[1] Sharififard, H. (2018). Statistical physics modeling of equilibrium adsorption of cadmium ions onto activated carbon, chitosan and chitosan/activated carbon composite. Advances in Environmental Technology, 2, 149-154.
https://doi.org/10.22104/aet.2019.2619.1132
[2] Wang, Z., Liu, J., Yang, Y., Yu, Y., Yan, X., Zhang, Z. (2020).AMn2O4 (A=Cu, Ni and Zn) sorbents coupling high adsorption and regeneration performance for elemental mercury removal from syngas. Journal of Hazardous Materials, 388, 121738.
https://doi.org/10.1016/j.jhazmat.2019.121738
[3] Abdullah, N., Yusof, N., Lau, W.J., Jaafar, J., Ismail, A.F. (2019). Recent trends of heavy metal removal from water/wastewater by membrane technologies. Journal of Industrial and Engineering Chemistry, 76, 17-38.
https://doi.org/10.1016/j.jiec.2019.03.029
[4] Badvi Loulic, F., Shirazi, R.H.S.M., Miralinaghi, M., Ahmad Panahi, H, Moniri, E. (2023). Highly efficient removal of toxic As(V), Cd (II), and Pb(II) ions from water samples using MnFe2O4@SBA-15-(CH2)3-adenine as a recyclable bio-nanoadsorbent. Microporous and Mesoporous Materials, 356, 112567.
https://doi.org/10.1016/j.micromeso.2023.112567
[5] Chouchane, T., Boukari, A. (2022). Impact of Influencing Parameters on the Adsorption of nickel by kaolin in an aqueous medium. Analytical and Bioanalytical Chemistry Research, 9, 381-399.
https://doi.org/10.22036/ABCR.2022.325691.1716
[6] Chouchane, T., Boukari, A., Khireddine, O., Chibani, S., Chouchane, S. (2023). Cu(II) removal from aqueous medium using blast furnace slag (BFS) as an effective adsorbent. Eurasian Journal of Chemistry, 110(2), 115-130.
https://doi.org/10.31489/2959-0663/2-23-3
[7] Chouchane, T., Chibani, S., Khireddine, O., Boukari, A. (2023). Adsorption study of Pb(II) ions on the blast furnace slag (BFS) from aqueous solution. Iranian Journal of Materials Science and Engineering, 20, 1-13.
https://doi.org/10.22068/ijmse.3011
[8] Rezaei, M., Panahi, H. A., Nasrollahi, S., Moniri, E., Torabi Fard, N. (2023). Synthesis and characterization of zinc oxide nanoparticles grafted poly [(N, N-Dimethylacrylamide)-co-(Allyl Acetoacetate)] for removal of Pb (II) in environmental and biological samples. Separation Science and Technology, 58(8), 1516-1526.
https://doi.org/10.1080/01496395.2023.2195081
[9] Panahi, H.A., Abdouss, M., Ghiabi, F., Moniri, E., Mousavi Shoushtari, A. (2011). Modification and characterization of poly (ethylene terephthalate)-grafted-acrylic acid/acryl amide fiber for removal of lead from human plasma and environmental samples. Journal of Applied Polymer Science, 124, 5236-5246.
https://doi.org/10.1002/app.34224
[10] Awual, M.R., (2019). Mesoporous composite material for efficient Pb(II) detection and removal from aqueous media. Journal of Environmental Chemical Engineering, 7, 103124.
https://doi.org/10.1016/j.jece.2019.103124
[11] Betiha, M.A., Moustafa, Y.M., El-Shahat, M.F., Rafik, E. (2020). Polyvinylpyrrolidone- aminopropyl-SBA-15 schiff base hybrid for efficient removal of divalent heavy metal cations from wastewater. Journal of Hazardous Materials, 397, 122675.
https://doi.org/10.1016/j.jhazmat.2020.122675
[12] Kainth, S., Sharma, P., Pandey, O.P. (2012). Green sorbents from agricultural wastes: A review of sustainable adsorption materials. Applied Surface Science Advances, 19, 100562.
