Synthesis of hydroxyapatite-zeolite from blast furnace slag and its application for the removal of copper, lead and copper-lead mixture by adsorption

Document Type : Research Paper

Authors

1 Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga 16014 Algiers Algeria

2 Faculty of Sciences, Badji Mokhtar University, Annaba Algeria

Abstract

This article sheds light on the applications of hydroxyapatite-zeolite (HZ) from a steelmaking by-product, namely treated blast-furnace slag (TBFS), in the adsorption of copper, lead and copper-lead mixture in batch mode. Chemical and spectral analysis showed that sodium oxide, silicon dioxide, aluminum oxide, calcium oxide, and phosphorus hemi-pentoxide are the main constituent elements of HZ. After conversion of TBFS to HZ, the specific surface area experienced a significant expansion from 275.8 to 409.63 m2/g, while the point of zero charge (PZC) regressed from 3.8 to 3.4 on the pH scale. The sodium oxide/alumina, lime/phosphorus pentoxide, and silica/alumina ratios, estimated at 1.71, 1.61, and 1.31, respectively, indicate that the slag was transformed into hydroxyapatite-zeolite. The tests revealed that the impact of contact time (50 min), HZ mass (1g), solution agitation (200 rpm), solution pH (5), medium temperature (20 °C), HZ particle size (250µm) and initial concentration of the pollutant solution (240 mg/L) significantly improved the efficiency of these processes, where the adsorption power of copper, lead and mixture reached 124.87 mg/g, 115.14 mg/g and 108.74 mg/g, respectively. The adsorption isotherms demonstrated that the processes in question occurred on a homogeneous surface covered with a single layer, as evidenced by the correlation coefficients and the capacities of adsorption. The kinetic models demonstrated that the sorption processes undertaken obeyed pseudo-second-order kinetics (R² ≥ 0.99). Examination of the adsorption mechanism highlighted that these processes are regulated by various external and internal diffusions. Thermodynamic evaluations confirmed that ongoing procedures are characterized by heat release (exothermic). In addition, they demonstrate their spontaneous character, which is less disordered and results from physical interactions (physical adsorption). It has been demonstrated by the desorption process that HZ can be reused for 6 successive cycles.

Graphical Abstract

Synthesis of hydroxyapatite-zeolite from blast furnace slag and its application for the removal of copper, lead and copper-lead mixture by adsorption

