[1] Ronzhina, D. A., Migalina, S. V. & Yusupov, I. A. (2023). Gas flaring cause shifts in mesophyll and stomatal functional traits of Betula pubescens Ehrh. Journal of Forestry Research.
https://doi.org/10.1007/s11676-023-01634-1
[2] Emami Javanmard, M. & Ghaderi, S. F. (2022). A Hybrid Model with Applying Machine Learning Algorithms and Optimization Model to Forecast Greenhouse Gas Emissions with Energy Market Data. Sustainable Cities and Society, 82, 103886.
https://doi.org/10.1016/j.scs.2022.103886
[3] Khalili-Garakani, A., Iravaninia, M. & Nezhadfard, M. (2021). A review on the potentials of flare gas recovery applications in Iran. Journal of Cleaner Production, 279, 123345.
https://doi.org/10.1016/j.jclepro.2020.123345
[4] Shojaei, S. M., Vahabpour, A., Saifoddin, A. A. & Ghasempour, R. (2023). Estimation of greenhouse gas emissions from Iran's gas flaring by using satellite data and combustion equations. Integrated Environmental Assessment and Management, 19:(3), 735-748.
https://doi.org/10.1002/ieam.4684
[5] Mardani, M., Nowrouzi, M. & Abyar, H. (2022). Evaluation and modeling of radiation and noise pollution in the north of the Persian Gulf (Case study: South Pars gas platforms). Advances in Environmental Technology, 8:(3), 229-238.
https://doi.org/10.22104/aet.2022.5712.1559
[6] Mirrezaei, M. A. & Orkomi, A. A. (2020). Gas flares contribution in total health risk assessment of BTEX in Asalouyeh, Iran. Process Safety and Environmental Protection, 137, 223-237.
https://doi.org/10.1016/j.psep.2020.02.034
[7] Rouzkhosh, M., Jaafarzadeh, N., Varshosaz, K., Orak, N. & Dashti, S. (2023). The emission of greenhouse gases from flare gas condensates of petroleum units and the climatic index of emberger in Southern Iran. Petroleum Science and Technology, 41:(10), 1099-1112.
https://doi.org/10.1080/10916466.2022.2073371
[8] Rouzkhosh, M., Jaafarzadeh, N., Varshosaz, K., Orak, N. & Dashti, S. (2023). Neural network to quantify the amount of greenhouse gases produced by flue gases affecting climatic conditions in Iran's southern areas. Geoenergy Science and Engineering, 221, 111224.
https://doi.org/10.1016/j.petrol.2022.111224
[9] Dappa, G. N. & Akujuru, V. A. (2023). Impact of Gas Flare on Human Life and Wellbeing of Ogba/Egbema/Ndoni Local Government Area of Rivers State. European Journal of Environment and Earth Sciences, 4:(2), 32-35.
https://doi.org/10.24018/ejgeo.2023.4.2.378
[10] Bigharaz, M., Almassi, Z. & Nasr Abadi, M. (2015). The simulation of dispersion and distribution of pollutants of flaring operation in refiners of South Pars through AERMOD. Journal of Biodiversity and Environmental Sciences, 6:(6), 573-588.
[11] Eslami Doost, Z., Dehghani, S., Samaei, M. R., Arabzadeh, M., Baghapour, M. A., Hashemi, H., Oskoei, V., Mohammadpour, A. & De Marcoc, A. (2023). Dispersion of SO2 emissions in a gas refinery by AERMOD modeling and human health risk: a case study in the Middle East. International Journal of Environmental Health Research, 1-14.
https://doi.org/10.1080/09603123.2023.2165044
[12] Rani, B., Singh, U., Chuhan, A., Sharma, D. & Maheshwari, R. (2011). Photochemical smog pollution and its mitigation measures. Journal of Advanced Scientific Research, 2:(04), 28-33.
https://jspga.com/index.php/jspga/article/view/20
[13] Usman, M., Amjad, S. & Khan, A. (2023). Clearing the Air: Legal Strategies for Combating Smog and Pollution. Journal of Strategic Policy and Global Affairs, 4:(01).
https://sciensage.info/index.php/JASR/article/view/56
[14] Wang, Y., Eriksson, T. & Luo, N. (2023). The health impacts of two policies regulating SO2 air pollution: Evidence from China. China Economic Review, 78, 101937.
https://doi.org/10.1016/j.chieco.2023.101937
[15] Mousavi, S. S., Goudarzi, G., Sabzalipour, S., Rouzbahani, M. M. & Mobarak Hassan, E. (2021). An evaluation of CO, CO2, and SO2 emissions during continuous and non-continuous operation in a gas refinery using the AERMOD. Environmental Science and Pollution Research, 28:(40), 56996-57008.
https://doi.org/10.1007/s11356-021-14493-2
[16] Ojeh, V. N. (2012). Sustainable development and gas flaring activities: a case study of Ebedei area of Ukwuani LGA, Delta State, Nigeria. Resources and Environment, 2:(4), 169-174.
https://doi.org/10.5923/j.re.20120204.06
[17] Amaechi-Onyerimma, C. N., Wokoma, O. A. F. & Mmom, T. C. (2023). Effects of gas flaring in the environs of IGWURUTA flow station, Rivers state Ignatius Ajuru University Journal of Applied and Environmental Biology, 1:(1), 78-87.
