[1] Dartoomi, H., Khatibi, M., & Ashrafizadeh, S. N. (2022a). Importance of nanochannels shape on blue energy generation in softnanochannels. Electrochimica Acta,431,141175.
[2] Dartoomi, H., Khatibi, M., & Ashrafizadeh, S. N. (2022b). Nanofluidic membranes to address the challenges of salinity gradient energy harvesting: roles of nanochannel geometry and bipolar soft layer. Langmuir,38(33),10313-10330.
[3] Karimzadeh, M., Khatibi, M., Ashrafizadeh, S. N., & Mondal, P. K. (2022). Blue energy generation by the temperature-dependent properties in funnel-shaped soft nanochannels. Physical Chemistry Chemical Physics, 24(34), 20303-20317.
[4] Khatibi, M., Ashrafizadeh, S. N., & Sadeghi, A. (2021). Augmentation of the reverse electrodialysis power generation in soft nanochannels via tailoring the soft layer properties. Electrochimica Acta, 395, 139221.
[5] Khatibi, M., Mojavezi, A., & Pourjafarabadi, E. (2023). Harvesting blue energy: pH-regulated nanochannels inspired by carbon nanostructures. Physics of Fluids, 35(10).
[6] Khatibi, M., Dartoomi, H., & Ashrafizadeh, S. N. (2023). Layer-by-layer nanofluidic membranes for promoting blue energy conversion. Langmuir, 39(38), 13717-13734.
[7] Khatibi, M., Sadeghi, A., & Ashrafizadeh, S. N. (2021). Tripling the reverse electrodialysis power generation in conical nanochannels utilizing soft surfaces. Physical Chemistry Chemical Physics, 23(3), 2211-2221.
[8] Mishra, S., Kumar, R., & Kumar, M. (2023). Use of treated sewage or wastewater as an irrigation water for agricultural purposes- Environmental, health, and economic impacts. Total Environment Research Themes,6,100051.
[9] Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., & Oh, S. E. (2015). Microbial fuel cell as new technol ogy for bioelectricity generation: A review. Alexandria Engineering Journal, 54(3), 745–756.
[10] Saravanan, A., Kumar, P. S., Srinivasan, S., Jeevanantham, S., Kamalesh, R., & Karishma, S. (2022). Sustainable strategy on microbial fuel cell to treat the wastewater for the production of green energy. Chemosphere, 290, 133295.
[11] Ye, Y., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Liu, Y., Nghiem, L. D., Zhang, X., & Wang, J. (2019). Effect of organic loading rate on the recovery of nutrients and energy in a dual-chamber microbial fuel cell. Bioresource Technology, 281, 367–373.
[12] Shabani, M., Younesi, H., Pontié, M., Rahimpour, A., Rahimnejad, M., & Zinatizadeh, A. A. (2020). A critical review on recent proton exchange membranes applied in microbial fuel cells for renewable energy recovery. Journal of cleaner production, 264, 121446.
[13] Obileke, K. C., Onyeaka, H., Meyer, E. L., & Nwokolo, N. (2021a). Microbial fuel cells, a renewable energy technology for bio-electricity generation: A mini-review. Electrochemistry Communications, 125, 107003.
[14] Mehri, F., & Rowshanzamir, S. (2019). Electrochemical hydrogenation and desulfurization of thiophenic compounds over MoS2 electrocatalyst using different membrane-electrode assembly. Advances in Environmental Technology, 5(1), 23-33.
[15] Prathiba, S., Kumar, P. S., & Vo, D. V. N. (2022). Recent advancements in microbial fuel cells: A review on its electron transfer mechanisms, microbial community, types of substrates and design for bio-electrochemical treatment. Chemosphere, 286, 131856.
[16] Neethu, B., Bhowmick, G. D., & Ghangrekar, M. M. (2019). A novel proton exchange membrane developed from clay and activated carbon derived from coconut shell for application in microbial fuel cell. Biochemical Engineering Journal, 148, 170-177.
[17] Nawaz, A., ul Haq, I., Qaisar, K., Gunes, B., Raja, S. I., Mohyuddin, K., & Amin, H. (2022). Microbial fuel cells: Insight into simultaneous wastewater treatment and bioelectricity generation. Process Safety and Environmental Protection, 161, 357–373.
[18] Singh, K., & Dharmendra. (2020). Optimization and performance evaluation of microbial fuel cell by varying agar concentration using different salts in salt bridge medium. Archives of Materials Science and Engineering, 101(2), 79–84.
[19] Hu, X., Tan, X., Shi, X., Liu, W., & Ouyang, T. (2023). An integrated assessment of microfluidic microbial fuel cell subjected to vibration excitation. Applied Energy, 336, 120852.
[20] Zhao, K., Shu, Y., Li, F., & Peng, G. (2023). Bimetallic catalysts as electrocatalytic cathode materials for the oxygen reduction reaction in microbial fuel cell: A review. Green Energy & Environment, 8(4), 1043-1070.
[21] Arun, J., SundarRajan, P., Pavithra, K. G., Priyadharsini, P., Shyam, S., Goutham, R., ... & Pugazhendhi, A. (2024). New insights into microbial electrolysis cells (MEC) and microbial fuel cells (MFC) for simultaneous wastewater treatment and green fuel (hydrogen) generation. Fuel, 355, 129530.
[22] ter Heijne, A., Hamelers, H. V. M., Saakes, M., & Buisman, C. J. N. (2008). Performance of non-porous graphite and titanium-based anodes in microbial fuel cells. Electrochimica Acta, 53(18), 5697–5703.