Keywords

Main Subjects


[1]          Sharififard, H. (2018). Statistical physics modeling of equilibrium adsorption of cadmium ions onto activated carbon, chitosan and chitosan/activated carbon composite. Advances in Environmental Technology, 2, 149-154.
https://doi.org/10.22104/aet.2019.2619.1132
[2]          Wang, Z., Liu, J., Yang, Y., Yu, Y., Yan, X., Zhang, Z. (2020).AMn2O4 (A=Cu, Ni and Zn) sorbents coupling high adsorption and regeneration performance for elemental mercury removal from syngas. Journal of Hazardous Materials, 388, 121738.
https://doi.org/10.1016/j.jhazmat.2019.121738
[3]          Abdullah, N., Yusof, N., Lau, W.J., Jaafar, J., Ismail, A.F. (2019). Recent trends of heavy metal removal from water/wastewater by membrane technologies. Journal of Industrial and Engineering Chemistry, 76, 17-38.
https://doi.org/10.1016/j.jiec.2019.03.029
[4]          Badvi Loulic, F., Shirazi, R.H.S.M., Miralinaghi, M., Ahmad Panahi, H, Moniri, E. (2023). Highly efficient removal of toxic As(V), Cd (II), and Pb(II) ions from water samples using MnFe2O4@SBA-15-(CH2)3-adenine as a recyclable bio-nanoadsorbent. Microporous and Mesoporous Materials, 356, 112567.
https://doi.org/10.1016/j.micromeso.2023.112567
[5]          Chouchane, T., Boukari, A. (2022). Impact of Influencing Parameters on the Adsorption of nickel by kaolin in an aqueous medium. Analytical and Bioanalytical Chemistry Research, 9, 381-399.
https://doi.org/10.22036/ABCR.2022.325691.1716
[6]          Chouchane, T., Boukari, A., Khireddine, O., Chibani, S., Chouchane, S. (2023). Cu(II) removal from aqueous medium using blast furnace slag (BFS) as an effective adsorbent. Eurasian Journal of Chemistry, 110(2), 115-130.
https://doi.org/10.31489/2959-0663/2-23-3
[7]          Chouchane, T., Chibani, S., Khireddine, O., Boukari, A. (2023). Adsorption study of Pb(II) ions on the blast furnace slag (BFS) from aqueous solution. Iranian Journal of Materials Science and Engineering, 20, 1-13.
https://doi.org/10.22068/ijmse.3011
[8]          Rezaei, M., Panahi, H. A., Nasrollahi, S., Moniri, E., Torabi Fard, N. (2023). Synthesis and characterization of zinc oxide nanoparticles grafted poly [(N, N-Dimethylacrylamide)-co-(Allyl Acetoacetate)] for removal of Pb (II) in environmental and biological samples. Separation Science and Technology, 58(8), 1516-1526.
https://doi.org/10.1080/01496395.2023.2195081
[9]          Panahi, H.A., Abdouss, M., Ghiabi, F., Moniri, E., Mousavi Shoushtari, A. (2011). Modification and characterization of poly (ethylene terephthalate)-grafted-acrylic acid/acryl amide fiber for removal of lead from human plasma and environmental samples. Journal of Applied Polymer Science, 124, 5236-5246.
https://doi.org/10.1002/app.34224
[10]        Awual, M.R., (2019). Mesoporous composite material for efficient Pb(II) detection and removal from aqueous media. Journal of Environmental Chemical Engineering, 7, 103124.
https://doi.org/10.1016/j.jece.2019.103124
[11]        Betiha, M.A., Moustafa, Y.M., El-Shahat, M.F., Rafik, E. (2020). Polyvinylpyrrolidone- aminopropyl-SBA-15 schiff base hybrid for efficient removal of divalent heavy metal cations from wastewater. Journal of Hazardous Materials, 397, 122675.
https://doi.org/10.1016/j.jhazmat.2020.122675
[12]        Kainth, S., Sharma, P., Pandey, O.P. (2012). Green sorbents from agricultural wastes: A review of sustainable adsorption materials. Applied Surface Science Advances, 19, 100562.
https://doi.org/10.1016/j.apsadv.2023.100562
[13]        Huang, W-H., Wu, R-M., Chang, J-S., Juang, S-Y., Lee, D-J. (2023). Manganese ferrite modified agricultural waste-derived biochars for copper ions adsorption. Bioresource Technology, 367, 128303.
https://doi.org/10.1016/j.biortech.2022.128303
[14]        Obayomi, K.S., Auta, M. (2019). Development of microporous activated aloji clay for adsorption of Pb(II) (II) ions from aqueous solution. Heliyon, 5, e02799.
https://doi.org/10.1016/j.heliyon.2019.e02799
[15]        Ben Ali, M., Wang, F., Boukherroub, R., Lei, W., Xia, M. (2019). Phytic acid-doped polyanilinenanofibers-clay mineral for efficient adsorption of copper (II) ions. Journal of Colloid and Interface Science, 553, 688-698.
