Green synthesis of ZIF-8 nanoparticles for the simultaneous removal of Cd (II) and Sb (III) from contaminated wastewater

Document Type : Research Paper

Authors

1 Department of Chemical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran

2 Department of Mining Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran

Abstract

Researching efficient and green methods for removing toxic heavy metals from contaminated environments is of paramount importance. In this study, ZIF-8 nanoparticles were successfully synthesized at ambient temperature and pressure using a non-toxic water solvent. The synthesized nanoparticles underwent characterization through Brunauer-Emmett-Teller (BET), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscope (FESEM) analysis, followed by their application in the simultaneous adsorption of Sb (III) and Cd (II) from aqueous solutions. The thermodynamic behavior and adsorption kinetics of the prepared nanosorbent were also investigated. The kinetic data for cadmium and antimony adsorption on ZIF-8 nanoparticles exhibited a good fit with a pseudo-second-order model. The impact of pH on the adsorption capacity of synthesized nanoparticles for metal removal was evaluated. At T= 15◦C and pH 6.0, the maximum adsorption capacity of ZIF-8 nanoparticles was obtained: 31.8 mg∙g^(-1) for Cd (II) and 87.68 mg∙g^(-1) for Sb (III). The higher removal percentage for Sb (III) compared to Cd (II) might be because the ionic radius of antimony is smaller compared to cadmium, and its electronegativity is higher. The results demonstrated that ZIF-8 nanoparticles prepared through a facile and green method have the potential to serve as suitable adsorbents for the simultaneous uptake of cadmium and antimony from the environment.

Graphical Abstract

Green synthesis of ZIF-8 nanoparticles for the simultaneous removal of Cd (II) and Sb (III) from contaminated wastewater

