[1] Moghadam, H. and Samimi, M. (2022). Effect of condenser geometrical feature on evacuated tube collector basin solar still performance: productivity optimization using a Box-Behnken design model. Desalination, 542116092.
https://doi.org/10.1016/j.desal.2022.116092
[2] Samimi, M. and Moghadam, H. (2024). Investigation of structural parameters for inclined weir-type solar stills. Renewable and Sustainable Energy Reviews, 190113969.
https://doi.org/10.1016/j.rser.2023.113969
[3] Samimi, M. (2024). Efficient biosorption of cadmium by Eucalyptus globulus fruit biomass using process parameters optimization. Global Journal of Environmental Science and Management, 10(1), 27-38.
https://doi.org/10.22034/gjesm.2024.01.03
[4] Qasem, N.A.A., Mohammed, R.H., and Lawal, D.U. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. npj Clean Water 4:361-15.
https://doi.org/10.1038/s41545-021-00127-0
[5] Wang, K., Tian, Z., and Yin, N. (2018). Significantly enhancing Cu (II) adsorption onto Zr-MOFs through Novel cross-flow disturbance of ceramic membrane. Industrial & Engineering Chemistry Research 1-32.
https://doi.org/10.1021/acs.iecr.7b04850
[6] Liu, B., Kim, K. H., Kumar, V., & Kim, S. (2020). A review of functional sorbents for adsorptive removal of arsenic ions in aqueous systems. Journal of hazardous materials, 388, 121815.
https://doi.org/10.1016/j.jhazmat.2019.121815
[7] Levio-Raiman, M., Briceño, G., Schalchli, H., Bornhardt, C., & Diez, M. C. (2021). Alternative treatment for metal ions removal from acid mine drainage using an organic biomixture as a low cost adsorbent. Environmental Technology & Innovation, 24, 101853.
https://doi.org/10.1016/j.eti.2021.101853
[8] Simate, G.S. and Ndlovu, S. (2014). Acid mine drainage: Challenges and opportunities. Journal of Environmental Chemical Engineering, 1785-1803.
https://doi.org/10.1016/j.jece.2014.07.021
[9] Tong, L., Fan, R., Yang, S., & Li, C. (2021). Development and status of the treatment technology for acid mine drainage. Mining, Metallurgy & Exploration, 38, 315-327.
https://doi.org/10.1007/s42461-020-00298-3
[10] Asghar, A., Bello, M. M., & Raman, A. A. A. (2021). Metal‐organic frameworks for heavy metal removal. Applied Water Science: Remediation Technologies, 2, 321-356.
https://doi.org/10.1002/9781119725282.ch9
[11] Türksoy, R., Terzioğlu, G., Yalçın, İ. E., Türksoy, Ö., & Demir, G. (2021). Removal of heavy metals from textile industry wastewater. Frontiers in Life Sciences and Related Technologies, 2(2), 44-50.
https://doi.org/10.51753/flsrt.958165
[12] Azanaw, A., Birlie, B., Teshome, B., & Jemberie, M. (2022). Textile effluent treatment methods and eco-friendly resolution of textile wastewater. Case Studies in Chemical and Environmental Engineering, 6, 100230.
https://doi.org/10.1016/j.cscee.2022.100230
[13] Hansen, E., Aquim, P.M.d., and Gutterres, M. (2021). Current technologies for post-tanning wastewater treatment: A review Journal of Environmental Management, 294113003.
https://doi.org/10.1016/j.jenvman.2021.113003
[14] Zhao, J., Wu, Q., Tang, Y., Zhou, J., & Guo, H. (2022). Tannery wastewater treatment: conventional and promising processes, an updated 20-year review. Journal of Leather Science and Engineering, 4(1), 10.
https://doi.org/10.1186/s42825-022-00082-7
[15] Navin, P.K., Kumar, S., and Mathur, M. (2018). Textile wastewater treatment: a critical review. International Journal of Engineering Research & Technology, 6(11), 1-7.