https://doi.org/10.1016/j.apsadv.2023.100562
[13] Huang, W-H., Wu, R-M., Chang, J-S., Juang, S-Y., Lee, D-J. (2023). Manganese ferrite modified agricultural waste-derived biochars for copper ions adsorption. Bioresource Technology, 367, 128303.
https://doi.org/10.1016/j.biortech.2022.128303
[14] Obayomi, K.S., Auta, M. (2019). Development of microporous activated aloji clay for adsorption of Pb(II) (II) ions from aqueous solution. Heliyon, 5, e02799.
https://doi.org/10.1016/j.heliyon.2019.e02799
[15] Ben Ali, M., Wang, F., Boukherroub, R., Lei, W., Xia, M. (2019). Phytic acid-doped polyanilinenanofibers-clay mineral for efficient adsorption of copper (II) ions. Journal of Colloid and Interface Science, 553, 688-698.
https://doi.org/10.1016/j.jcis.2019.06.065
[16] Chen, W., Lu, Z., Xiao, B., Gu, P., Yao, W., Xing, J., Asiri, A.M., Alamry, K.A., Wang, X., Wang, S. (2019). Enhanced removal of Pb(II) ions from aqueous solution by iron oxide nanomaterials with cobalt and nickel doping. Journal of Cleaner Production, 211, 1250-1258.
https://doi.org/10.1016/j.jclepro.2018.11.254
[17] Smith, M., Hamwi, B., Rogers, R.E. (2022). Carbon nanomaterial-based aerogels for improved removal of copper(II), zinc(II), and lead(II) ions from water. Environmental Science Advances, 1, 208-215.
https://doi.org/10.1039/d2va00049k
[18] Wang, H., Shang, H., Sun, X., Hou, L., Wen, M., Qiao, Y. (2019). Preparation of thermo-sensitive surface ion-imprinted polymers based on multi-walled carbon nanotube composites for selective adsorption of Pb(II) ion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 585, 124139.
https://doi.org/10.1016/j.colsurfa.2019.124139
[19] Rong, M., Xu, X., Wang, K., Lu, L., Bai, Y., Tian, Y., Hou, Z., Zhao, R., Ma, Y., Jiang, Y. (2023). A novel hydroxyapatite-based hollow microsphere nanocomposite for copper ion adsorption. Chemical Physics Letters, 585, 140548.
https://doi.org/10.1016/j.cplett.2023.140548
[20] Alkherraz, A.M., Ali, A.K., Elsherif K.M. (2020). Removal of Pb(II), Zn(II), Cu(II) and Cd(II) from aqueous solutions by adsorption onto olive branches activated carbon: equilibrium and thermodynamic studies. Chemistry Internationnal, 6, 11-20.
https://doi.org/10.5281/zenodo.2579465
[21] Tauetsile, P.J., Oraby, E.A., Eksteen, J.J. (2018). Adsorption behaviour of copper and gold Glycinates in alkaline media onto activated carbon. Part 2, Kinetics. Hydrometallurgy, 178, 195-201.
https://doi.org/10.1016/j.hydromet.2018.04.016
[22] Chouchane, T., Khireddine, O., Boukari, A. (2021). Kinetic studies of Ni(II) ions adsorption from aqueous solutions using the blast furnace slag (BF slag). Journal of Engineering and Applied Science, 68, 34.
https://doi.org/10.1186/s44147-021-00039-3
[23] Chouchane, T., Boukari, A., Khireddine, O., Chibani, S., Chouchane, S. (2023). Equilibrium, kinetics, and thermodynamics of batch adsorption of Mn(II) ions on blast furnace slag (BFS) and kaolin (KGA). Journal of Engineering and Applied Science, 70, 58.
https://doi.org/10.1186/s44147-023-00218-4
[24] Chouchane, T., Khireddine, O., Chibani, S., Boukari, A. (2023). Removal of Cr(III), Pb(II) and Cr-Pb Mixture by Blast Furnace Slag (BFS) in Solution. Analytical and Bioanalytical Chemistry Research, 10, 251-268.