Keywords

Main Subjects


[1]   Moghadam, H. and Samimi, M. (2022). Effect of condenser geometrical feature on evacuated tube collector basin solar still performance: productivity optimization using a Box-Behnken design model. Desalination, 542116092.
https://doi.org/10.1016/j.desal.2022.116092
[2]   Samimi, M. and Moghadam, H. (2024). Investigation of structural parameters for inclined weir-type solar stills. Renewable and Sustainable Energy Reviews, 190113969.
https://doi.org/10.1016/j.rser.2023.113969
[3]   Samimi, M. (2024). Efficient biosorption of cadmium by Eucalyptus globulus fruit biomass using process parameters optimization. Global Journal of Environmental Science and Management, 10(1), 27-38.
https://doi.org/10.22034/gjesm.2024.01.03
[4]   Qasem, N.A.A., Mohammed, R.H., and Lawal, D.U. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. npj Clean Water 4:361-15.
https://doi.org/10.1038/s41545-021-00127-0
[5]   Wang, K., Tian, Z., and Yin, N. (2018). Significantly enhancing Cu (II) adsorption onto Zr-MOFs through Novel cross-flow disturbance of ceramic membrane. Industrial & Engineering Chemistry Research 1-32.
https://doi.org/10.1021/acs.iecr.7b04850
[6]  Liu, B., Kim, K. H., Kumar, V., & Kim, S. (2020). A review of functional sorbents for adsorptive removal of arsenic ions in aqueous systems. Journal of hazardous materials, 388, 121815.
https://doi.org/10.1016/j.jhazmat.2019.121815
[7]   Levio-Raiman, M., Briceño, G., Schalchli, H., Bornhardt, C., & Diez, M. C. (2021). Alternative treatment for metal ions removal from acid mine drainage using an organic biomixture as a low cost adsorbent. Environmental Technology & Innovation, 24, 101853.
https://doi.org/10.1016/j.eti.2021.101853
[8]  Simate, G.S. and Ndlovu, S. (2014). Acid mine drainage: Challenges and opportunities. Journal of Environmental Chemical Engineering, 1785-1803.
https://doi.org/10.1016/j.jece.2014.07.021
[9]  Tong, L., Fan, R., Yang, S., & Li, C. (2021). Development and status of the treatment technology for acid mine drainage. Mining, Metallurgy & Exploration, 38, 315-327.
https://doi.org/10.1007/s42461-020-00298-3
[10] Asghar, A., Bello, M. M., & Raman, A. A. A. (2021). Metal‐organic frameworks for heavy metal removal. Applied Water Science: Remediation Technologies, 2, 321-356.
https://doi.org/10.1002/9781119725282.ch9
[11]  Türksoy, R., Terzioğlu, G., Yalçın, İ. E., Türksoy, Ö., & Demir, G. (2021). Removal of heavy metals from textile industry wastewater. Frontiers in Life Sciences and Related Technologies, 2(2), 44-50.
https://doi.org/10.51753/flsrt.958165
[12] Azanaw, A., Birlie, B., Teshome, B., & Jemberie, M. (2022). Textile effluent treatment methods and eco-friendly resolution of textile wastewater. Case Studies in Chemical and Environmental Engineering, 6, 100230.
https://doi.org/10.1016/j.cscee.2022.100230
[13] Hansen, E., Aquim, P.M.d., and Gutterres, M. (2021). Current technologies for post-tanning wastewater treatment: A review Journal of Environmental Management, 294113003.
https://doi.org/10.1016/j.jenvman.2021.113003
[14] Zhao, J., Wu, Q., Tang, Y., Zhou, J., & Guo, H. (2022). Tannery wastewater treatment: conventional and promising processes, an updated 20-year review. Journal of Leather Science and Engineering, 4(1), 10.
https://doi.org/10.1186/s42825-022-00082-7
[15] Navin, P.K., Kumar, S., and Mathur, M. (2018). Textile wastewater treatment: a critical review. International Journal of Engineering Research & Technology, 6(11), 1-7.
https://doi.org/ 10.17577/IJERTCONV6IS11015
[16] Samimi, M. and Shahriari-Moghadam, M. (2023). The Lantana camara L. stem biomass as an inexpensive and efficient biosorbent for the adsorptive removal of malachite green from aquatic environments: kinetics, equilibrium and thermodynamic studies. International Journal of Phytoremediation, 25(10), 1328-1336.
https://doi.org/10.1080/15226514.2022.2156978
[17] Zhang, S., Wang, J., Zhang, Y., Ma, J., Huang, L., Yu, S., ... & Wang, X. (2021). Applications of water-stable metal-organic frameworks in the removal of water pollutants: A review. Environmental Pollution, 291, 118076.
https://doi.org/10.1016/j.envpol.2021.118076
[18] Samimi, M. and Nouri, J. (2023). Optimized Zinc Uptake from the Aquatic Environment Using Biomass Derived from Lantana Camara L. Stem. Pollution, 9(4), 1925-1934.
