry, 5(4), 924-929.
[10]  Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Döll, P., & Portmann, F. T.  (2010). Groundwater use for irrigation – a global inventory. Hydrology and Earth System Sciences, 14, 1863–1880.
https://doi.org/10.5194/hess-14-1863-2010
[11]  U.S. Environmental Protection Agency (USEPA) (2007) Dallas, TX (2000–05). Chapter 3: exposure scenario selection. Retrieved 2 Feb 2007. RCRA Delisting Technical Support Document, p 8.
[12]  Nas, B., & Berktay, A. (2008). Groundwater quality mapping in urban groundwater using GIS. Environ Monit Assess, 160, 215–227.
https://dio.org/10.1007/s10661-008-0689-4
[13]  Roohi, Rawat., & Siddiqui, A. R. (2019). Assessment of Physicochemical Characteristics of Drinking Water Quality in Allahabad Metropolitan City, India. The Oriental Anthropologist, 19(1), 121–135.
https://doi.org/10.1177/0972558X19835368
[14]  Boyd, J. (2003). a good idea doomed to failure? Public Finance and Management. Water pollution taxes, 1(3), 34-66.
[15]  Gayathri, S., Shiny Raj, R., Krishnakumar, A., Anoop Krishnan, K., Dev, V. V., & Vishnu Maya, T. M. (2010). Spatiotemporal evaluation of hydrochemical facies and pesticide residues in the cardamom plantations of Southern Western Ghats, India. Environmental Nanotechnology Monitoring & Management 16(7), 100599.
https://doi.org/10.1016/j.enmm.2021.100599
[16]  Mehrnaz, Asefi., & Rasool, Zamani-Ahmad, Mahmoodi. (2018). Analysis of physiochemical and microbial quality of waters of the Karkheh River in southwestern Iran using multivariate statistical methods. Advances in Environmental Technology 2, 75-81.
https://doi.org/10.22104/AET.2018.2534.1128  
[17]  Bilal, Nabi, Bhat., Saltanat, Parveen., & Taskeena, Hassan. (2018). Seasonal assessment of Physicochemical parameters and evaluation of water quality of river Yamuna, India. Advances in Environmental Technology, 1, 41-49.
https://doi.org/10.22104/aet.2018.2415.1121 
[18]  Galal Uddin, Md., Moniruzzaman, Md., & Mala, Khan. (2017). Evaluation of Groundwater Quality Using CCME Water Quality Index in the Rooppur Nuclear Power Plant Area, Ishwardi, Pabna, Bangladesh. American Journal of Environmental Protection, 5(2), 33-43.
https://DOI.org/10.12691/env-5-2-2
[19]  Wagh, V. M., Panaskar, D. B., Muley, A. A., & Mukate, S. V.  (2017). Groundwater suitability evaluation by CCME WQI model for Kadava River Basin, Nashik, Maharashtra, India. Model. Earth Syst. Environ.
https://DOI.org/10.1007/s40808-017-0316-x
[20]  Central Ground Water Information Booklet (CGWIB-1954). Koppal District, Karnataka, Govt of India Ministry of Water Resources Central Ground Water Board republished on Feb 2013.
https://doi.org/10.23953/cloud.ijaese.206
[21]  Bettahar, Asma., & Sehnaz, Sener. (2024). Appraisal of groundwater suitability and hydrochemical characteristics by using various water quality indices and statistical analyses in the Wadi Righ area, Algeria. Water Supply, 24(5), 1938.
https://doi.org/10.2166/ws.2024.103
[22]  APHA Standard methods for the examination of water and wastewater (2000), American Public Health Association, Washington, DC.
[23]  WHO Guidelines for drinking water quality. 1984. WHO, 1, Geneva.
[24]  Bureau of Indian Standards –BIS (2012). Drinking Water Specifications, IS: 10500, India.