https://doi.org/10.1016/j.jcis.2019.06.065
[16]        Chen, W., Lu, Z., Xiao, B., Gu, P., Yao, W., Xing, J., Asiri, A.M., Alamry, K.A., Wang, X., Wang, S. (2019). Enhanced removal of Pb(II) ions from aqueous solution by iron oxide nanomaterials with cobalt and nickel doping. Journal of Cleaner Production, 211, 1250-1258.
https://doi.org/10.1016/j.jclepro.2018.11.254
[17]        Smith, M., Hamwi, B., Rogers, R.E. (2022). Carbon nanomaterial-based aerogels for improved removal of copper(II), zinc(II), and lead(II) ions from water. Environmental Science Advances, 1, 208-215.
https://doi.org/10.1039/d2va00049k
[18]        Wang, H., Shang, H., Sun, X., Hou, L., Wen, M., Qiao, Y. (2019). Preparation of thermo-sensitive surface ion-imprinted polymers based on multi-walled carbon nanotube composites for selective adsorption of Pb(II) ion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 585, 124139.
https://doi.org/10.1016/j.colsurfa.2019.124139
[19]        Rong, M., Xu, X., Wang, K., Lu, L., Bai, Y., Tian, Y., Hou, Z., Zhao, R., Ma, Y., Jiang, Y. (2023). A novel hydroxyapatite-based hollow microsphere nanocomposite for copper ion adsorption. Chemical Physics Letters, 585, 140548.
https://doi.org/10.1016/j.cplett.2023.140548
[20]        Alkherraz, A.M., Ali, A.K., Elsherif K.M. (2020). Removal of Pb(II), Zn(II), Cu(II) and Cd(II) from aqueous solutions by adsorption onto olive branches activated carbon: equilibrium and thermodynamic studies. Chemistry Internationnal, 6, 11-20.
https://doi.org/10.5281/zenodo.2579465
[21]        Tauetsile, P.J., Oraby, E.A., Eksteen, J.J. (2018). Adsorption behaviour of copper and gold Glycinates in alkaline media onto activated carbon. Part 2, Kinetics. Hydrometallurgy, 178, 195-201.
https://doi.org/10.1016/j.hydromet.2018.04.016
[22]        Chouchane, T., Khireddine, O., Boukari, A. (2021). Kinetic studies of Ni(II) ions adsorption from aqueous solutions using the blast furnace slag (BF slag). Journal of Engineering and Applied Science, 68, 34.
https://doi.org/10.1186/s44147-021-00039-3
[23]        Chouchane, T., Boukari, A., Khireddine, O., Chibani, S., Chouchane, S. (2023). Equilibrium, kinetics, and thermodynamics of batch adsorption of Mn(II) ions on blast furnace slag (BFS) and kaolin (KGA). Journal of Engineering and Applied Science, 70, 58.
https://doi.org/10.1186/s44147-023-00218-4
[24]        Chouchane, T., Khireddine, O., Chibani, S., Boukari, A. (2023). Removal of Cr(III), Pb(II) and Cr-Pb Mixture by Blast Furnace Slag (BFS) in Solution. Analytical and Bioanalytical Chemistry Research, 10, 251-268.
https://doi.org/10.22036/ABCR.2022.365182.18
[25]        Li, C.X., Zhang, Q.W., Li, L. (2021) Synthesis of NaA zeolite from blast furnace slag (BFS) and Its utilization for adsorption of basic dye (methylene blue). Journal of Physics: Conference Series, 2224, 012068.
https://doi.org/10.1088/1742-6596/2224/1/012068
[26]        Dhmees, A.S., Klaleel, N.M., Mahoud, S.A. (2018). Synthesis of silica nanoparticles from blast furnace slag as cost-effective adsorbent for efficient azo-dye removal. Egyptian Journal of Petroleum, 27, 1113-1121.
https://doi.org/10.1016/j.ejpe.2018.03.012
[27]        Xue, Y., Wu, S., Zhou, M. (2013). Adsorption characterization of Cu(II) from aqueous solution onto basic oxygen furnace slag. Chemical Engineering Journal, 231, 355-364.
https://doi.org/10.1016/j.cej.2013.07.045
[28]        Le, Q.T.N., Vivas, E.L., Cho, K. (2021). Oxalated blast-furnace slag for the removal of cobalt(II) ions from aqueous solutions. Journal of Industrial and Engineering Chemistry, 95, 57-65.
https://doi.org/10.1016/j.jiec.2020.12.003
[29]        Yamaguchi, S., Hongo, T. (2021). Synthesis of metaettringite from blast furnace slag and evaluation of its boron adsorption ability. Environmental Science and Pollution Research, 28, 15070-15075.
https://doi.org/10.1007/s11356-020-11028-z
[30]        Piatak, N.M., Seal, R.R., Hoppe, D.A., Green, C.J., Buszka, P.M. (2019). Geochemical characterization of iron and steel slag and its potential to remove phosphate and neutralize acid. Minerals, 9, 468.
https://doi.org/10.3390/min9080468
