Geospatial analysis of industrial and agricultural pollution impact on pond water quality in Raipur district, central India

Document Type : Case Study

Authors

1 Department of Chemistry, National Institute of Technology Raipur, Great Eastern Road Raipur, P.O. Box: 492010, Chhattisgarh, India

2 Centre for Energy and Environment, Dr. B R Ambedkar National Institute of Technology, Jalandhar, P. O. Box: 144008, Punjab, India

Abstract

This study attempts to fill the critical need for comprehensive data on pond water quality in the central region of rural India, with an emphasis on the industrial and agricultural zone of Chhattisgarh’s Raipur district. Geospatial tools were used to map pollution distribution and identify contamination hotspots across the district. The study employs geospatial analysis and mapping methods to assess physicochemical factors, such as pH, EC, TDS, DO, and concentrations of metals, alongside the Water Quality Index (WQI) and other water quality indicators to evaluate the overall impact of industrial and agricultural pollution on pond water quality. Ponds are increasingly in danger due to pollution from domestic waste, industrial discharge, and agricultural runoff, even though they are essential for everyday tasks like irrigation and drinking. Twenty ponds were selected for analysis based on their proximity to industrial zones and agricultural activities. Water samples were collected and analysed for key physicochemical parameters and specific metal contaminants for WQI. The total WQI score was 115.74, indicating severe contamination across the sampled ponds. This high WQI score underscores the urgent need for remediation efforts to address pollution and protect public health. The results offer insightful information about the declining condition of pond water quality, emphasizing the need for prompt action and long-term sustainable management strategies. Bioremediation methods such as phytoremediation, microbial treatment, and adsorption techniques (e.g., activated carbon) can effectively remediate water contaminated by industrial and agricultural pollutants, improving water quality sustainably and cost-effectively.

Graphical Abstract

Geospatial analysis of industrial and agricultural pollution impact on pond water quality in Raipur district, central India