[18] Hesami Arani, M., Jaafarzadeh, N., Moslemzadeh, M., Rezvani Ghalhari, M., Bagheri Arani, S. & Mohammadzadeh, M. (2021). Dispersion of NO2 and SO2 pollutants in the rolling industry with AERMOD model: a case study to assess human health risk. Journal of Environmental Health Science and Engineering, 19:(2), 1287-1298.
https://doi.org/10.1007/s40201-021-00686-x
[19] Angas, M. J., Jozi, S. A., Hejazi, R. & Rezaian, S. (2020). Dispersion model evaluation of SO2 emission from stack in oil refinery plant using AERMOD 8.9. 0. Jundishapur Journal of Health Sciences, 12:(2).
https://doi.org/10.5812/jjhs.103964
[20] AER. (2014). AERflare user guide: A model for temporary flaring permits, non-routine flaring and routine flaring air dispersion modelling for Sour gas facilities version 2.01 ed., Calgary: Alberta Energy Regulator
https://static.aer.ca/prd/documents/directives/AERflare_User_Guide.v201.pdf
[21] Eslamidoost, Z., Arabzadeh, M., Oskoie, V., Dehghani, S., Samaei, M. R., Hashemi, H. & Baghapour, M. A. (2022). Dispersion of NO2 pollutant in a gas refinery with AERMOD model: A case study in the Middle East. Journal of Air Pollution and Health, 7:(3), 309-322.
https://doi.org/10.18502/japh.v7i3.10544
[22] Asadollahfardi, G. & Khajoo’e, A. (2016). SO2 dispersion mathematical simulation of flare combustion, case study: Aboozar oil and gas platform in Kharg Island. Modares Civil Engineering journal, 16:(2), 9-20.
http://mcej.modares.ac.ir/article-16-1952-en.html
[23] Atabi, F., Jafarigol, F., Momeni, M., Salimian, M. & Bahmannia, G. (2014). Dispersion Modeling of CO with AERMOD in South Pars fourth Gas Refinery. Journal of Environmental Health Engineering, 1:(4), 281-292.
https://doi.org/10.18869/acadpub.jehe.1.4.281
[24] Nazari, S., Shahhoseini, O., Sohrabi-Kashani, A., Davari, S., Sahabi, H. & Rezaeian, A. (2012). SO2 pollution of heavy oil-fired steam power plants in Iran. Energy policy, 43, 456-465.
https://doi.org/10.1016/j.enpol.2012.01.040
[25] Walsh, L., Wallace, P. & Cashman, K. (2012). Volatile emissions from Cascade cinder cone eruptions: Implications for future hazard assessments in the Central and Southern Cascades. AGU Fall Meeting Abstracts, 2012, V53C-2854.
https://doi.org/10.1016/j.seppur.2020.116704
[26] Malik, M. K. & Kumar, S., Sulfur dioxide: Risk assessment, environmental, and health hazard, Hazardous gases, Elsevier2021, pp. 375-389.
https://doi.org/10.1016/b978-0-323-89857-7.00011-6
[27] Yao, G., Yun, Y. & Sang, N. (2016). Differential effects between one week and four weeks exposure to same mass of SO2 on synaptic plasticity in rat hippocampus. Environmental Toxicology, 31:(7), 820-829.
https://doi.org/10.1002/tox.22093
[28] Kahforoushan, D., Fatehifar, E. & Ahmadi, J., A novel method for determination of acid gas flares emission factors, Proceedings of the CESET 2015 Conference, Tehran, Iran, 2015, pp. 5-6.
[29] Leahey, D. M., Preston, K. & Strosher, M. (2001). Theoretical and observational assessments of flare efficiencies. Journal of the Air & Waste Management Association, 51:(12), 1610-1616.
https://doi.org/10.1080/10473289.2001.10464390
[30] Kahforoshan, D., Fatehifar, E., Babalou, A., Ebrahimin, A., Elkamel, A. & Soltanmohammadzadeh, J., Modeling and evaluation of air pollution from a gaseous flare in an oil and gas processing area, WSEAS Conferences, Santander, Cantabria, Spain., 2008, pp. 180-186.
[31] Rouhi, M., Moradi, H., Soffianian, A. & Dahaghin, A. (2012). Dispersion modeling of NOx and SOx in Phase 9 and 10 of South Pars Oilfield. Noise and air pollution management.
[32] Momeni, I., Danehkar, A., Karimi, S. & Khorasani, N. A. (2011). Dispersion modelling of SO2 pollution emitted from Ramin Ahwaz power plant using AERMOD model. Human & Environment, 9:(3), 3-8.
https://sanad.iau.ir/en/Journal/he/Article/848213/FullText
[33] Mousavi, S. S., Goudarzi, G., Sabzalipour, S., Rouzbahani, M. M. & Hassan, E. M. (2022). Evaluating CO, NO2, and SO2 Emissions From Stacks of Turbines and Gas Furnaces of Oil and Gas Processing Complex Using AERMOD. Archives of Hygiene Sciences, 11:(2), 113-126.
https://doi.org/10.32598/ahs.11.2.349.5
[34] Abdulkareem, A. (2005). Evaluation of ground level concentration of pollutant due to gas flaring by computer simulation: A case study of Niger–Delta area of Nigeria. Leonardo Electronic Journal of Practices and Technologies, 6:(1), 29-42.
http://lejpt.utcluj.ro/A06/29_42.pdf
[35] Nkwocha, E. E. & Pat-Mbano, E. C. (2010). Effect of gas flaring on buildings in the oil producing rural communities of River State, Nigeria. African Research Review, 4:(2), 90-102.
http://doi.org/10.4314/afrrev.v4i2.58293