[1] Zhou, P., Wang, Y., Yan, X., Gan, Y., Xia, C., Xu, Y., Xie, M. (2024). Nitrogen-defect-modified g-C3N4/BaFe12O19 S-scheme heterojunction photocatalyst with enhanced advanced oxidation technology synergistic photothermal degradation ability of antibiotic: Insights into performance, electron transfer pathways and toxicity. Applied Catalysis B: Environmental, 343 123485.
https://doi.org/10.1016/j.apcatb.2023.123485
[2] Sha, J., Li, L., An, Z., He, M., Yu, H., Wang, Y., Gao, B., Xu, S. (2022). Diametrically opposite effect of Cu2+ on sulfamerazine and ciprofloxacin adsorption-photodegradation in g-C3N4/visible light system: behavior and mechanism study. Chemical Engineering Journal, 428 131065.
https://doi.org/10.1016/j.cej.2021.131065
[3] Rafieenia, R., Sulonen, M., Mahmoud, M., El-Gohary, F., Rossa, C. A. (2022). Integration of microbial electrochemical systems and photocatalysis for sustainable treatment of organic recalcitrant wastewaters: Main mechanisms, recent advances, and present prospects. Science of The Total Environment, 824 153923.
https://doi.org/10.1016/j.scitotenv.2022.153923
[4] Hu, X., Yu, Y., Chen, D., Xu, W., Fang, J., Liu, Z., Li, R., Yao, L., Qin, J., Fang, Z. (2022). Anatase/Rutile homojunction quantum dots anchored on g-C3N4 nanosheets for antibiotics degradation in seawater matrice via coupled adsorption-photocatalysis: Mechanism insight and toxicity evaluation. Chemical Engineering Journal, 432 134375.
https://doi.org/10.1016/j.cej.2021.134375
[5] Wang, P., Tang, Y., Dong, Z., Chen, Z., Lim, T.-T. (2013). Ag–AgBr/TiO2/RGO nanocomposite for visible-light photocatalytic degradation of penicillin G. Journal of Materials Chemistry A, 1(15), 4718-4727.
https://doi.org/10.1039/C3TA01042B
[6] Zhang, R., Jiang, J., Zeng, K. (2022). Synthesis of Bi2WO6/g-C3N4 heterojunction on activated carbon fiber membrane as a thin-film photocatalyst for treating antibiotic wastewater. Inorganic Chemistry Communications, 140 109418.
https://doi.org/10.1016/j.inoche.2022.109418
[7] Zhang, J., Zheng, Y., Zheng, H., Jing, T., Zhao, Y., Tian, J. (2022). Porous Oxygen-Doped g-C3N4 with the Different Precursors for Excellent Photocatalytic Activities under Visible Light. Materials, 15(4).
https://doi.org/10.3390/ma15041391
[8] Isloor, A. M., O, S., martis, G. J., Bhat, S. P., Mugali, P. (2024). Impact of TiO2 and CaCO3 nanoparticles and their incorporation in polysulfone composite membrane on photocatalytic degradation of RB 5. Advances in Environmental Technology, 10(4), 315-325.
https://doi.org/10.22104/aet.2024.6957.1907
[9] Dang, V. D., Adorna, J., Annadurai, T., Bui, T. A. N., Tran, H. L., Lin, L.-Y., Doong, R.-A. (2021). Indirect Z-scheme nitrogen-doped carbon dot decorated Bi2MoO6/g-C3N4 photocatalyst for enhanced visible-light-driven degradation of ciprofloxacin. Chemical Engineering Journal, 422 130103.
https://doi.org/10.1016/j.cej.2021.130103
[10] Chen, P., Di, S., Qiu, X., Zhu, S. (2022). One-step synthesis of F-TiO2/g-C3N4 heterojunction as highly efficient visible-light-active catalysts for tetrabromobisphenol A and sulfamethazine degradation. Applied Surface Science, 587 152889.
https://doi.org/10.1016/j.apsusc.2022.152889
[11] Abdul kader, H. D., Ammar, S. H., Abdulnabi, W. A., Jabbar, Z. H., Taofeeq, H., Al-Farraji, A. (2024). Enhancing visible-light-based photodegradation of antibiotics over facile constructed BiVO4/S-doped g-C3N4 heterojunctions in an airlift photocatalytic reactor. Journal of Water Process Engineering, 65 105900.
https://doi.org/10.1016/j.jwpe.2024.105900
[12] Liu, R., Zhang, C., Liu, R., Sun, Y., Ren, B., Tong, Y., Tao, Y. (2025). Advancing antibiotic detection and degradation: recent innovations in graphitic carbon nitride (g-C3N4) applications. Journal of Environmental Sciences, 150 657-675.