https://doi.org/ 10.17577/IJERTCONV6IS11015
[16] Samimi, M. and Shahriari-Moghadam, M. (2023). The Lantana camara L. stem biomass as an inexpensive and efficient biosorbent for the adsorptive removal of malachite green from aquatic environments: kinetics, equilibrium and thermodynamic studies. International Journal of Phytoremediation, 25(10), 1328-1336.
https://doi.org/10.1080/15226514.2022.2156978
[17] Zhang, S., Wang, J., Zhang, Y., Ma, J., Huang, L., Yu, S., ... & Wang, X. (2021). Applications of water-stable metal-organic frameworks in the removal of water pollutants: A review. Environmental Pollution, 291, 118076.
https://doi.org/10.1016/j.envpol.2021.118076
[18] Samimi, M. and Nouri, J. (2023). Optimized Zinc Uptake from the Aquatic Environment Using Biomass Derived from Lantana Camara L. Stem. Pollution, 9(4), 1925-1934.
https://doi.org/10.22059/poll.2023.363363.2014
[19] Kastury, F., Besedin, J., Betts, A. R., Asamoah, R., Herde, C., Netherway, P., ... & Juhasz, A. L. (2024). Arsenic, cadmium, lead, antimony bioaccessibility and relative bioavailability in legacy gold mining waste. Journal of hazardous materials, 469, 133948.
https://doi.org/10.1016/j.jhazmat.2024.133948
[20] Zhou, S., Hursthouse, A., and Chen, T. (2019). Pollution Characteristics of Sb, As, Hg, Pb, Cd, and Zn in Soils from Different Zones of Xikuangshan Antimony Mine. Journal of Analytical Methods in Chemistry, 21-9.
https://doi.org/10.1155/2019/2754385
[21] Mansoorianfar, M., Nabipour, H., Pahlevani, F., Zhao, Y., Hussain, Z., Hojjati-Najafabadi, A., ... & Pei, R. (2022). Recent progress on adsorption of cadmium ions from water systems using metal-organic frameworks (MOFs) as an efficient class of porous materials. Environmental Research, 214, 114113.
https://doi.org/10.1016/j.envres.2022.114113
[22] Mirshrkari, S., Shojaei, V., and Khoshdast, H. (2022). Adsorptive Study of Cadmium Removal from Aqueous Solution Using a Coal Waste Loaded with Fe3O4 Nanoparticles. International Journal of Mining, Reclamation and Environment, 13527-545.
https://doi.org/10.22044/jme.2022.11796.2174
[23] Abdel-Magied, A. F., Abdelhamid, H. N., Ashour, R. M., Fu, L., Dowaidar, M., Xia, W., & Forsberg, K. (2022). Magnetic metal-organic frameworks for efficient removal of cadmium (II), and lead (II) from aqueous solution. Journal of Environmental Chemical Engineering, 10(3), 107467.
https://doi.org/10.1016/j.jece.2022.107467
[24] He, X., Min, X., and Luo, X. (2017). Efficient Removal of Antimony (III, V) from Contaminated Water by Amino Modification of a Zirconium Metal−Organic Framework with Mechanism Study. Journal of Chemical & Engineering Data, 62 1519-1529.
https://doi.org/10.1021/acs.jced.7b00010
[25] Bolisetty, S., Peydayesh, M., and Mezzeng, R. (2019). Sustainable technologies for water purification from heavy metals: review and analysis. Chemical Society Reviews, 48463-487.
https://doi.org/10.1039/c8cs00493e
[26] Kumar, V. and Dwivedi, S.K. (2021). Mycoremediation of heavy metals: processes, mechanisms, and affecting factors. RSC Advances, 2810375-10412.
https://doi.org/10.1007/s11356-020-11491-8
[27] Samimi, M., Mohammadzadeh, E., and Mohammadzadeh, A. (2023). Rate enhancement of plant growth using Ormus solution: optimization of operating factors by response surface methodology. International Journal of Phytoremediation, 25(12), 1636–1642.
https://doi.org/10.1080/15226514.2023.2179014
[28] Arora, R. (2019). Adsorption of Heavy Metals–A Review. Materials Today, 184745-4750.