https://doi.org/10.22036/ABCR.2022.365182.18
[25] Li, C.X., Zhang, Q.W., Li, L. (2021) Synthesis of NaA zeolite from blast furnace slag (BFS) and Its utilization for adsorption of basic dye (methylene blue). Journal of Physics: Conference Series, 2224, 012068.
https://doi.org/10.1088/1742-6596/2224/1/012068
[26] Dhmees, A.S., Klaleel, N.M., Mahoud, S.A. (2018). Synthesis of silica nanoparticles from blast furnace slag as cost-effective adsorbent for efficient azo-dye removal. Egyptian Journal of Petroleum, 27, 1113-1121.
https://doi.org/10.1016/j.ejpe.2018.03.012
[27] Xue, Y., Wu, S., Zhou, M. (2013). Adsorption characterization of Cu(II) from aqueous solution onto basic oxygen furnace slag. Chemical Engineering Journal, 231, 355-364.
https://doi.org/10.1016/j.cej.2013.07.045
[28] Le, Q.T.N., Vivas, E.L., Cho, K. (2021). Oxalated blast-furnace slag for the removal of cobalt(II) ions from aqueous solutions. Journal of Industrial and Engineering Chemistry, 95, 57-65.
https://doi.org/10.1016/j.jiec.2020.12.003
[29] Yamaguchi, S., Hongo, T. (2021). Synthesis of metaettringite from blast furnace slag and evaluation of its boron adsorption ability. Environmental Science and Pollution Research, 28, 15070-15075.
https://doi.org/10.1007/s11356-020-11028-z
[30] Piatak, N.M., Seal, R.R., Hoppe, D.A., Green, C.J., Buszka, P.M. (2019). Geochemical characterization of iron and steel slag and its potential to remove phosphate and neutralize acid. Minerals, 9, 468.
https://doi.org/10.3390/min9080468
[31] Zuo, M., Renman, G., Gustafsson, J.P., Klysubun, W. (2018). Phosphorus removal by slag depends on its mineralogical composition: a comparative study of aod and eaf slags. Journal of Water Process Engineering, 25, 105-112.
https://doi.org/10.1016/j.jwpe.2018.07.003
[32] Navarro, C., Díaz, M., Villa-García, M.A. (2010). Physico-chemical characterization of steel slag. study of its behavior under simulated environmental conditions. Environmental Science & Technology, 44(14), 5383-5388.
https://doi.org/10.1021/es100690b
[33] Li, C., Li, X., Yu, Y., Zhang, Q., Li, L., Zhong, H., Wang, S. (2022). Novel conversion for blast furnace slag (BFS) to the synthesis of hydroxyapatite-zeolite material and its evaluation of adsorption properties. Journal of Industrial and Engineering Chemistry, 105, 63-73.
https://doi.org/10.1016/j.jiec.2021.08.017
[34] Basaleh, A.A., Al-Malack, M.H., Saleh, T.A. (2021). Poly(acrylamide acrylic acid) grafted on steel slag as an efficient magnetic adsorbent for cationic and anionic dyes. Journal of Environmental Chemical Engineering, 9, 105126.
https://doi.org/10.1016/j.jece.2021.105126
[35] Brunauer, S., Emmett, P.H., Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309-319.
https://doi.org/10.1021/ja01269a023
[36] Li, C., Zhong, H., Wang, S., Xue, J.R., Zhang, Z.Y. (2015). A novel conversion process for waste residue: Synthesis of zeolite from electrolytic manganese residue and its application to the removal of heavy metals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 470, 258-267.
https://doi.org/10.1016/j.colsurfa.2015.02.003
[37] Murakami T., Sugano Y., Narushima T., Iguchi Y., Ouchi C. (2011). Recovery of calcium from BF slag and synthesis of zeolite A using its residue. ISIJ International, 51, 901-905.
https://doi.org/10.2355/isijinternational.51.901
[38] Mustapha, L.S., Yusuff, A.S., Dim, P.E. (2023). RSM optimization studies for cadmium ions adsorption onto pristine and acid-modified kaolinite clay. Heliyon, 9(8), e18634.
