Assessing vulnerability of a solid waste management system through GIS and the Rank Sum method: A case study of Durgapur city, India

Document Type : Case Study

Author

Department of Geography, Faculty of Arts, Rajendra University, Balangir, Odisha, India

Abstract

The present study aims to assess the vulnerability of the Durgapur Municipal Corporation (DMC) in West Bengal, India, to hazards associated with solid waste through a multi-criteria analysis method integrated with Geographic Information Systems (GIS). Durgapur, a rapidly urbanizing industrial city, faces significant challenges in managing the increasing volume of waste, leading to potential threats to the environment and public health. This study employed a Rank Sum (RS) method to weigh and assign importance to eleven critical factors influencing waste hazard vulnerability. Data was collected through field surveys and existing GIS databases, focusing on 43 wards within DMC. The factors were ranked based on their importance in contributing to vulnerability, with waste collection, waste generation, and frequency of waste collection identified as the most significant. Using Weighted Overlay Analysis (WOA), vulnerability maps were prepared to identify areas within DMC that were most at risk from inadequate waste management practices. The results revealed that approximately 12.15% of Durgapur’s area, encompassing 15.19% of the population, falls under very high vulnerability zones, necessitating immediate intervention to improve waste management and reduce associated risks. The research highlights the significance of combining spatial analysis with multi-criteria decision-making techniques to identify and mitigate urban vulnerabilities. The results provide crucial insights for urban planners, policymakers, and municipal officials in developing and executing efficient waste management strategies.

Graphical Abstract

Assessing vulnerability of a solid waste management system through GIS and the Rank Sum method: A case study of Durgapur city, India

Keywords

Main Subjects


[1]    Chandel, A. S., Weto, A. E., & Bekele, D. (2024). Geospatial technology for selecting suitable sites for solid waste disposal: a case study of Shone town, central Ethiopia. Urban, Planning and Transport Research, 12(1), 2302531.
https://doi.org/10.1080/21650020.2024.2302531
[2]    Awasthi, M. K., Sarsaiya, S., Chen, H., Wang, Q., Wang, M., Awasthi, S. K., & Zhang, Z. (2019). Global status of waste-to-energy technology. In Current developments in biotechnology and bioengineering (pp. 31-52). Elsevier.
https://doi.org/10.1016/B978-0-444-64083-3.00003-8
[3]    Chen, Y. C. (2018). Effects of urbanization on municipal solid waste composition. Waste management, 79, 828-836.
https://doi.org/10.1016/j.wasman.2018.04.017
[4]    Ouda, O. K., Raza, S. A., Nizami, A. S., Rehan, M., Al-Waked, R., & Korres, N. E. (2016). Waste to energy potential: A case study of Saudi Arabia. Renewable and Sustainable Energy Reviews, 61, 328–340.
https://doi.org/10.1016/j.rser.2016.04.005
[5]    Voukkali, I., Papamichael, I., Loizia, P., & Zorpas, A. A. (2024). Urbanization and solid waste production: Prospects and challenges. Environmental Science and Pollution Research, 31(12), 17678-17689.
https://doi.org/10.1007/s11356-023-27670-2
[6]    Chandrappa, R., & Das, D. B. (2024). Waste quantities and characteristics. In Solid Waste Management: Principles and Practice (pp. 47-87). Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-031-50442-6_2
[7]    Ameen, M., Anwar-Ul-Haq, M., Sohail, M. I., Akmal, F., & Siddiqui, A. (2023). Mismanagement of Waste in Developing Countries. In Waste Problems and Management in Developing Countries (pp. 31-72). Apple Academic Press.