Keywords

Main Subjects


[1]. Mishra, R. K. (2023). Fresh Water availability and its global challenge. British Journal of Multidisciplinary and Advanced Studies, 4(1), 1–78.
[2]. Oswald, W. (1995). Ponds in the twenty-first century. Water Science and Technology, 31(1), 1–8.
[3]. Amoatey, P., Izady, A., Al-Maktoumi, A., Chen, M., Al-Harthy, I., Al-Jabri, K., Msagati, T. A., Nkambule, T. T., Baawain, M. S. (2021). A critical review of environmental and public health impacts from the activities of evaporation ponds. Science of the Total Environment, 796, 149065.
[4]. Tran, D. X., Pearson, D., Palmer, A., Lowry, J., Gray, D., Dominati, E., J. (2022). Quantifying spatial non-stationarity in the relationship between landscape structure and the provision of ecosystem services: An example in the New Zealand hill country. Science of the Total Environment, 808, 152126.
[5]. Schwartz, F. W., Ibaraki, M. (2011). Groundwater: A resource in decline. Elements, 7(3), 175–179.
[6]. Swartz, T. M., Miller, J. R. (2021). The American Pond Belt: An untold story of conservation challenges and opportunities. Frontiers in Ecology and the Environment, 19(8), 501–509.
[7]. Chen, W., He, B., Nover, D., Lu, H., Liu, J., Sun, W., Chen, W. (2019). Farm ponds in southern China: Challenges and solutions for conserving a neglected wetland ecosystem. Science of the Total Environment, 659, 1322–1334.
[8]. Cantonati, M., Poikane, S., Pringle, C. M., Stevens, L. E., Turak, E., Heino, J., Richardson, J. S., Bolpagni, R., Borrini, A., Cid, N., Čtvrtlíková, M., Galassi, D. M. P., Hájek, M., Hawes, I., Levkov, Z., Naselli-Flores, L., Saber, A. A., Cicco, M. D., Fiasca, B., Znachor, P. (2020). Characteristics, main impacts, and stewardship of natural and artificial freshwater environments: Consequences for biodiversity conservation. Water, 12(1), 260.
[9]. Alikhani, S., Nummi, P., Ojala, A. (2021). Urban wetlands: A review on ecological and cultural values. Water, 13(23), 3301.
[10].     Moore, T. L., Hunt, W. F. (2012). Ecosystem service provision by stormwater wetlands and ponds – A means for evaluation? Water Research, 46(20), 6811–6823.
[11]. Céréghino, R., Boix, D., Cauchie, H. M., Martens, K., Oertli, B. (2014). The ecological role of ponds in a changing world. Hydrobiologia, 723(1), 1–6.
[12].     Gledhill, D. G., James, P., Davies, D. H. (2008). Pond density as a determinant of aquatic species richness in an urban landscape. Landscape Ecology, 23(10), 1219–1230.
[13].     Hill, M. J., Greaves, H. M., Sayer, C. D., Hassall, C., Milin, M., Milner, V. S., Marazzi, L., Hall, R., Harper, L. R., Thornhill, I., Walton, R., Biggs, J., Ewald, N., Law, A., Willby, N., White, J. C., Briers, R. A., Mathers, K. L., Jeffries, M. J.,  Wood, P. J. (2021). Pond ecology and conservation: Research priorities and knowledge gaps. Ecosphere, 12(12), e03853.
[14].     Hill, M. J., Wood, P. J., Fairchild, W., Williams, P., Nicolet, P., Biggs, J. (2021). Garden pond diversity: Opportunities for urban freshwater conservation. Basic and Applied Ecology, 57, 28–40.
[15].     Zamora-Marín, J. M., Ilg, C., Demierre, E., Bonnet, N., Wezel, A., Robin, J., Vallod, D., Calvo, J. F., Oliva-Paterna, F. J. (2021). Contribution of artificial waterbodies to biodiversity: A glass half empty or half full? Science of the Total Environment, 753, 141987.
[16].     Hassall, C. (2014). The ecology and biodiversity of urban ponds. WIREs Water, 1(2), 187–206.
[17].     Weerahewa, J., Timsina, J., Wickramasinghe, C., Mimasha, S., Dayananda, D., Puspakumara, G. (2023). Ancient irrigation systems in Asia and Africa: Typologies, degradation and ecosystem services. Agricultural Systems, 205, 103580.
[18].     Sankar, V., Suresh, L. (2023). The political ecology of small freshwater bodies in Kerala, India. Water and Wastewater Policy, 9(1), 45–66.
[19].     Wezel, A., Fleury, P., Demierre, E., Zamora-Marín, J. M., Bonnet, N., Robin, J. (2022). Conservation potential of ponds: Agricultural ponds as valuable hotspots of biodiversity and ecosystem services. Ecological Indicators, 143, 109365.
[20].    Abd El-Hamid, H. T., Toubar, M. M., Zarzoura, F., El-Alfy, M. A. (2023). Ecosystem services based on land use/cover and socio-economic factors in Lake Burullus, a Ramsar Site, Egypt. Remote Sensing Applications: Society and Environment, 30, 100979.