https://doi.org/10.22059/poll.2023.363363.2014
[19] Kastury, F., Besedin, J., Betts, A. R., Asamoah, R., Herde, C., Netherway, P., ... & Juhasz, A. L. (2024). Arsenic, cadmium, lead, antimony bioaccessibility and relative bioavailability in legacy gold mining waste. Journal of hazardous materials, 469, 133948.
https://doi.org/10.1016/j.jhazmat.2024.133948
[20] Zhou, S., Hursthouse, A., and Chen, T. (2019). Pollution Characteristics of Sb, As, Hg, Pb, Cd, and Zn in Soils from Different Zones of Xikuangshan Antimony Mine. Journal of Analytical Methods in Chemistry, 21-9.
https://doi.org/10.1155/2019/2754385
[21] Mansoorianfar, M., Nabipour, H., Pahlevani, F., Zhao, Y., Hussain, Z., Hojjati-Najafabadi, A., ... & Pei, R. (2022). Recent progress on adsorption of cadmium ions from water systems using metal-organic frameworks (MOFs) as an efficient class of porous materials. Environmental Research, 214, 114113.
https://doi.org/10.1016/j.envres.2022.114113
[22] Mirshrkari, S., Shojaei, V., and Khoshdast, H. (2022). Adsorptive Study of Cadmium Removal from Aqueous Solution Using a Coal Waste Loaded with Fe3O4 Nanoparticles. International Journal of Mining, Reclamation and Environment, 13527-545.
https://doi.org/10.22044/jme.2022.11796.2174
[23] Abdel-Magied, A. F., Abdelhamid, H. N., Ashour, R. M., Fu, L., Dowaidar, M., Xia, W., & Forsberg, K. (2022). Magnetic metal-organic frameworks for efficient removal of cadmium (II), and lead (II) from aqueous solution. Journal of Environmental Chemical Engineering, 10(3), 107467.
https://doi.org/10.1016/j.jece.2022.107467
[24] He, X., Min, X., and Luo, X. (2017). Efficient Removal of Antimony (III, V) from Contaminated Water by Amino Modification of a Zirconium Metal−Organic Framework with Mechanism Study. Journal of Chemical & Engineering Data, 62 1519-1529.
https://doi.org/10.1021/acs.jced.7b00010
[25] Bolisetty, S., Peydayesh, M., and Mezzeng, R. (2019). Sustainable technologies for water purification from heavy metals: review and analysis. Chemical Society Reviews, 48463-487.
https://doi.org/10.1039/c8cs00493e
[26] Kumar, V. and Dwivedi, S.K. (2021). Mycoremediation of heavy metals: processes, mechanisms, and affecting factors. RSC Advances, 2810375-10412.
https://doi.org/10.1007/s11356-020-11491-8
[27] Samimi, M., Mohammadzadeh, E., and Mohammadzadeh, A. (2023). Rate enhancement of plant growth using Ormus solution: optimization of operating factors by response surface methodology. International Journal of Phytoremediation, 25(12), 1636–1642.
https://doi.org/10.1080/15226514.2023.2179014
[28] Arora, R. (2019). Adsorption of Heavy Metals–A Review. Materials Today, 184745-4750.
https://doi.org/10.1016/j.matpr.2019.07.462
[29] El-Sheikh, A. H., Alahmad, F. A., Sunjuk, M. S., & Al-Hashimi, N. N. (2022). Cd (II) removal from phenols-bearing wastewater using magnetic carbon nanotubes. Emerging Contaminants, 8, 400-410.
https://doi.org/10.1016/j.emcon.2022.11.001
[30] Jadoun, S., Fuentes, J. P., Urbano, B. F., & Yáñez, J. (2023). A review on adsorption of heavy metals from wastewater using conducting polymer-based materials. Journal of Environmental Chemical Engineering, 11(1), 109226.
https://doi.org/10.1016/j.jece.2022.109226
[31] Moghadam, H., Zakeri, M., and Samimi, A. (2019). Optimization of calcium alginate beads production by electrospray using response surface methodology. Materials Research Express 6
https://doi.org/10.1088/2053-1591/ab3377
[32] Wang, Y. Y., Ji, H. Y., Lu, H. H., Liu, Y. X., Yang, R. Q., He, L. L., & Yang, S. M. (2018). Simultaneous removal of Sb (III) and Cd (II) in water by adsorption onto a MnFe 2 O 4–biochar nanocomposite. RSC advances, 8(6), 3264-3273.
https://doi.org/10.1039/C7RA13151H
[33] Moghadam, H., Samimi, A., and Behzadmehr, A. (2013). Effect of Nanoporous Anodic Aluminum Oxide (AAO) Characteristics On Solar Absorptivity. Challenges in Nano and Micro Scale Science and Technology, 1(2), 110-116.
https://doi.org/10.7508/tpnms.2013.02.004
[34] Karnib, M., Kabbani, A., Holail, H., & Olama, Z. (2014). Heavy metals removal using activated carbon, silica and silica activated carbon composite. Energy Procedia, 50, 113-120.
https://doi.org/10.1016/j.egypro.2014.06.014
[35] Ehzari, H., Amiri, M., Safari, M., & Samimi, M. (2022). Zn-based metal-organic frameworks and p-aminobenzoic acid for electrochemical sensing of copper ions in milk and milk powder samples. International Journal of Environmental Analytical Chemistry, 102(16), 4364-4377.