[8]    Mor, S., & Ravindra, K. (2023). Municipal solid waste landfills in lower-and middle-income countries: Environmental impacts, challenges and sustainable management practices. Process Safety and Environmental Protection, 174, 510-530.
https://doi.org/10.1016/j.psep.2023.04.014
[9]    Ouda, O. K., Cekirge, H. M., & Raza, S. A. (2013). An assessment of the potential contribution from waste-to-energy facilities to electricity demand in Saudi Arabia. Energy Conversion and Management, 75, 402–406.
https://doi.org/10.1016/j.enconman.2013.06.056
[10]  Sukanya, R., & Tantia, V. (2023). Urbanization and the impact on economic development. In New Perspectives and Possibilities in Strategic Management in the 21st Century: Between Tradition and Modernity (pp. 369-408). IGI Global.
https://doi.org/10.4018/978-1-6684-9261-1.ch019
[11]  Meena, M. D., Dotaniya, M. L., Meena, B. L., Rai, P. K., Antil, R. S., Meena, H. S., ... & Meena, R. B. (2023). Municipal solid waste: Opportunities, challenges and management policies in India: A review. Waste Management Bulletin, 1(1), 4-18.
https://doi.org/10.1016/j.wmb.2023.04.001
[12]  Choudhary, M., Singh, D., Parihar, M., Choudhary, K. B., Nogia, M., Samal, S. K., & Mishra, R. (2024). Impact of municipal solid waste on the environment, soil, and human health. In Waste Management for Sustainable and Restored Agricultural Soil (pp. 33-58). Academic Press.
https://doi.org/10.1016/B978-0-443-18486-4.00011-7
[13]  Sk, M. M., Ali, S. A., & Ahmad, A. (2020). Optimal sanitary landfill site selection for solid waste disposal in Durgapur city using geographic information system and multi-criteria evaluation technique. KN-Journal of Cartography and Geographic Information, 70, 163-180.
https://doi.org/10.1007/s42489-020-00052-1
[14]  Ali, S. A., Parvin, F., Al-Ansari, N., Pham, Q. B., Ahmad, A., Raj, M. S., & Thai, V. N. (2021). Sanitary landfill site selection by integrating AHP and FTOPSIS with GIS: a case study of Memari Municipality, India. Environmental Science and Pollution Research, 28, 7528-7550.
https://doi.org/10.1007/s11356-020-11004-7
[15]  Sharma, S., & Parthasarathy, D. (2018). Urban ecologies in transition: Contestations around waste in Mumbai. In J. Mukherjee (Ed.), Sustainable Urbanization in India, in Exploring Urban Change in South Asia (pp. 207–223). Singapore: Springer Singapore.
https://doi.org/10.1007/978-981-10-4932-3_11
[16]  Velpandian, T., Kumari, S., Jain, S., Gupta, P., Biswal, S., Mathur, P., & Gupta, Y. K. (2018). Un-segregated waste disposal: An alarming threat of antimicrobials in surface and groundwater sources in Delhi. Environmental Science and Pollution Research, 25(29), 29518–29528.
https://doi.org/10.1007/s11356-018-2927-9
[17]  Ghobadi, M. (2024). Environmental capability assessment for MSW landfill site using geographic information system and multi-criteria evaluation. Advances in Environmental Technology, 10(1), 29–40.
https://doi.org/10.22104/aet.2023.6210.1712
[18]  Manguri, S. B. H., Omer, B., Ahmed, A., Hamad, S., Mawlood, S., & Majid, A. (2024). Optimization of municipal solid waste landfill site selection by geospatial analysis in the Ranya District of Iraq. Advances in Environmental Technology, 10(3), 218–236.
https://doi.org/10.22104/aet.2024.6676.1823 
[19]  Sk, M. M., Qamar, S., & Sethy, T. (2023). Solid Waste Management In Indian Perspectives: A Comprehensive Review. Humanities and Social Science Studie, 12(1), 35-45.
https://www.researchgate.net/publication/373737929
[20]  Sk, M. M. (2023). Spatial Analysis of Solid Waste Generation Patterns In A Fast-Growing Industrial City-Durgapur, India. Journal of Emerging Technologies and Innovative Research, 10(7), e245-253.
https://www.researchgate.net/publication/373173198
[21]  Banerjee, U. S., & Gupta, S. (2013). Impact of industrial waste effluents on river Damodar adjacent to Durgapur industrial complex, West Bengal, India. Environmental Monitoring and Assessment, 185(3), 2083–2094.