[23] Asensio, Y., Montes, I. B., Fernandez-Marchante, C. M., Lobato, J., Cañizares, P., & Rodrigo, M. A. (2017). Selection of cheap electrodes for two-compartment microbial fuel cells. Journal of Electroanalytical Chemistry, 785, 235-240.
[24] Yaqoob, A. A., Ibrahim, M. N. M., & Rodríguez-Couto, S. (2020). Development and modification of materials to build cost-effective anodes for microbial fuel cells (MFCs): An overview. Biochemical Engineering Journal, 164, 107779.
[25] Zhang, F., Cheng, S., Pant, D., Bogaert, G. Van, & Logan, B. E. (2009). Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochemistry Communications, 11(11), 2177–2179.
[26] Arena, N., Lee, J., & Clift, R. (2016). Life Cycle Assessment of activated carbon production from coconut shells. Journal of Cleaner Production, 125, 68-77.
[27] Gajda, I., Greenman, J., & Ieropoulos, I. (2020). Microbial Fuel Cell stack performance enhancement through carbon veil anode modification with activated carbon powder. Applied Energy, 262, 114475.
[28] Matsena, M. T., Mabuse, M., Tichapondwa, S. M., & Chirwa, E. M. N. (2021). Improved performance and cost efficiency by surface area optimization of granular activated carbon in air-cathode microbial fuel cell. Chemosphere, 281, 130941.
[29] Wei, B., Tokash, J. C., Chen, G., Hickner, M. A., & Logan, B. E. (2012). Development and evaluation of carbon and binder loading in low-cost activated carbon cathodes for air-cathode microbial fuel cells. RSC Advances, 2(33), 12751–12758.
[30] Chien, H. C., Tsai, L. D., Lai, C. M., Lin, J. N., Zhu, C. Y., & Chang, F. C. (2013). Characteristics of high-water-uptake activated carbon/Nafion hybrid membranes for proton exchange membrane fuel cells. Journal of Power Sources, 226, 87–93.
[31] Tsai, L. D., Chien, H. C., Wang, C. H., Lai, C. M., Lin, J. N., Zhu, C. Y., & Chang, F. C. (2013). Poly(ethylene glycol) modified activated carbon for high performance proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 38(26), 11331–11339.
[32] Kammoun, M., Lundquist, L., & Ardebili, H. (2015). High proton conductivity membrane with coconut shell activated carbon. Ionics, 21(6), 1665–1674.
[33] Ayrilmis, N., Buyuksari, U., & Dundar, T. (2010). Waste pine cones as a source of reinforcing fillers for thermoplastic composites. Journal of Applied Polymer Science, 117(4), 2324–2330.
[34] Duman, G., Onal, Y., Okutucu, C., Onenc, S., & Yanik, J. (2009). Production of Activated Carbon from Pine Cone and Evaluation of Its Physical, Chemical, and Adsorption Properties. Energy and Fuels, 23(4), 2197–2204.
[35] Uddin, S. S., Prodhan, M. M. H., & Nurnabi, M. (2024). Studies on agar salt bridge based dual chamber microbial fuel cells using sludge and dustbin waste. Biomass Conversion and Biorefinery, 1-9.
[36] Chen, X., Fu, X., Huang, L., Xu, J., & Gao, X. (2021). Agar oligosaccharides: A review of preparation, structures, bioactivities and application. Carbohydrate Polymers, 265, 118076.
[37] Aguiar, J. B. (1999). Durability of polymeric pipes in contact with domestic products. Construction and Building Materials, 13(3), 155–157.
[38] Heidari Farsani, M., Jalilzadeh Yengejeh, R., Hajiseyed Mirzahosseini, A., Monavari, M., Hassani, A. H., & Mengelizadeh, N. (2021). Study of the performance of bench-scale electro-membranes bioreactor in leachate treatment. Advances in Environmental Technology, 7(3), 209-220.
[39] Ghasemi, M., Shahgaldi, S., Ismail, M., Yaakob, Z., & Daud, W. R. W. (2012). New generation of carbon nanocomposite proton exchange membranes in microbial fuel cell systems. Chemical Engineering Journal, 184, 82-89.
[40] Chen, W., Liu, Z., Li, Y., Xing, X., Liao, Q., & Zhu, X. (2021). Improved electricity generation, coulombic efficiency and microbial community structure of microbial fuel cells using sodium citrate as an effective additive. Journal of Power Sources, 482, 228947.
[41] Qazani, M. R. C., Ghasemi, M., & Asadi, H. (2024). Optimizing microbial fuel cells with multiple-objectives PSO and type-2 fuzzy neural networks. Fuel, 372, 132090.
[42] Huang, L., Regan, J. M., & Quan, X. (2011). Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresource Technology, 102(1), 316–323.
[43] Hernández-Flores, G., Andrio, A., Compañ, V., Solorza-Feria, O., & Poggi-Varaldo, H. M. (2019). Synthesis and characterization of organic agar-based membranes for microbial fuel cells. Journal of Power Sources, 435, 226772.
[44] Yi, H., Nevin, K. P., Kim, B. C., Franks, A. E., Klimes, A., Tender, L. M., & Lovley, D. R. (2009). Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosensors and Bioelectronics, 24(12), 3498–3503.
[45] Obileke, K. C., Onyeaka, H., Meyer, E. L., & Nwokolo, N. (2021b). Microbial fuel cells, a renewable energy technology for bio-electricity generation: A mini-review. Electrochemistry Communications, 125, 107003.