https://doi.org/10.1016/j.matpr.2019.07.462
[29] El-Sheikh, A. H., Alahmad, F. A., Sunjuk, M. S., & Al-Hashimi, N. N. (2022). Cd (II) removal from phenols-bearing wastewater using magnetic carbon nanotubes. Emerging Contaminants, 8, 400-410.
https://doi.org/10.1016/j.emcon.2022.11.001
[30] Jadoun, S., Fuentes, J. P., Urbano, B. F., & Yáñez, J. (2023). A review on adsorption of heavy metals from wastewater using conducting polymer-based materials. Journal of Environmental Chemical Engineering, 11(1), 109226.
https://doi.org/10.1016/j.jece.2022.109226
[31] Moghadam, H., Zakeri, M., and Samimi, A. (2019). Optimization of calcium alginate beads production by electrospray using response surface methodology. Materials Research Express 6
https://doi.org/10.1088/2053-1591/ab3377
[32] Wang, Y. Y., Ji, H. Y., Lu, H. H., Liu, Y. X., Yang, R. Q., He, L. L., & Yang, S. M. (2018). Simultaneous removal of Sb (III) and Cd (II) in water by adsorption onto a MnFe 2 O 4–biochar nanocomposite. RSC advances, 8(6), 3264-3273.
https://doi.org/10.1039/C7RA13151H
[33] Moghadam, H., Samimi, A., and Behzadmehr, A. (2013). Effect of Nanoporous Anodic Aluminum Oxide (AAO) Characteristics On Solar Absorptivity. Challenges in Nano and Micro Scale Science and Technology, 1(2), 110-116.
https://doi.org/10.7508/tpnms.2013.02.004
[34] Karnib, M., Kabbani, A., Holail, H., & Olama, Z. (2014). Heavy metals removal using activated carbon, silica and silica activated carbon composite. Energy Procedia, 50, 113-120.
https://doi.org/10.1016/j.egypro.2014.06.014
[35] Ehzari, H., Amiri, M., Safari, M., & Samimi, M. (2022). Zn-based metal-organic frameworks and p-aminobenzoic acid for electrochemical sensing of copper ions in milk and milk powder samples. International Journal of Environmental Analytical Chemistry, 102(16), 4364-4377.
https://doi.org/10.1080/03067319.2020.1784410
[36] Kaur, H., Devi, N., Siwal, S. S., Alsanie, W. F., Thakur, M. K., & Thakur, V. K. (2023). Metal–organic framework-based materials for wastewater treatment: superior adsorbent materials for the removal of hazardous pollutants. ACS omega, 8(10), 9004-9030.
https://doi.org/10.1021/acsomega.2c07719
[37] Jian, X. and He, B.X. (2019). Recent advances about metal-organic frameworks in the removal of pollutants from wastewater. Coordination Chemistry Reviews, 37817-31.
https://doi.org/10.1016/j.ccr.2018.03.015
[38] Ehzari, H., Safari, M., and Samimi, M. (2021). Signal amplification of novel sandwich-type genosensor via catalytic redox-recycling on platform MWCNTs/Fe3O4@ TMU-21 for BRCA1 gene detection. Talanta, 234122698.
https://doi.org/10.1016/j.talanta.2021.122698
[39] Li, K., Miwornunyuie, N., Chen, L., Jingyu, H., Amaniampong, P. S., Ato Koomson, D., ... & Lu, H. (2021). Sustainable application of ZIF-8 for heavy-metal removal in aqueous solutions. Sustainability, 13(2), 984.
https://doi.org/10.3390/su13020984
[40] Shahsavari, M., Mohammadzadeh Jahani, P., Sheikhshoaie, I., Tajik, S., Aghaei Afshar, A., Askari, M. B., ... & Beitollahi, H. (2022). Green synthesis of zeolitic imidazolate frameworks: a review of their characterization and industrial and medical applications. Materials, 15(2), 447.
https://doi.org/10.3390/ma15020447
[41] Jian, M., Liu, B., Zhang, G., Liu, R., & Zhang, X. (2015). Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 465, 67-76.
https://doi.org/10.1016/j.colsurfa.2014.10.023
[42] Liu, B., Jian, M., Wang, H., Zhang, G., Liu, R., Zhang, X., & Qu, J. (2018). Comparing adsorption of arsenic and antimony from single-solute and bi-solute aqueous systems onto ZIF-8. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538, 164-172.