https://doi.org/10.1007/s10661-012-2690-1
[22]  Tsatsaris, A., Kalogeropoulos, K., Stathopoulos, N., Louka, P., Tsanakas, K., Tsesmelis, D. E., & Chalkias, C. (2021). Geoinformation technologies in support of environmental hazards monitoring under climate change: An extensive review. ISPRS International Journal of Geo-Information, 10(2), 94.
https://doi.org/10.3390/ijgi10020094
[23]  Daud, M., Ugliotti, F. M., & Osello, A. (2024). Comprehensive analysis of the use of Web-GIS for natural hazard management: A systematic review. Sustainability, 16(10), 4238.
https://doi.org/10.3390/su16104238
[24]  Ali, S. A., Khatun, R., Ahmad, A., & Ahmad, S. N. (2020). Assessment of cyclone vulnerability, hazard evaluation and mitigation capacity for analyzing cyclone risk using GIS technique: A study on Sundarban biosphere reserve, India. Earth Systems and Environment, 4, 71-92.
https://doi.org/10.1007/s41748-019-00140-x
[25]  Bilgilioglu, S. S., Gezgin, C., Orhan, O., & Karakus, P. (2022). A GIS-based multi-criteria decision-making method for the selection of potential municipal solid waste disposal sites in Mersin, Turkey. Environmental Science and Pollution Research, 1-17.
https://doi.org/10.1007/s11356-021-15859-2
[26]  Parvin, F., Ali, S. A., Calka, B., Bielecka, E., Linh, N. T. T., & Pham, Q. B. (2022). Urban flood vulnerability assessment in a densely urbanized city using multi-factor analysis and machine learning algorithms. Theoretical and Applied Climatology, 149(1), 639-659.
https://doi.org/10.1007/s00704-022-04068-7
[27]  Chisty, M. A., & Rahman, M. M. (2020). Coping capacity assessment of urban fire disaster: An exploratory study on ward no: 30 of Old Dhaka area. International Journal of Disaster Risk Reduction, 51, 101878.
https://doi.org/10.1016/j.ijdrr.2020.101878
[28]  Mihai, F. C., Gündoğdu, S., Markley, L. A., Olivelli, A., Khan, F. R., Gwinnett, C., & Molinos-Senante, M. (2021). Plastic pollution, waste management issues, and circular economy opportunities in rural communities. Sustainability, 14(1), 20.
https://doi.org/10.3390/su14010020
[29]  Diaz-Sarachaga, J. M., & Jato-Espino, D. (2020). Analysis of vulnerability assessment frameworks and methodologies in urban areas. Natural Hazards, 100(1), 437-457.
https://doi.org/10.1007/s11069-019-03805-y
[30]  Shockley, K. (2023). Two faces of vulnerability: Distinguishing susceptibility to harm and system resilience in climate adaptation. Wiley Interdisciplinary Reviews: Climate Change, 14(6), e856.
https://doi.org/10.1002/wcc.856
[31]  Shah, M. A. R., Renaud, F. G., Anderson, C. C., Wild, A., Domeneghetti, A., Polderman, A., & Zixuan, W. (2020). A review of hydro-meteorological hazard, vulnerability, and risk assessment frameworks and indicators in the context of nature-based solutions. International journal of disaster risk reduction, 50, 101728.
https://doi.org/10.1016/j.ijdrr.2020.101728
[32]  Asfaw, H., Karuppannan, S., Erduno, T., Almohamad, H., Dughairi, A. A. A., Al-Mutiry, M., & Abdo, H. G. (2022). Evaluation of vulnerability status of the infection risk to COVID-19 using geographic information systems (GIS) and multi-criteria decision analysis (MCDA): a case study of Addis Ababa City, Ethiopia. International Journal of Environmental Research and Public Health, 19(13), 7811.