[25]  xingxing, Cao., Pan, Wu., Zhiwei, Han., Shui, Zhang., & Han, Tu. (2016). Sources, Spatial Distribution, and Seasonal Variation of Major Ions in the Caohai Wetland Catchment, Southwest China. Journal of Wetland Scientists, 36, 1069-1085.
https://DOI.org 10.1007/s13157-016-0822-z   
[26]  Chinmoy, Ranjan, Das., Subhasish, Das., & Souvik, Panda. (2022). Groundwater quality monitoring by correlation, regression and hierarchical clustering analyses using WQI and PAST tools, Groundwater for Sustainable Development, 16.
https://doi.org/10.1016/j.gsd.2021.100708
[27]  Ketata-Rokbani, M., Gueddari, M., & Bouhlila, R. (2011). Use of geographical information system and Water Quality Index to assess groundwater quality in El Khairat Deep Aquifer (Enfidha, Tunisian Sahel). Arabian Journal of Geosciences - ARAB J GEOSCI, 2(2), 133–144.
http://dx.doi.org/10.1007/s12517-011-0292-9 
[28]  World Health Organization. 2017. Guidelines for drinking-water quality: Fourth Edition incorporation of the first addendum. World Health Organization (WHO), Geneva, Switzerland.
[29]  Srinivasamoorthy, K., Chidambaram, S., Prasanna, M. V., Vasanthavihar, M., John Peter & Anandhan, P. (2008). Identification of major sources controlling groundwater chemistry from a hard rock terrain– A case study from Mettur taluk, Salem district, Tamil Nadu, India. J. Earth Syst. Sci. 117(1), 49–58.
[30]  Pradhan, S. K., Patnaik, D., & Rout, S. P. (2001). Water quality index for the groundwater in and around a phosphatic fertilizer plant. Indian J. Environ Protect, 21, 355–358.
[31]  Dwivedi S. L., & Patha, V. (2007). A preliminary assignment of water quality index to Mandakini River, Chitrakoot. Indian J. Environ Protect, 27(11), 1036–1038.
[32]  Asadi S. S., Vuppala, P., & Anji, Reddy, M. (2007). Remote sensing and GIS techniques for evaluation of groundwater quality in Municipal Corporation of Hyderabad (Zone-V), India. Int J Environ Res Publ Health, 4(1), 45–52.
https://doi.org/10.3390/ijerph2007010008
[33]  Yidana, S. M., & Yidana, A. (2010). Assessing water quality using water quality index and multivariate analysis. Environ Earth Sci, 59, 1461–1473.
https://doi.org/10.1007/s12665-009-0132-3 
[34]  Sahu, P., & Sikdar, P. K. (2008). Hydrochemical framework of the aquifer in and around East Kolkata wetlands, West Bengal, India. Environ Geol 55, 823–835.
http://dx.doi.org/10.1007/s00254-007-1034-x
[35]  Lo, C. P., & Yeung, A. K. (2003). Concepts and techniques of geographic information systems. (Upper Saddle River, New Jersey: Prentice-Hall, 2002) International Journal of Geographical Information Science, 17(8), 819-820.
http://dx.doi.org/10.1080/1365881031000111173
[36]  ESRI Data & Maps 1999. An ESRI White Paper 1999. Printed in the United States of America.
[37]  Goovaerts, P. (1997). Geostatistics for natural resources evaluation. Oxford University Press, New York. 42, 483.
[38]  Nesrine, N., Rachida, B., & Ahmed, R. (2015). Multivariate statistical analysis of saline water a case study: Sabkha OumLeKhialate (Tunisia). International Journal of Environmental Science Development, 6, 40–43.
https://doi.org/10.7763/IJESD. 2015.V6.558
[39]  Kumar, N., & Sinha, D. K. (2010). Drinking water quality management through correlation studies among various physicochemical parameters: a case study. Int. J. Environ. Sci, 1(02), 253-259.
[40]  Farnham, I. M., Johannesson, K. H., Singh, A. K., Hodge, V. F., & Stetzenbach, K. J. (2003). Factor analytical approaches for evaluating groundwater trace element chemistry data. Anal. Chim. Acta, 490, 123-138.
http://dx.doi.org/10.1016/S0003-2670(03)00350-7
[41]  Cloutier, V., Lefebvre, R., Therrien, R., & Savard, M. M. (2008). Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J. Hydro, 353(3-4), 294-313.
http://dx.doi.org/10.1016/j.jhydrol.2008.02.015
[42]  Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji River basin, Japan. Environ Model Software. 22, 464–475.
http://dx.doi.org/10.1016/j.envsoft.2006.02.001
[43]  Nkansah, K., Dawson-Andoh, B., & Slahor, J. (2010).  Rapid characterization of biomass using near infrared spectroscopy coupled with multivariate data analysis: Part 1. Yellow-poplar (Liriodendron tulipifera L.). Bioresour Technol. 101, 4570–4576.