https://doi.org/10.1016/j.colsurfa.2017.10.068
[43] Ahmad, S. Z. N., Salleh, W. N. W., Yusof, N., Yusop, M. Z. M., Hamdan, R., & Ismail, A. F. (2023). Synthesis of zeolitic imidazolate framework-8 (ZIF-8) using different solvents for lead and cadmium adsorption. Applied Nanoscience, 13(6), 4005-4019.
https://doi.org/10.1007/s13204-022-02680-7
[44] Roostan, Z., Rashidi, A., and Borghei, S.M. (2018). Nickel ion removal from aqueous solution using recyclable zeolitic imidazolate framework-8 (ZIF-8) nano adsorbent: a kinetic and equilibrium study. Desalination and Water Treatment, 103141–151.
https://doi.org/10.5004/dwt.2018.21811
[45] Zhou, L., Li, N., Owens, G., & Chen, Z. (2019). Simultaneous removal of mixed contaminants, copper and norfloxacin, from aqueous solution by ZIF-8. Chemical engineering journal, 362, 628-637.
https://doi.org/10.1016/j.cej.2019.01.068
[46] Li, D. and Xu, F. (2021). Removal of Cu (II) from aqueous solutions using ZIF-8@GO composites. Journal of Solid State Chemistry, 302122406.
https://doi.org/10.1016/j.jssc.2021.122406
[47] Shahrak, M.N., Ghahramaninezhad, M., and Eydifarash, M. (2017). Zeolitic imidazolate framework-8 for efficient adsorption and removal of Cr(VI) ions from aqueous solution. Environmental Science and Pollution Research, 249624-9634.
https://doi.org/10.1021/am403079n
[48] Hu, L., Zhang, P., Hu, Q., Huang, Y., Li, J., Pei, X., ... & Yu, D. (2024). Synthesis of ZIF-8 in high yield and simultaneous removal of Mn (II), Cu (II), and Cd (II): performance and mechanism. Chemical Engineering Research and Design.
https://doi.org/10.1016/j.cherd.2024.06.022
[49] Yin, L., Li, W., Lin, S., Owens, G., & Chen, Z. (2022). Simultaneous removal of arsenite and arsenate from mining wastewater using ZIF-8 embedded with iron nanoparticles. Chemosphere, 304, 135269.
https://doi.org/10.1016/j.chemosphere.2022.135269
[50] Samimi, M. and Moeini, S. (2020). Optimization of the Ba+ 2 uptake in the formation process of hydrogels using central composite design: Kinetics and thermodynamic studies of malachite green removal by Ba-alginate particles. Journal of Particle Science and Technology, 6(2), 95-102.
https://doi.org/ 10.22104/jpst.2021.4842.1184
[51] Jian, M., Liu, B., Liu, R., Qu, J., Wang, H., & Zhang, X. (2015). Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. Rsc Advances, 5(60), 48433-48441.
https://doi.org/10.1039/C5RA04033G
[52] Dai, J., Xiao, S., Liu, J., He, J., Lei, J., & Wang, L. (2017). Fabrication of ZIF-9@ super-macroporous microsphere for adsorptive removal of Congo red from water. Rsc Advances, 7(11), 6288-6296.
https://doi.org/10.1039/C6RA26763G
[53] Karagiaridi, O., Lalonde, M. B., Bury, W., Sarjeant, A. A., Farha, O. K., & Hupp, J. T. (2012). Opening ZIF-8: a catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers. Journal of the American Chemical Society, 134(45), 18790-18796.
https://doi.org/10.1021/ja308786r
[54] Samimi, M., Zakeri, M., Alobaid, F., & Aghel, B. (2022). A brief review of recent results in arsenic adsorption process from aquatic environments by metal-organic frameworks: classification based on kinetics, isotherms and thermodynamics behaviors. Nanomaterials, 13(1), 60.