https://doi.org/10.3390/ijerph19137811
[33]  Bhuyan, M. J., Deka, N., & Saikia, A. (2024). Micro‐spatial flood risk assessment in Nagaon district, Assam (India) using GIS‐based multi‐criteria decision analysis (MCDA) and analytical hierarchy process (AHP). Risk Analysis, 44(4), 817-832.
https://doi.org/10.1111/risa.14191
[34]  Duan, C., Zhang, J., Chen, Y., Lang, Q., Zhang, Y., Wu, C., & Zhang, Z. (2022). Comprehensive risk assessment of urban waterlogging disaster based on MCDA-GIS integration: The case study of Changchun, China. Remote Sensing, 14(13), 3101.
https://doi.org/10.3390/rs14133101
[35]  Cinelli, M., Kadziński, M., Miebs, G., Gonzalez, M., & Słowiński, R. (2022). Recommending multiple criteria decision analysis methods with a new taxonomy-based decision support system. European Journal of Operational Research, 302(2), 633-651.
https://doi.org/10.1016/j.ejor.2022.01.011
[36]  Basílio, M. P., Pereira, V., Costa, H. G., Santos, M., & Ghosh, A. (2022). A systematic review of the applications of multi-criteria decision aid methods (1977–2022). Electronics, 11(11), 1720.
https://doi.org/10.3390/electronics11111720
[37]  Beaudrie, C., Corbett, C. J., Lewandowski, T. A., Malloy, T., & Zhou, X. (2021). Evaluating the application of decision analysis methods in simulated alternatives assessment case studies: Potential benefits and challenges of using MCDA. Integrated environmental assessment and management, 17(1), 27-41.
https://doi.org/10.1002/ieam.4316
[38]  Ustaoglu, E., Sisman, S., & Aydınoglu, A. C. (2021). Determining agricultural suitable land in peri-urban geography using GIS and Multi Criteria Decision Analysis (MCDA) techniques. Ecological Modelling, 455, 109610.
https://doi.org/10.1016/j.ecolmodel.2021.109610
[39]  Hatefi, M. A. (2024). A new method for weighting decision making attributes: an application in high-tech selection in oil and gas industry. Soft Computing, 28(1), 281-303.
https://doi.org/10.1007/s00500-023-09282-7
[40]  Zardari, N. H., Ahmed, K., Shirazi, S. M., & Yusop, Z. B. (2014). Weighting methods and their effects on multi-criteria decision making model outcomes in water resources management. Springer.
https://doi.org/10.1007/978-3-319-12586-2
[41]  Ding, Y., Fu, Y., Lai, K. K., & Leung, W. K. J. (2018). Using ranked weights and acceptability analysis to construct composite indicators: A case study of Regional Sustainable Society Index. Social Indicators Research, 139(3), 871–885.
https://doi.org/10.1007/s11205-017-1765-3
[42]  Kumar, R., Khaira, J. K., Ahmed, R., Devrani, R., & Deshmukh, B. (2024). Land degradation vulnerability mapping using geospatial techniques: a case study of Nandakini River basin, NW Himalaya, India. International Journal of River Basin Management, 1-16.
https://doi.org/10.1080/15715124.2024.2396141
[43]  Iacoboaea, C., Luca, O., Șercăianu, M., Aldea, M., Păunescu, M., & Popescu, A. L. (2024). Towards Sustainable Modes for Remote Monitoring in Waste Management: A Study of Marginalized Urban Areas in Romania. Sustainability, 16(6), 2400.
https://doi.org/10.3390/su16062400
[44]  Mainul, S. K., Ahmad, A., & Ali, S. A. (2019). Integrating public-private participation for sustainable solid waste management in Durgapur City: West Bengal. The Geographer, 66(2), 57-66.