https://doi.org/10.1080/03067319.2020.1784410
[36] Kaur, H., Devi, N., Siwal, S. S., Alsanie, W. F., Thakur, M. K., & Thakur, V. K. (2023). Metal–organic framework-based materials for wastewater treatment: superior adsorbent materials for the removal of hazardous pollutants. ACS omega, 8(10), 9004-9030.
https://doi.org/10.1021/acsomega.2c07719
[37] Jian, X. and He, B.X. (2019). Recent advances about metal-organic frameworks in the removal of pollutants from wastewater. Coordination Chemistry Reviews, 37817-31.
https://doi.org/10.1016/j.ccr.2018.03.015
[38] Ehzari, H., Safari, M., and Samimi, M. (2021). Signal amplification of novel sandwich-type genosensor via catalytic redox-recycling on platform MWCNTs/Fe3O4@ TMU-21 for BRCA1 gene detection. Talanta, 234122698.
https://doi.org/10.1016/j.talanta.2021.122698
[39] Li, K., Miwornunyuie, N., Chen, L., Jingyu, H., Amaniampong, P. S., Ato Koomson, D., ... & Lu, H. (2021). Sustainable application of ZIF-8 for heavy-metal removal in aqueous solutions. Sustainability, 13(2), 984.
https://doi.org/10.3390/su13020984
[40] Shahsavari, M., Mohammadzadeh Jahani, P., Sheikhshoaie, I., Tajik, S., Aghaei Afshar, A., Askari, M. B., ... & Beitollahi, H. (2022). Green synthesis of zeolitic imidazolate frameworks: a review of their characterization and industrial and medical applications. Materials, 15(2), 447.
https://doi.org/10.3390/ma15020447
[41] Jian, M., Liu, B., Zhang, G., Liu, R., & Zhang, X. (2015). Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 465, 67-76.
https://doi.org/10.1016/j.colsurfa.2014.10.023
[42] Liu, B., Jian, M., Wang, H., Zhang, G., Liu, R., Zhang, X., & Qu, J. (2018). Comparing adsorption of arsenic and antimony from single-solute and bi-solute aqueous systems onto ZIF-8. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538, 164-172.
https://doi.org/10.1016/j.colsurfa.2017.10.068
[43] Ahmad, S. Z. N., Salleh, W. N. W., Yusof, N., Yusop, M. Z. M., Hamdan, R., & Ismail, A. F. (2023). Synthesis of zeolitic imidazolate framework-8 (ZIF-8) using different solvents for lead and cadmium adsorption. Applied Nanoscience, 13(6), 4005-4019.
https://doi.org/10.1007/s13204-022-02680-7
[44] Roostan, Z., Rashidi, A., and Borghei, S.M. (2018). Nickel ion removal from aqueous solution using recyclable zeolitic imidazolate framework-8 (ZIF-8) nano adsorbent: a kinetic and equilibrium study. Desalination and Water Treatment, 103141–151.
https://doi.org/10.5004/dwt.2018.21811
[45] Zhou, L., Li, N., Owens, G., & Chen, Z. (2019). Simultaneous removal of mixed contaminants, copper and norfloxacin, from aqueous solution by ZIF-8. Chemical engineering journal, 362, 628-637.
https://doi.org/10.1016/j.cej.2019.01.068
[46] Li, D. and Xu, F. (2021). Removal of Cu (II) from aqueous solutions using ZIF-8@GO composites. Journal of Solid State Chemistry, 302122406.
https://doi.org/10.1016/j.jssc.2021.122406
[47] Shahrak, M.N., Ghahramaninezhad, M., and Eydifarash, M. (2017). Zeolitic imidazolate framework-8 for efficient adsorption and removal of Cr(VI) ions from aqueous solution. Environmental Science and Pollution Research, 249624-9634.
https://doi.org/10.1021/am403079n
[48] Hu, L., Zhang, P., Hu, Q., Huang, Y., Li, J., Pei, X., ... & Yu, D. (2024). Synthesis of ZIF-8 in high yield and simultaneous removal of Mn (II), Cu (II), and Cd (II): performance and mechanism. Chemical Engineering Research and Design.
https://doi.org/10.1016/j.cherd.2024.06.022
[49] Yin, L., Li, W., Lin, S., Owens, G., & Chen, Z. (2022). Simultaneous removal of arsenite and arsenate from mining wastewater using ZIF-8 embedded with iron nanoparticles. Chemosphere, 304, 135269.
https://doi.org/10.1016/j.chemosphere.2022.135269
[50] Samimi, M. and Moeini, S. (2020). Optimization of the Ba+ 2 uptake in the formation process of hydrogels using central composite design: Kinetics and thermodynamic studies of malachite green removal by Ba-alginate particles. Journal of Particle Science and Technology, 6(2), 95-102.
https://doi.org/ 10.22104/jpst.2021.4842.1184
[51] Jian, M., Liu, B., Liu, R., Qu, J., Wang, H., & Zhang, X. (2015). Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. Rsc Advances, 5(60), 48433-48441.
https://doi.org/10.1039/C5RA04033G