https://doi.org/10.1016/j.jes.2024.03.033
[13] Alaghmandfard, A., Ghandi, K. (2022). A comprehensive review of graphitic carbon nitride (g-C3N4)–metal oxide-based nanocomposites: potential for photocatalysis and sensing. Nanomaterials, 12(2).
https://doi.org/10.3390/nano12020294
[14] Mafa, P. J., Malefane, M. E., Idris, A. O., Liu, D., Gui, J., Mamba, B. B., Kuvarega, A. T. (2022). Multi-elemental doped g-C3N4 with enhanced visible light photocatalytic Activity: Insight into naproxen Degradation, Kinetics, effect of Electrolytes, and mechanism. Separation and Purification Technology, 282 120089.
https://doi.org/10.1016/j.seppur.2021.120089
[15] Deng, X., Wang, D., Li, H., Jiang, W., Zhou, T., Wen, Y., Yu, B., Che, G., Wang, L. (2022). Boosting interfacial charge separation and photocatalytic activity of 2D/2D g-C3N4/ZnIn2S4 S-scheme heterojunction under visible light irradiation. Journal of Alloys and Compounds, 894 162209.
https://doi.org/10.1016/j.jallcom.2021.162209
[16] Lu, N., Wang, P., Su, Y., Yu, H., Liu, N., Quan, X. (2019). Construction of Z-Scheme g-C3N4/RGO/WO3 with in situ photoreduced graphene oxide as electron mediator for efficient photocatalytic degradation of ciprofloxacin. Chemosphere, 215 444-453.
https://doi.org/10.1016/j.chemosphere.2018.10.065
[17] Tian, C., Zhao, H., Sun, H., Xiao, K., Keung Wong, P. (2020). Enhanced adsorption and photocatalytic activities of ultrathin graphitic carbon nitride nanosheets: Kinetics and mechanism. Chemical Engineering Journal, 381 122760.
https://doi.org/10.1016/j.cej.2019.122760
[18] Zhang, Y., Chen, S., Meng, Y., Chang, L., Huang, X., Zheng, Y., Shen, J., Zhao, T. (2022). CNTs boosting superior cycling stability of ZnFe2O4/C nanoparticles as high-capacity anode materials of Li-ion batteries. Journal of Alloys and Compounds, 912 165135.
https://doi.org/10.1016/j.jallcom.2022.165135
[19] Yang, H., Hao, H., Zhao, Y., Hu, Y., Min, J., Zhang, G., Bi, J., Yan, S., Hou, H. (2022). An efficient construction method of S-scheme Ag2CrO4/ZnFe2O4 nanofibers heterojunction toward enhanced photocatalytic and antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 641 128603.
https://doi.org/10.1016/j.colsurfa.2022.128603
[20] Wu, X., Lu, J., Huang, S., Shen, X., Cui, S., Chen, X. (2022). Facile fabrication of novel magnetic 3-D ZnFe2O4/ZnO aerogel based heterojunction for photoreduction of Cr(Ⅵ) under visible light: Controlled synthesis, facial change distribution, and DFT study. Applied Surface Science, 594 153486.
https://doi.org/10.1016/j.apsusc.2022.153486
[21] Luo, J., Wu, Y., Chen, X., He, T., Zeng, Y., Wang, G., Wang, Y., Zhao, Y., Chen, Z. (2022). Synergistic adsorption-photocatalytic activity using Z-scheme based magnetic ZnFe2O4/CuWO4 heterojunction for tetracycline removal. Journal of Alloys and Compounds, 910 164954.
https://doi.org/10.1016/j.jallcom.2022.164954
[22] Wang, S., Wang, J. (2022). Magnetic 2D/2D oxygen doped g-C3N4/biochar composite to activate peroxymonosulfate for degradation of emerging organic pollutants. Journal of Hazardous Materials, 423 127207.
https://doi.org/10.1016/j.jhazmat.2021.127207
[23] Wu, Y., Chen, J., Che, H., Gao, X., Ao, Y., Wang, P. (2022). Boosting 2e− oxygen reduction reaction in garland carbon nitride with carbon defects for high-efficient photocatalysis-self-Fenton degradation of 2,4-dichlorophenol. Applied Catalysis B: Environment and Energy, 307 121185.
https://doi.org/10.1016/j.apcatb.2022.121185
[24] Nguyen, T. B., Huang, C. P., Doong, R.-a. (2019). Photocatalytic degradation of bisphenol A over a ZnFe2O4/TiO2 nanocomposite under visible light. Science of The Total Environment, 646 745-756. https://doi.org/10.1016/j.scitotenv.2018.07.352
[25] Al-Sulami, A. I., Alsuwat, M. H., AlSulami, F. M. H., Ibrahim, A. M., Elhenawy, A. A. (2024). ZnFe2O4/bentonite/polyacrylamide: Exploring structural properties for removal of Alizarin Yellow Dye and antibacterial activities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 687 133408.