https://doi.org/10.3390/nano13010060
[55] Laus, R., Costa, T. G., Szpoganicz, B., & Fávere, V. T. (2010). Adsorption and desorption of Cu (II), Cd (II) and Pb (II) ions using chitosan crosslinked with epichlorohydrin-triphosphate as the adsorbent. Journal of hazardous materials, 183(1-3), 233-241.
https://doi.org/10.1016/j.jhazmat.2010.07.016
[56] Yin, N., Wang, K., & Li, Z. (2018). Novel melamine modified metal-organic frameworks for remarkably high removal of heavy metal Pb (II). Desalination, 430, 120-127.
https://doi.org/10.1016/j.desal.2017.12.057
[57] Sun, J., Zhang, X., Zhang, A., & Liao, C. (2019). Preparation of Fe–Co based MOF-74 and its effective adsorption of arsenic from aqueous solution. Journal of Environmental Sciences, 80, 197-207.
https://doi.org/10.1016/j.jes.2018.12.013
[58] Samimi, M. and Shahriari-Moghadam, M. (2021). Isolation and identification of Delftia lacustris Strain-MS3 as a novel and efficient adsorbent for lead biosorption: Kinetics and thermodynamic studies, optimization of operating variables. Biochemical Engineering Journal 173
https://doi.org/10.1016/j.bej.2021.108091
[59] Samimi, M. and Safari, M. (2022). TMU‐24 (Zn‐based MOF) as an advance and recyclable adsorbent for the efficient removal of eosin B: Characterization, equilibrium, and thermodynamic studies. Environmental Progress & Sustainable Energy 4113859.
https://doi.org/10.1002/ep.13859
[60] Bandara, T., Xu, J., Potter, I. D., Franks, A., Chathurika, J. B. A. J., & Tang, C. (2020). Mechanisms for the removal of Cd (II) and Cu (II) from aqueous solution and mine water by biochars derived from agricultural wastes. Chemosphere, 254, 126745.
https://doi.org/10.1016/j.chemosphere.2020.126745
[61] Wang, F.Y., Wang, H., and Ma, J.W. (2010). Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent—Bamboo charcoal. Journal of Hazardous Materials, 177300-306.
https://doi.org/10.1016/j.jhazmat.2009.12.032
[62] Yang, X., Zhou, T., Deng, R., Zhu, Z., Saleem, A., & Zhang, Y. (2021). Removal of Sb (III) by 3D-reduced graphene oxide/sodium alginate double-network composites from an aqueous batch and fixed-bed system. Scientific Reports, 11(1), 22374.
https://doi.org/10.1038/s41598-021-01788-0
[63] Han, L., Sun, H., Ro, K. S., Sun, K., Libra, J. A., & Xing, B. (2017). Removal of antimony (III) and cadmium (II) from aqueous solution using animal manure-derived hydrochars and pyrochars. Bioresource Technology, 234, 77-85.
https://doi.org/10.1016/j.biortech.2017.02.130
[64] Han, X., Cheng, C., Zhang, W., Li, S., Jia, Q., & Xiu, G. (2023). Performance and mechanism of simultaneous Sb (III) and Cd (II) removal from water by Fe–Mn binary oxide/bone char. Environmental Science and Pollution Research, 30(35), 84437-84451.
https://doi.org/10.1007/s11356-023-27832-2
[65] Fan, S., Zhou, J., Zhang, Y., Feng, Z., Hu, H., Huang, Z., & Qin, Y. (2020). Preparation of sugarcane bagasse succinate/alginate porous gel beads via a self-assembly strategy: Improving the structural stability and adsorption efficiency for heavy metal ions. Bioresource technology, 306, 123128.
https://doi.org/10.1016/j.biortech.2020.123128
[66] Xu, W., Wang, H., Liu, R., Zhao, X., & Qu, J. (2011). The mechanism of antimony (III) removal and its reactions on the surfaces of Fe–Mn binary oxide. Journal of colloid and interface science, 363(1), 320-326.
https://doi.org/10.1016/j.jcis.2011.07.026
[67] Ge, F., Li, M. M., Ye, H., & Zhao, B. X. (2012). Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. Journal of hazardous materials, 211, 366-372.
https://doi.org/10.1016/j.jhazmat.2011.12.013