[45]  Bhattarai, K., Conway, D., Bhattarai, K., & Conway, D. (2021). Urban growth. Contemporary Environmental Problems in Nepal: Geographic Perspectives, 201-334.
https://doi.org/10.1007/978-3-030-50168-6_4
[46]  Abubakar, I. R., Maniruzzaman, K. M., Dano, U. L., AlShihri, F. S., AlShammari, M. S., Ahmed, S. M. S., & Alrawaf, T. I. (2022). Environmental sustainability impacts of solid waste management practices in the global South. International journal of environmental research and public health, 19(19), 12717. 
https://doi.org/10.3390/ijerph191912717
[47]  Zambrano-Monserrate, M. A., Ruano, M. A., & Ormeño-Candelario, V. (2021). Determinants of municipal solid waste: a global analysis by countries’ income level. Environmental Science and Pollution Research, 28, 62421-62430.
https://doi.org/10.1007/s11356-021-15167-9
[48]  Araiza-Aguilar, J. A., Rojas-Valencia, M. N., & Aguilar-Vera, R. A. (2020). Forecast generation model of municipal solid waste using multiple linear regression. Global Journal of Environmental Science and Management, 6(1), 1-14.
https://doi.org/10.22034/GJESM.2020.01.01
[49]  de Titto, E., & Savino, A. (2024). Human Health Impact of Municipal Solid Waste Mismanagement: A Review. Advances in Environmental and Engineering Research, 5(2), 1-37.
http://dx.doi.org/10.21926/aeer.2402014
[50]  Debrah, J. K., Vidal, D. G., & Dinis, M. A. P. (2021). Raising awareness on solid waste management through formal education for sustainability: A developing countries evidence review. Recycling, 6(1), 6. 
https://doi.org/10.3390/recycling6010006
[51]  Salem, M., Raab, K., & Wagner, R. (2020). Solid waste management: The disposal behavior of poor people living in Gaza Strip refugee camps. Resources, Conservation and Recycling, 153, 104550.
https://doi.org/10.1016/j.resconrec.2019.104550
[52]  Akmal, T., & Jamil, F. (2021). Assessing health damages from improper disposal of solid waste in metropolitan Islamabad–Rawalpindi, Pakistan. Sustainability, 13(5), 2717. 
https://doi.org/10.3390/su13052717
[53]  Olukanni, D. O., Pius-Imue, F. B., & Joseph, S. O. (2020). Public perception of solid waste management practices in Nigeria: Ogun State experience. Recycling, 5(2), 8.
https://doi.org/10.3390/recycling5020008
[54]  kwun Omang, D. I., John, G. E., Inah, S. A., & Bisong, J. O. (2021). Public health implication of solid waste generated by households in Bekwarra Local Government area. African Health Sciences, 21(3), 1467-1473.
https://doi.org/10.4314/ahs.v21i3.58
[55]  Siddiqua, A., Hahladakis, J. N., & Al-Attiya, W. A. K. (2022). An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environmental Science and Pollution Research, 29(39), 58514-58536. 
https://doi.org/10.1007/s11356-022-21578-z
[56]  Domenico, B., Alice, D. P. B., Lorenza, L., La Torre, G., Cocchiara, R. A., Sestili, C., ... & La Torre, G. (2022). The impact of environmental alterations on human microbiota and infectious diseases. In Environmental Alteration Leads to Human Disease: A Planetary Health Approach (pp. 209-227). Cham: Springer International Publishing. 
https://doi.org/10.1007/978-3-030-83160-8_10
[57]  Vinti, G., Bauza, V., Clasen, T., Medlicott, K., Tudor, T., Zurbrügg, C., & Vaccari, M. (2021). Municipal solid waste management and adverse health outcomes: A systematic review. International journal of environmental research and public health, 18(8), 4331.
https://doi.org/10.3390/ijerph18084331
[58]  Chavan, D., Arya, S., & Kumar, S. (2022). Open dumping of organic waste: Associated fire, environmental pollution and health hazards. In Advanced organic waste management (pp. 15-31). Elsevier.
https://doi.org/10.1016/B978-0-323-85792-5.00014-9
[59]  Mainul, S. (2019). Challenges in the management of single-use plastic carrier bags in Aligarh City: A study on sellers and consumer attitude. International Journal of Research in Social Sciences, 9(7), 732-750.