[52] Dai, J., Xiao, S., Liu, J., He, J., Lei, J., & Wang, L. (2017). Fabrication of ZIF-9@ super-macroporous microsphere for adsorptive removal of Congo red from water. Rsc Advances, 7(11), 6288-6296.
https://doi.org/10.1039/C6RA26763G
[53] Karagiaridi, O., Lalonde, M. B., Bury, W., Sarjeant, A. A., Farha, O. K., & Hupp, J. T. (2012). Opening ZIF-8: a catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers. Journal of the American Chemical Society, 134(45), 18790-18796.
https://doi.org/10.1021/ja308786r
[54] Samimi, M., Zakeri, M., Alobaid, F., & Aghel, B. (2022). A brief review of recent results in arsenic adsorption process from aquatic environments by metal-organic frameworks: classification based on kinetics, isotherms and thermodynamics behaviors. Nanomaterials, 13(1), 60.
https://doi.org/10.3390/nano13010060
[55] Laus, R., Costa, T. G., Szpoganicz, B., & Fávere, V. T. (2010). Adsorption and desorption of Cu (II), Cd (II) and Pb (II) ions using chitosan crosslinked with epichlorohydrin-triphosphate as the adsorbent. Journal of hazardous materials, 183(1-3), 233-241.
https://doi.org/10.1016/j.jhazmat.2010.07.016
[56] Yin, N., Wang, K., & Li, Z. (2018). Novel melamine modified metal-organic frameworks for remarkably high removal of heavy metal Pb (II). Desalination, 430, 120-127.
https://doi.org/10.1016/j.desal.2017.12.057
[57] Sun, J., Zhang, X., Zhang, A., & Liao, C. (2019). Preparation of Fe–Co based MOF-74 and its effective adsorption of arsenic from aqueous solution. Journal of Environmental Sciences, 80, 197-207.
https://doi.org/10.1016/j.jes.2018.12.013
[58] Samimi, M. and Shahriari-Moghadam, M. (2021). Isolation and identification of Delftia lacustris Strain-MS3 as a novel and efficient adsorbent for lead biosorption: Kinetics and thermodynamic studies, optimization of operating variables. Biochemical Engineering Journal 173
https://doi.org/10.1016/j.bej.2021.108091
[59] Samimi, M. and Safari, M. (2022). TMU‐24 (Zn‐based MOF) as an advance and recyclable adsorbent for the efficient removal of eosin B: Characterization, equilibrium, and thermodynamic studies. Environmental Progress & Sustainable Energy 4113859.
https://doi.org/10.1002/ep.13859
[60] Bandara, T., Xu, J., Potter, I. D., Franks, A., Chathurika, J. B. A. J., & Tang, C. (2020). Mechanisms for the removal of Cd (II) and Cu (II) from aqueous solution and mine water by biochars derived from agricultural wastes. Chemosphere, 254, 126745.
https://doi.org/10.1016/j.chemosphere.2020.126745
[61] Wang, F.Y., Wang, H., and Ma, J.W. (2010). Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent—Bamboo charcoal. Journal of Hazardous Materials, 177300-306.
https://doi.org/10.1016/j.jhazmat.2009.12.032
[62] Yang, X., Zhou, T., Deng, R., Zhu, Z., Saleem, A., & Zhang, Y. (2021). Removal of Sb (III) by 3D-reduced graphene oxide/sodium alginate double-network composites from an aqueous batch and fixed-bed system. Scientific Reports, 11(1), 22374.
https://doi.org/10.1038/s41598-021-01788-0
[63] Han, L., Sun, H., Ro, K. S., Sun, K., Libra, J. A., & Xing, B. (2017). Removal of antimony (III) and cadmium (II) from aqueous solution using animal manure-derived hydrochars and pyrochars. Bioresource Technology, 234, 77-85.
https://doi.org/10.1016/j.biortech.2017.02.130
[64] Han, X., Cheng, C., Zhang, W., Li, S., Jia, Q., & Xiu, G. (2023). Performance and mechanism of simultaneous Sb (III) and Cd (II) removal from water by Fe–Mn binary oxide/bone char. Environmental Science and Pollution Research, 30(35), 84437-84451.
https://doi.org/10.1007/s11356-023-27832-2
[65] Fan, S., Zhou, J., Zhang, Y., Feng, Z., Hu, H., Huang, Z., & Qin, Y. (2020). Preparation of sugarcane bagasse succinate/alginate porous gel beads via a self-assembly strategy: Improving the structural stability and adsorption efficiency for heavy metal ions. Bioresource technology, 306, 123128.
https://doi.org/10.1016/j.biortech.2020.123128
[66] Xu, W., Wang, H., Liu, R., Zhao, X., & Qu, J. (2011). The mechanism of antimony (III) removal and its reactions on the surfaces of Fe–Mn binary oxide. Journal of colloid and interface science, 363(1), 320-326.
https://doi.org/10.1016/j.jcis.2011.07.026
[67] Ge, F., Li, M. M., Ye, H., & Zhao, B. X. (2012). Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. Journal of hazardous materials, 211, 366-372.
https://doi.org/10.1016/j.jhazmat.2011.12.013