https://doi.org/10.1016/j.heliyon.2023.e18634
[39] Hussain, N., Chantrapromma, S., Suwunwong, T., Phoungthong, K. (2020). Cadmium (II) removal from aqueous solution using magnetic spent coffee ground biochar: kinetics, isotherm and thermodynamic adsorption. Materials Research Express, 7, 085503.
https://doi.org/10.1088/2053-1591/abae27
[40] Mustapha, S., Ndamitso, M.M., Abdulkareem, A.S., Tijani, J.O., Mohammed, A.K., Shuaib, D.T. (2019). Potential of using kaolin as a natural adsorbent for the removal of pollutants from tannery wastewater. Heliyon, 5, e02923.
https://doi.org/10.1016/j.heliyon.2019.e02923
[41] Zhao, Y., Yang, S., Ding, D., Chen, J., Yang, Y., Lei, Z., Feng, C., Zhang, Z. (2013). Effective adsorption of Cr (VI) from aqueous solution using natural Akadama clay. Journal of colloid and interface science, 395, 198-204.
https://doi.org/10.1016/j.jcis.2012.12.054
[42] Foroutan, R., Mohammadi, R., Farjadfard, S., Esmaeili, H., Ramavi, B., Sorial, G.A. (2019). Eggshell nano-particle potential for methyl violet and mercury ion removal: surface study and field application. Advanced Powder Technology, 30, 2188-2199.
https://doi.org/10.1016/j.apt.2019.06.034
[43] Simha, P., Banwasi, P., Mathew, M., Ganesapillai, M. (2016). Adsorptive resource recovery from human urine: system design, parametric considerations and response surface optimization. Procedia Engineering, 148, 779-786.
https://doi.org/10.1016/j.proeng.2016.06.557
[44] Gupta, A., Balomajumder, C. (2017). Statistical optimization of process parameters for thesimultaneous adsorption of Cr (VI) and phenol onto Fe-treated tea waste biomass. Applied Water Science, 7, 4361-4374.
https://doi.org/10.1007/s13201-017-0582-9
[45] Yogeshwaran, V., Priya, A.K. (2021). Adsorption of lead ion concentration from the aqueous solution using tobacco leaves. Materials Today: Proceedings, 37, 489-496.
https://doi.org/10.1016/j.matpr.2020.05.467
[46] Karami, K., Beram, S.M., Bayat, P., Siadatnasab, F., Ramezanpour, A. (2022). A novel nanohybrid based on metal–organic framework MIL101-Cr/PANI/Ag for the adsorption of cationic methylene blue dye from aqueous solution. Journal of Molecular Structure, 1247, 131352.
https://doi.org/10.1016/j.molstruc.2021.131352
[47] Du, P., Zhang, J., Cai, Z., Ge, F. (2023). High adsorption of cationic dyes from aqueous solution using worm-like porous nanosilica: Isotherm, kinetics and thermodynamics. Materials Today Communications, 35, 105697.
https://doi.org/10.1016/j.mtcomm.2023.105697
[48] Zhao, H., Ouyang, X.K., Yang, L.Y. (2021). Adsorption of lead ions from aqueous solutions by porous cellulose nanofiber–sodium alginate hydrogel beads. Journal of Molecular Liquids, 324, 115122.
https://doi.org/10.1016/j.molliq.2020.115122
[49] Chouchane, T., Yahi, M., Boukari, A., Balaska, A., Chouchane, S. (2016). Adsorption of the copper in solution by the kaolin. Journal of Materials and Environmental Science, 7, 2825-2842.
http://www.jmaterenvironsci.com/Document/vol7/vol7_N8/295-JMES-1856-Chouchane.pdf
[50] Jiang, S., Huang, L., Nguyen, T.A.H., Sik, O.k. Y., Rudolph, V., Yang, H. , Zhang D. (2016). Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions. Chemosphere, 142, 64-71.