[21].     Shukla, B. K., Gupta, A., Sharma, P. K., Bhowmik, A. R. (2020). Pollution status and water quality assessment in pre-monsoon season: A case study of rural villages in Allahabad district, Uttar Pradesh, India. Materials Today: Proceedings, 32, 824-830.
[22].     Mishra, R. K. (2023). Fresh water availability and its global challenge. British Journal of Multidisciplinary and Advanced Studies, 4(3), 1-78.
[23].     Sreeram, P., Eshwara Moorthy, P. R., Sreenivasan, S., Aiswarya, M., Nandanan, K., Mohan, R., Dhivvya, J. P. (2020). Technology Powered Resource Utilization for Income Generation Opportunities in the Rural Villages of Chhattisgarh. In ICDSMLA 2019: Proceedings of the 1st International Conference on Data Science, Machine Learning and Applications, 1699-1709.
[24].     Mortoja, M. G., Yigitcanlar, T., Mayere, S. (2020). What is the most suitable methodological approach to demarcate peri-urban areas? A systematic review of the literature. Land Use Policy, 95, 104601.
[25].     Salim, M. Z., Choudhari, N., Kafy, A. A., Nath, H., Alsulamy, S., Rahaman, Z. A., Aldosary, A. S., Rahmand, M. T., Al-Ramadan, B. (2024). A comprehensive review of navigating urbanization induced climate change complexities for sustainable groundwater resources management in the Indian subcontinent. Groundwater for Sustainable Development, 25, 101115.
[26].    Chettry, V., Surawar, M. (2020). Urban sprawl assessment in Raipur and Bhubaneswar urban agglomerations from 1991 to 2018 using geoinformatics. Arabian Journal of Geosciences, 13(18), 667.
[27].     Sahu, N., Golchha, P., Das, A., Mazumder, T. N., Ghosal, P. S. (2024). Hierarchical framework for assessment of water sensitivity in land use planning: case of Raipur urban agglomeration, India. Environment, Development and Sustainability, 1-23.
[28].    Sahu, I., Prasad, A. D., Ahmad, I. (2024). Groundwater Vulnerability Assessment Using SINTACS-AHP Model and GIS in Raipur City. Sustainable Management of Land, Water and Pollution of Built-up Area, 135-155.
[29].    Bhoi, S., Kashyap, C., Rajak, S. K., Ramteke, S. (2024). Determination of Total Dissolved Solids (TDS) of RO Purified Drinking Water Samples in Raipur. Journal of Ravishankar University, 37(1), 188-194.
[30].    Sinha, M. K., Baier, K., Azzam, R., Rajput, P., Verma, M. K. (2022). Establishing spatial relationships between land use and water quality influenced by urbanization. Current Directions in Water Scarcity Research, 7, 99-115.
[31].     Singha, S., Pasupuleti, S., Durbha, K. S., Singha, S. S., Singh, R., Venkatesh, A. S. (2019). An analytical hierarchy process-based geospatial modeling for delineation of potential anthropogenic contamination zones of groundwater from Arang block of Raipur district, Chhattisgarh, Central India. Environmental Earth Sciences, 78(21), 694.
[32].     Stanković, V., Marković, A., Pantović, J., Mesaroš, G., Batričević, A. (2023). The need for unique international legal protection of pond habitats. Aquatic Conservation: Marine and Freshwater Ecosystems, 33(11), 1369–1386.
[33].     Shakya, R., Khan, S. (2024). Climate Change Vulnerability through Spatial Assessment: A Study of Central India. Natural Hazards Review, 25(3), 05024008.
[34].     Baruah, M. P., Singha, K., Jha, P. (2024). Heavy metal concentration in agricultural soil near industrial clusters around Raipur city: A geochemical appraisal. Environmental Quality Management.
[35].     Sarkar, U. K., Sandhya, K. M., Mishal, P., Karnatak, G., Lianthuamluaia., Kumari, S., Panikkar, P., Palaniswamy, R., Karthikeyan, M., Sibina Mol, S. (2018). Status, prospects, threats, and the way forward for sustainable management and enhancement of the tropical Indian reservoir fisheries: An overview. Reviews in Fisheries Science & Aquaculture, 26(2), 155–175.
[36].    Mehta, P., Jangra, M. S., Baweja, P. K., Srivastav, A. L. (2024). Impact of climate change on rural water resources and its management strategies. Water Resources Management for Rural Development, 45-54.
[37].     Ustaoğlu, F., Ta¸s, B., Tepe, Y. (2021). Comprehensive assessment of water quality and associated health risk by using physicochemical quality indices and multivariate analysis in Terme River, Turkey. Environmental Science and Pollution Research, 28(46), 62736–62754.