https://doi.org/10.1016/j.biortech.2009.12.046
[44]  Eid, M. H., Elbagory, M., Tamma, A. A., Gad, M., Elsayed, S., Hussein, H., Moghanm, F. S., Omara, A. E. D., Kovács, A., & Péter, S. (2023). Evaluation of Groundwater Quality for Irrigation in Deep Aquifers Using Multiple Graphical and Indexing Approaches Supported with Machine Learning Models and GIS Techniques, Souf Valley, Algeria. Water, 15(1), 182.
https://doi.org/10.3390/w15010182
[45]  Flores, Y. G., Eid, M. H., Szűcs, P., Szőcs, T., Fancsik, T., Szanyi, J., Kovács, B., Markos, G., Újlaki, P., Tóth, P., McIntosh, R. W., & Püspöki, Z. (2023). Integration of Geological, Geochemical Modelling and Hydrodynamic Condition for Understanding the Geometry and Flow Pattern of the Aquifer System, Southern Nyírség–Hajdúság, Hungary. Water, 15(16), 2888.
https://doi.org/10.3390/w15162888 
[46]  Zhang, X., Miao, J., Hu, B. X., Liu, H., Zhang, H., & Ma, Z. (2017). Hydrogeochemical characterization and groundwater quality assessment in intruded coastal brine aquifers (Laizhou Bay, China). Environmental science and pollution research international, 24(26), 21073–21090.
https://doi.org/10.1007/s11356-017-9641-x
[47]  Banoeng-Yakubo, B., Yidana, S. M., Nti, E. (2009). Hydrochemical analysis of groundwater using multivariate statistical methods—the Volta region Ghana. KSCE J Civ Eng, 13(1), 55–63.
https://doi.org/10.1007/s12205-009-0055-2
[48]  Giao, N. T., Nhien, H. T. H., & Anh, P. K. (2022). Groundwater Quality Assessment Using Classification and Multi-Criteria Methods: A Case Study of Can Tho City, Vietnam. Environment and Natural Resources Journal, 20(2), 1-10. 
http://dx.doi.org/10.32526/ennrj/20/202100183
[49]  Minh, H., Ty, T., Behera, H., Kumar, P., Kurasaki, M., Avtar, R., & Tran, D. (2019). Groundwater Quality Assessment Using Fuzzy-AHP in An Giang Province of Vietnam. Geosciences, 9(8), 330.
https://doi.org/10.3390/geosciences9080330
[50]  Bhardwaj, V., & Singh, D. S. (2011). Surface and groundwater quality characterization of Deoria District, Ganga Plain, India. Environ Earth Sci, 63, 383-395.
https://doi.org/10.1007/s/12665-010-0709-x
[51]  Aleem, M., Shun, C. J., Li, C., Aslam, A. M., Yang, W., Nawaz, M. I., Ahmed, W. S., & Buttar, N. A. (2018). Evaluation of groundwater quality in the vicinity of Khurrianwala industrial zone, Pakistan. Water (Switzerland), 10(10), 1321.
https://doi.org/10.3390/w10101321
[52]  Tran, D. A., Tsujimura, M., Loc, H. H., Dang, D. H., Le, Vo, P., Thu, Ha, D., Thu Trang, N. T., Chinh, L. C., Bich Thuc, P. T., Dang, T. D., Batdelger, O., & Nguyen, V. T. (2021). Groundwater quality evaluation and health risk assessment in coastal lowland areas of the Mekong Delta, Vietnam. Groundwater for Sustainable Development, Elsevier, 15, 100679.
https://doi.org/10.1016/j.gsd.2021.100679
[53]  Giao, N. T., Anh, P. K., & Nhien, H. T. H. (2021). Evaluating groundwater quality in Bac Lieu province using multivariate statistical method and groundwater quality index. Indonesian Journal of Environmental Management and Sustainability, 5(4), 129–135.
https://doi.org/10.26554/ijems.2021.5.4.129-135
[54]  Aragaw, T. T., & Gnanachandrasamy, G. (2021). Evaluation of groundwater quality for drinking and irrigation purposes using GIS-based water quality index in the urban area of Abaya-Chemo sub-basin of Great Rift Valley, Ethiopia. Applied Water Science, 11(9), 148.