https://doi.org/10.1016/j.chemosphere.2015.06.079
[51] Iqbal, J., Wattoo, F.H., Wattoo, M.H.S., Malik, R., Tirmizi, S.A., Imran, M., Ghangro A.B. (2011). Adsorption of acid yellow dye on flakes of chitosan prepared from fishery wastes. Arabian Journal of Chemistry, 4, 389-395.
https://doi.org/10.1016/j.arabjc.2010.07.007
[52] Chouchane, T., Abedghars, M.T., Chouchane, S., Boukari, A. (2024). Improvement of the sorption capacity of methylene blue dye using slag, a steel by product. Kuwait Journal of Science, 51, 100210.
https://doi.org/10.1016/j.kjs.2024.100210
[53] Wekoye, J.N., Wanyonyi, W.C., Wangila, P.T., Tonui, M.K. (2020). Kinetic and equilibrium studies of congo red dye adsorption on cabbage waste powder. Environmental Chemistry and Ecotoxicology, 2, 24-31.
https://doi.org/10.1016/j.enceco.2020.01.004
[54] Cherono, F., Mburu, N., Kakoi B. (2021). Adsorption of lead, copper and zinc in a multi-metal aqueous solution by waste rubber tires for the design of single batch adsorber. Heliyon, 7, e08254.
https://doi.org/10.1016/j.heliyon.2021.e08254
[55] Chouchane, T., Chouchane, S., Boukari, A., Mesalhi, A. (2015). Adsorption of binary mixture lead nickel by kaolin. Journal of Materials and Environmental Science. 6, 924-941.
[56] Goel, J., Kadirvelu, K., Rajagopal, C. (2004). Competitive sorption of Cu(II), Pb(II) and Hg(II) ions from aqueous solution using coconut shell-based activated carbon. Adsorption Science & Technology, 22, 257-273.
https://doi.org/10.1260/02636170415034
[57] Gupta N., Sen R. (2017). Kinetic and equilibrium modelling of Cu (II) adsorption from aqueous solution by chemically modified Groundnut husk (Arachishypogaea). Journal of Environmental Chemical Engineering. 5, 4274-4281.
https://doi.org/10.1016/j.jece.2017.07.048
[58] Jiang, S., Huang, L., Nguyen, T.A.H., Sik, O.k.Y., Rudolph, V., Yang, H., Zhang D. (2016). Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions. Chemosphere, 142, 64-71.
https://doi.org/10.1016/j.chemosphere.2015.06.079
[59] Aquino, R.R., Tolentino, M.S., Elacion, R.M.P.D., Ladrillono, R., Laurenciana, T.R.C., Basilia, B.A. (2019). Adsorptive removal of lead (Pb2+) ion from water using cellulose acetate/polycaprolactone reinforced nanostructured membrane. IOP Conference Series Earth and Environmental Science, 191, 012139.
https://doi.org/10.1088/1755-1315/191/1/012139
[60] Yogeshwaran, V., Priya, A.K. (2021). Adsorption of lead ion concentration from the aqueous solution using tobacco leaves. Materials Today: Proceedings, 37, 489-496.
https://doi.org/10.1016/j.matpr.2020.05.467
[61] Raeia, B., Barekat, A., Shariatinia, H. (2019). Removal of Ni(II) from aqueous solution using modified MCM-41 nanoadsorbents. Advances in Environmental Technology, 3, 157-169.
https://doi.org/10.22104/aet.2020.4178.1207
[62] Sihag, S., Pal, J. (2023). Adsorption of fluoride ions from aqueous solution by rice husk based nanocellulose. Advances in Environmental Technology, 9(3), 194-214.
https://doi.org/10.22104/AET.2023.5963.1643
[63] Abdollah, F., Borghei, S.M., Moniri, E., Kimiagar, S., Panahi, H.A. (2019). Laser irradiation for controlling size of TiO2–Zeolite nanocomposite in removal of 2,4-dichlorophenoxyacetic acid herbicide. Water Science and Technology, 80, 864-873.
https://doi.org/10.2166/wst.2019.333