[38].    Singh, V., Khan, R., Gupta, U., Vishwakarma, N., Jhariya, D. C. (2020). Hydrogeochemical assessment of groundwater of Raipur city industrial area Chhattisgarh, India. In IOP Conference Series: Earth and Environmental Science, 597(1), 012020.
[39].    Shakar, G., Das, B., Patel, B. (2021). Chemical Analysis of Surface Water of Raipur, Chhattisgarh to Evaluate The Consequences of Industrial Effluents. SAMRIDDHI: A Journal of Physical Sciences, Engineering and Technology, 13(02), 118-124.
[40].    Tamrakar, A., Upadhyay, K., Bajpai, S. (2022). Spatial variation of Physico-chemical parameters and water quality assessment of urban ponds at Raipur, Chhattisgarh, India. In IOP Conference Series: Earth and Environmental Science, 1032(1), 012034.
[41].     Jaiswal, T., Jhariya, D. C., Dewangan, R. (2023). Assessment of COVID-19 lockdown impact on surface water quality using remote sensing techniques in Raipur, Chhattisgarh, India. Water, Land, and Forest Susceptibility and Sustainability, 147-164.
[42].     Swarnkar, A. K., Bajpai, S., Ahmad, I. (2024). Study on the performance of wetlands and impact on water quality in a densely populated urban area in Amanaka, Raipur, Chhattisgarh, India. Advances in Environmental Technology, 10(1), 1-11.
[43].     Rahman, A., Jahanara, I., Jolly, Y. N. (2021). Assessment of physicochemical properties of water and their seasonal variation in an urban river in Bangladesh. Water Science and Engineering, 14(2), 139–148.
[44].     Khan, M. H. R. B., Ahsan, A., Imteaz, M., Shafiquzzaman, M., Al-Ansari, N. (2023). Evaluation of the surface water quality using global water quality index (WQI) models: Perspective of river water pollution. Scientific Reports, 13, 20454.
[45].     Gupta, S., Gupta, S. K. (2021). A critical review on water quality index tool: Genesis, evolution and future directions. Ecological Informatics, 63, 101299.
[46].    Handan Aydin, F., Ustao˘glu, F., Y.T., Soylu, E. N. (2021). Assessment of water quality of streams in northeast Turkey by water quality index and multiple statistical methods. Environmental Forensics, 22(3), 270–287.
[47].     Ustaoğlu, F., Ta¸s, B., Tepe, Y. (2020). Assessment of stream quality and health risk in a subtropical Turkey river system: A combined approach using statistical analysis and water quality index. Ecological Indicators, 113, 105815.
[48].    Das Kangabam, R., Bhoominathan, S. D., Kanagaraj, S., Govindaraju, M. (2017). Development of a water quality index (WQI) for the Loktak Lake in India. Applied Water Science, 7(6), 2907–2918.
[49].    Krishnamoorthy, N., Thirumalai, R., Sundar, M. L., Anusuya, M., Kumar, P. M., Hemalatha, E., Prasad, M. M., Munjal, N. (2023). Assessment of underground water quality and water quality index across the Noyyal River basin of Tirupur District in South India. Urban Climate, 49, 101436.
[50].    Hossain, M. S., Nahar, N., Shaibur, M. R., Bhuiyan, M. T., Siddique, A. B., Al Maruf, A., Khan, A. S. (2024). Hydro-chemical characteristics and groundwater quality evaluation in south-western region of Bangladesh: A GIS-based approach and multivariate analyses. Heliyon, 10(1).
[51].     Yaroshenko, I., Kirsanov, D., Marjanovic, M., Lieberzeit, P. A., Korostynska, O., Mason, A., Frau, I., Legin, A. (2020). Real-time water quality monitoring with chemical sensors. Sensors, 20(12), 3432.
[52].     Alkhadra, M. A., Su, X., Suss, M. E., Tian, H., Guyes, E. N., Shocron, A. N., Conforti, K. M., de Souza, J. P., Kim, N., Tedesco, M., Khoiruddin, K., Wenten, I. G., Santiago, J. G., Hatton, T. A., Bazant, M. Z. (2022). Electrochemical methods for water purification, ion separations, and energy conversion. Chemical Reviews, 122(16), 13547–13635.
[53].     Rahman, A., Dabrowski, J., McCulloch, J. (2020). Dissolved oxygen prediction in prawn ponds from a group of one-step predictors. Information Processing in Agriculture, 7(3), 307–317.
[54].     Rajendiran, T., Sabarathinam, C., Panda, B., Elumalai, V. (2023). Influence of dissolved oxygen, water level, and temperature on dissolved organic carbon in coastal groundwater. Hydrology, 10(4), 85.
[55].     Dey, S., Veerendra, G. T. N., Phani Manoj, A. V., Babu Padavala, S. S. A. (2024). Removal of chlorides and hardness from contaminated water by using various biosorbents: A comprehensive review. Water Energy Nexus, 7, 39–76.
[56].    Tirkey, S., Singh, B. P., Misra, S., Singh, P. P., Johri, T. (2024). Evaluation of Physio-chemical Properties and WQI of the Drinking Water in Urban Area of Bilaspur, Chhattisgarh, India. Asian Journal of Environment & Ecology, 23(7), 189-199.