https://doi.org/10.1016/j.colsurfa.2024.133408
[26] Al-Shwaiman, H. A., Akshhayya, C., Syed, A., Bahkali, A. H., Elgorban, A. M., Das, A., Varma, R. S., Khan, S. S. (2022). Fabrication of intimately coupled CeO2/ZnFe2O4 nano-heterojunction for visible-light photocatalysis and bactericidal application. Materials Chemistry and Physics, 279 125759.
https://doi.org/10.1016/j.matchemphys.2022.125759
[27] Matli, P. R., Zhou, X., Shiyu, D., Huang, Q. (2015). Fabrication, characterization, and magnetic behavior of porous ZnFe2O4 hollow microspheres. International Nano Letters, 5(1), 53-59.
https://doi.org/10.1007/s40089-014-0135-2
[28] Nguyen, T. B., Doong, R.-a. (2017). Heterostructured ZnFe2O4/TiO2 nanocomposites with a highly recyclable visible-light-response for bisphenol A degradation. RSC Advances, 7(79), 50006-50016.
https://doi.org/10.1039/C7RA08271A
[29] Sarala, E., Madhukara Naik, M., Vinuth, M., Rami Reddy, Y. V., Sujatha, H. R. (2020). Green synthesis of Lawsonia inermis-mediated zinc ferrite nanoparticles for magnetic studies and anticancer activity against breast cancer (MCF-7) cell lines. Journal of Materials Science: Materials in Electronics, 31(11), 8589-8596.
https://doi.org/10.1007/s10854-020-03394-8
[30] Sarkar, P., De, S., Neogi, S. (2022). Microwave assisted facile fabrication of dual Z-scheme g-C3N4/ZnFe2O4/Bi2S3 photocatalyst for peroxymonosulphate mediated degradation of 2,4,6-Trichlorophenol: The mechanistic insights. Applied Catalysis B: Environment and Energy, 307 121165.
https://doi.org/10.1016/j.apcatb.2022.121165
[31] Shi, Y., Li, L., Xu, Z., Sun, H., Amin, S., Guo, F., Shi, W., Li, Y. (2022). Engineering of 2D/3D architectures type II heterojunction with high-crystalline g-C3N4 nanosheets on yolk-shell ZnFe2O4 for enhanced photocatalytic tetracycline degradation. Materials Research Bulletin, 150 111789.
https://doi.org/10.1016/j.materresbull.2022.111789
[32] Zhou, Q., Chen, W., Jiang, X., Liu, H., Ma, S., Wang, B. (2020). Preparation of a novel nitrogen-containing graphitic mesoporous carbon for the removal of acid red 88. Scientific reports, 10(1), 1353.
https://doi.org/10.1038/s41598-020-57823-z
[33] Xiao, Y., Lyu, H., Tang, J., Wang, K., Sun, H. (2020). Effects of ball milling on the photochemistry of biochar: Enrofloxacin degradation and possible mechanisms. Chemical Engineering Journal, 384 123311.
https://doi.org/10.1016/j.cej.2019.123311
[34] Wang, W., Zhang, J., Chen, T., Sun, J., Ma, X., Wang, Y., Wang, J., Xie, Z. (2020). Preparation of TiO2-modified biochar and its characteristics of photo-catalysis degradation for enrofloxacin. Scientific reports, 10(1), 6588.
https://doi.org/10.1038/s41598-020-62791-5
[35] Cai, M., Liu, Y., Wang, C., Lin, W., Li, S. (2023). Novel Cd0.5Zn0.5S/Bi2MoO6 S-scheme heterojunction for boosting the photodegradation of antibiotic enrofloxacin: Degradation pathway, mechanism and toxicity assessment. Separation and Purification Technology, 304 122401.
https://doi.org/10.1016/j.seppur.2022.122401
[36] Abbasi, M. A., Amin, K. M., Ali, M., Ali, Z., Atif, M., Ensinger, W., Khalid, W. (2022). Synergetic effect of adsorption-photocatalysis by GO−CeO2 nanocomposites for photodegradation of doxorubicin. Journal of Environmental Chemical Engineering, 10(1), 107078.
https://doi.org/10.1016/j.jece.2021.107078
[37] Wang, P., Wang, X., Yu, S., Zou, Y., Wang, J., Chen, Z., Alharbi, N. S., Alsaedi, A., Hayat, T., Chen, Y., Wang, X. (2016). Silica coated Fe3O4 magnetic nanospheres for high removal of organic pollutants from wastewater. Chemical Engineering Journal, 306 280-288.
https://doi.org/10.1016/j.cej.2016.07.068