[55]  Ojekunle, Z. O., Adeyemi, A. A., Taiwo, A. M., Ganiyu, S. A., & Balogun, M. A. (2020). Assessment of physicochemical characteristics of groundwater within selected industrial areas in Ogun State, Nigeria. Environmental Pollutants and Bioavailability, 32(1), 100–113.
https://doi.org/10.1080/26395940.2020.1780157
[56]  Antony, S., Dev, V. V., Kaliraj, S., Ambili, M. S., & Krishnan, K. A. (2020). Seasonal variability of groundwater quality in coastal aquifers of Kavaratti Island, Lakshadweep Archipelago, India. Groundwater for Sustainable Development, 11, 100377.
https://doi.org/10.1016/j.gsd.2020.100377
[57]  Ravish, S., Deswal, S., & Setia, B. (2020). Groundwater Quality Analysis of Northeastern Haryana using Multivariate Statistical Techniques. Journal of the Geological Society of India, 95(4), 407–416.
https://doi.org/10.1007/s12594-020-1450-z
[58]  Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water, 2nd Edition. US Geol Surv Water Supply Paper. 2254, 363.
https://doi.org/10.3133/wsp2254
[59]  Tamura, T., Nguyen, V. L., Ta, T. K. O., Mark, Bateman, D., Marcello, Gugliotta., Edward, J., Anthony., Rei, Nakashima., & Yoshiki Saito. (2020). Long-term sediment decline causes ongoing shrinkage of the Mekong megadelta, Vietnam. Sci Rep 10, 8085 (2020).
https://doi.org/10.1038/s41598-020-64630-z
[60]  Sinha, E., Michalak, A. M., Balaji, V., & Resplandy, L. (2022). India's Riverine Nitrogen Runoff Strongly Impacted by Monsoon Variability. Environmental science & technology, 56(16), 11335–11342.
https://doi.org/10.1021/acs.est.2c01274
[61]  Embaby, A. A., Beheary, M. S., & Rizk, S. M. (2017). Groundwater quality assessment for drinking and irrigation purposes in El-Salhia Plain East Nile Delta Egypt. Int J. Eng Technol Sci, 12, 51–73.
[62]  Dhilleswara Rao, V., Subba Rao, M. V., & Murali Krishna, M. P. S. (2019). Evaluation of groundwater quality in Pre-Monsoon and Post-monsoon seasons of a year using water quality index (wqi) Rasayan J. Chem., 12(4), 1828-1838.
http://dx.doi.org/10.31788/RJC.2019.1245394
[63]  Benjamin, M. S., Simon, A. A., Samuel, O., & Patrick, O. L. (2022). Examining the dynamics of the relationship between water pH and other water quality parameters in ground and surface water systems. PLoS ONE, 17(1), e0262117. 
https://doi.org/10.1371/journal.pone.0262117
[64]  Bexfield, L. M., & Jurgens, B. C. (2014). Effects of seasonal operation on the quality of water produced by public-supply wells. Ground Water.  52(1), 10-24.
https://doi.org/10.1111/gwat.12174
[65]  Mridu Sahu, Anushree Shrivastava, D. C. Jhariya, Shivangi Diwan, Jalina Subhadarsini (2024).  Evaluation of correlation of physicochemical parameters and major ions present in groundwater of Raipur using discretization. Measurement: Sensors, 34, 101278.
https://doi.org/10.1016/j.measen.2024.101278
[66]  Adimalla, and Narsimha., Spatial distribution, exposure, and potential health risk assessment from nitrate in drinking water from semi-arid region of South India. (2018).   Human and Ecological Risk Assessment: An International Journal, 26(02), 310-334.
https://doi.org/10.1080/10807039.2018.1508329
[67]  Sridharan, M., & Senthil Nathan, D. (2017). Groundwater quality assessment for domestic and agriculture purposes in Puducherry region. Applied Water Science, 7(7), 4037–4053.
https://doi.org/10.1007/s13201-017-0556-y
[68]  Zhou, X., Ruan, X., Pan, Z., Zhu, X., Sun, H.M., Jin, F., Qi, Z., & Wu, B. (2010). Application of factor analysis in the assessment of groundwater quality. In AIP conference proceedings (p. 33). American Institute of Physics.
https://doi.org/10.1063/1.3529317