[57].     Antony, J., Vungurala, H., Saharan, N., Reddy, A. K., Chadha, N. K., Lakra, W. S., Roy, L. A. (2015). Effects of salinity and Na+/K+ ratio on osmoregulation and growth performance of black tiger prawn, Penaeus monodon Fabricius, 1798, juveniles reared in inland saline water. Journal of the World Aquaculture Society, 46(2), 171-182.
[58].    Barzegar, G., Wu, J., Ghanbari, F. (2019). Enhanced treatment of greywater using electrocoagulation/ozonation: Investigation of process parameters. Process Safety and Environmental Protection, 121, 125-132.
[59].    Ferreira, D., Barros, M., Oliveira, C. M., da Silva, R. J. B. (2019). Quantification of the uncertainty of the visual detection of the end-point of a titration: Determination of total hardness in water. Microchemical Journal, 146, 856-863.
[60].    Bhateria, R., Jain, D. (2016). Water quality assessment of lake water: A review. Sustainable Water Resources Management, 2, 161–173.
[61].     World Health Organization (WHO). (2017). Guidelines for drinking-water quality: Fourth edition incorporating the first addendum.
[62].    Pessoa, J. O., Piccilli, D. G. A., Persch, C. G., Tassi, R., Georgin, J., Franco, D. S., de O. Salomón, Y. L. (2024). Identifying potential uses for green roof discharge based on its physical–chemical-microbiological quality. Environmental Science and Pollution Research, 31(18), 27221-27239.
[63].    Mahilang, M., Deb, M. K., Nirmalkar, J., Pervez, S. (2020). Influence of fireworks emission on aerosol aging process at lower troposphere and associated health risks in an urban region of eastern central India. Atmospheric Pollution Research, 11(7), 1127–1141.
[64].    Patil, S., Patil, B., Kadam, A., Wagh, V., Patil, A., Pimparkar, A., Karuppannan, S., Sahu, U. (2024). Nitrate and fluoride contamination in the groundwater in a tribal region of north Maharashtra, India: An account of health risks and anthropogenic influence. Groundwater for Sustainable Development, 25, 101107.
[65].    Bureau of Indian Standards (BIS). (2015). IS 10500, Indian standard drinking water specification (Amendment No. 1 June 2015 to IS 10500: 2012 Second revision). Bureau of Indian Standards, Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi, India.
[66].    World Health Organization (WHO). (2017). Guidelines for drinking-water quality: Fourth edition incorporating the first addendum.
[67].    World Health Organization (WHO). (2017). UN-Water Global Analysis and Assessment of Sanitation and Drinking-Water (GLAAS) 2017 Report: Financing Universal Water, Sanitation, and Hygiene under the Sustainable Development Goals.
[68].    American Public Health Association (APHA). (2005). Standard methods for examination of water and wastewater (21st ed.). American Public Health Association.
[69].    Uddin, M. G., Nash, S., Olbert, A. I. (2021). A review of water quality index models and their use for assessing surface water quality. Ecological Indicators, 122, 107218.
[70].    Maddah, H. A. (2022). Predicting optimum dilution factors for BOD sampling and desired dissolved oxygen for controlling organic contamination in various wastewaters. International Journal of Chemical Engineering, 2022(1), 8637064.
[71].     Zhou, X., Wang, J., Cao, X., Fan, Y., Duan, Q. (2021). Simulation of future dissolved oxygen distribution in pond culture based on sliding window-temporal convolutional network and trend surface analysis. Aquacultural Engineering, 95, 102200.
[72].     Ponce-Robles, L., Masdemont-Hernández, B., Munuera-Pérez, T., Pagán-Muñoz, A., Lara-Guillén, A. J., García-García, A. J., Pedrero-Salcedo, F., Nortes-Tortosa, P. A., Alarcón-Cabañero, J. J. (2020). WWTP effluent quality improvement for agricultural reuse using an autonomous prototype. Water, 12(8), 2240.
[73].     Zeng, J., Han, G., Wu, Q., Tang, Y. (2020). Effects of agricultural alkaline substances on reducing the rainwater acidification: Insight from chemical compositions and calcium isotopes in a karst forests area. Agriculture, Ecosystems & Environment, 290, 106782.
[74].     Bozorg-Haddad, O., Delpasand, M., Loáiciga, H. A. (2021). Water quality, hygiene, and health. In O. Bozorg-Haddad (Ed.), Economical, Political, and Social Issues in Water Resources, 217–257.