https://www.researchgate.net/profile/Md-Sk-7/publication/372440858
[60]  Shahab, S., & Anjum, M. (2022). Solid waste management scenario in india and illegal dump detection using deep learning: an AI approach towards the sustainable waste management. Sustainability, 14(23), 15896.
https://doi.org/10.3390/su142315896
[61]  Jasrotia, A., & Soloman, P. E. (2021). Environment Hazards from Municipal Solid Waste of Urban Space: A Global Perspective. Urban Growth and Environmental Issues in India, 269-286.
https://doi.org/10.1007/978-981-16-4273-9_17
[62]  Keshava, D. S. (2006). Urbanization and Solid Waste Management in Bangalore: Growth, Options and Challenges. Keshava SR (2006),“Urbanization and solid waste management in Bangalore: growth option and challenges” in Environmental Issues of Development, edit, Ganesh Kawadia and Kanhaiya Ahuja, 225-241. The Associated Publishers, New Delhi, ISBN 81-8429-038-1.
[63]  Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2012). Social vulnerability to environmental hazards. In Hazards vulnerability and environmental justice (pp. 143-160). Routledge.
https://dx.doi.org/10.2139/ssrn.4338413
[64]  Stillwell, W. G., Seaver, D. A., & Edwards, W. (1981). A comparison of weight approximation techniques in multiattribute utility decision making. Organizational behavior and human performance, 28(1), 62-77.
https://doi.org/10.1016/0030-5073(81)90015-5
[65]  Hwang, C. L., & Lin, M. J. (2012). Group decision making under multiple criteria: methods and applications (Vol. 281). Springer Science & Business Media.
[66]  Malczewski, J. (2006). GIS‐based multicriteria decision analysis: a survey of the literature. International journal of geographical information science, 20(7), 703-726.
https://doi.org/10.1080/13658810600661508
[67]  Sureeyatanapas, P. (2016). Comparison of rank-based weighting methods for multi-criteria decision making. Engineering and Applied Science Research, 43, 376-379.
https://ph01.tci-thaijo.org/index.php/easr/article/view/70803
[68]  Saeid, M., Abd Ghani, A. A., & Selamat, H. (2008). Rank-order weighting of web attributes for website evaluation (Doctoral dissertation, Universiti Putra Malaysia).
https://core.ac.uk/download/pdf/42994132.pdf
[69]  Solymosi, T., & Dombi, J. (1986). A method for determining the weights of criteria: the centralized weights. European journal of operational research, 26(1), 35-41.
https://doi.org/10.1016/0377-2217(86)90157-8
[70]  Barron, F. H., & Barrett, B. E. (1996). Decision quality using ranked attribute weights. Management science, 42(11), 1515-1523.
https://doi.org/10.1287/mnsc.42.11.1515
[71]  Youn, S., Ahn, J. H., & Park, K. (2008, April). Entrance detection of a moving object using intensity average variation of subtraction images. In 2008 International Conference on Smart Manufacturing Application (pp. 459-464). IEEE.
https://doi.org/10.1109/ICSMA.2008.4505600
[72]  Rassem, H. H., Nour, A. H., & Yunus, R. M. (2016). Techniques for extraction of essential oils from plants: a review. Australian Journal of Basic and Applied Sciences, 10(16), 117-127.
https://www.ajbasweb.com/old/ajbas/2016/November/117-127.pdf
[73]  Zeleňáková, M., Gaňová, L., & Kuzevičová, Ž. (2011). Using ranking method and geographical information system for evaluation flood vulnerable areas in eastern Slovakia. Journal of Landscape Management, 2(2), 21-25.
[74]  Roszkowska, E. (2013). Rank ordering criteria weighting methods–a comparative overview. Optimum. Studia Ekonomiczne, 5 (65), 14-33.
https://doi.org/10.15290/ose.2013.05.65.02
[75]  Xiao, Y., Yi, S., & Tang, Z. (2017). Integrated flood hazard assessment based on spatial ordered weighted averaging method considering spatial heterogeneity of risk preference. Science of the Total Environment, 599–600, 1034–1046.
https://doi.org/10.1016/j.scitotenv.2017.04.218