[31]        Zuo, M., Renman, G., Gustafsson, J.P., Klysubun, W. (2018). Phosphorus removal by slag depends on its mineralogical composition: a comparative study of aod and eaf slags. Journal of Water Process Engineering, 25, 105-112.
https://doi.org/10.1016/j.jwpe.2018.07.003
[32]        Navarro, C., Díaz, M., Villa-García, M.A. (2010). Physico-chemical characterization of steel slag. study of its behavior under simulated environmental conditions. Environmental Science & Technology, 44(14), 5383-5388.
https://doi.org/10.1021/es100690b
[33]        Li, C., Li, X., Yu, Y., Zhang, Q., Li, L., Zhong, H., Wang, S. (2022). Novel conversion for blast furnace slag (BFS) to the synthesis of hydroxyapatite-zeolite material and its evaluation of adsorption properties. Journal of Industrial and Engineering Chemistry, 105, 63-73.
https://doi.org/10.1016/j.jiec.2021.08.017
[34]        Basaleh, A.A., Al-Malack, M.H., Saleh, T.A. (2021). Poly(acrylamide acrylic acid) grafted on steel slag as an efficient magnetic adsorbent for cationic and anionic dyes. Journal of Environmental Chemical Engineering, 9, 105126.
https://doi.org/10.1016/j.jece.2021.105126
[35]        Brunauer, S., Emmett, P.H., Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309-319.
https://doi.org/10.1021/ja01269a023
[36]        Li, C., Zhong, H., Wang, S., Xue, J.R., Zhang, Z.Y. (2015). A novel conversion process for waste residue: Synthesis of zeolite from electrolytic manganese residue and its application to the removal of heavy metals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 470, 258-267.
https://doi.org/10.1016/j.colsurfa.2015.02.003
[37]        Murakami T., Sugano Y., Narushima T., Iguchi Y., Ouchi C. (2011). Recovery of calcium from BF slag and synthesis of zeolite A using its residue. ISIJ International, 51, 901-905.
https://doi.org/10.2355/isijinternational.51.901
[38]        Mustapha, L.S., Yusuff, A.S., Dim, P.E. (2023). RSM optimization studies for cadmium ions adsorption onto pristine and acid-modified kaolinite clay. Heliyon, 9(8), e18634.
https://doi.org/10.1016/j.heliyon.2023.e18634
[39]        Hussain, N., Chantrapromma, S., Suwunwong, T., Phoungthong, K. (2020). Cadmium (II) removal from aqueous solution using magnetic spent coffee ground biochar: kinetics, isotherm and thermodynamic adsorption. Materials Research Express, 7, 085503.
https://doi.org/10.1088/2053-1591/abae27
[40]        Mustapha, S., Ndamitso, M.M., Abdulkareem, A.S., Tijani, J.O., Mohammed, A.K., Shuaib, D.T. (2019). Potential of using kaolin as a natural adsorbent for the removal of pollutants from tannery wastewater. Heliyon, 5, e02923.
https://doi.org/10.1016/j.heliyon.2019.e02923
[41]        Zhao, Y., Yang, S., Ding, D., Chen, J., Yang, Y., Lei, Z., Feng, C., Zhang, Z. (2013). Effective adsorption of Cr (VI) from aqueous solution using natural Akadama clay. Journal of colloid and interface science, 395, 198-204.
https://doi.org/10.1016/j.jcis.2012.12.054
[42]        Foroutan, R., Mohammadi, R., Farjadfard, S., Esmaeili, H., Ramavi, B., Sorial, G.A. (2019). Eggshell nano-particle potential for methyl violet and mercury ion removal: surface study and field application. Advanced Powder Technology, 30, 2188-2199.
https://doi.org/10.1016/j.apt.2019.06.034
[43]        Simha, P., Banwasi, P., Mathew, M., Ganesapillai, M. (2016). Adsorptive resource recovery from human urine: system design, parametric considerations and response surface optimization. Procedia Engineering,  148,  779-786.
https://doi.org/10.1016/j.proeng.2016.06.557
[44]        Gupta, A., Balomajumder, C. (2017). Statistical optimization of process parameters for thesimultaneous adsorption of Cr (VI) and phenol onto Fe-treated tea waste biomass. Applied Water Science, 7, 4361-4374.
https://doi.org/10.1007/s13201-017-0582-9
[45]        Yogeshwaran, V., Priya, A.K. (2021). Adsorption of lead ion concentration from the aqueous solution using tobacco leaves. Materials Today: Proceedings, 37, 489-496.
https://doi.org/10.1016/j.matpr.2020.05.467
[46]        Karami, K., Beram, S.M., Bayat, P., Siadatnasab, F., Ramezanpour, A. (2022). A novel nanohybrid based on metal–organic framework MIL101-Cr/PANI/Ag for the adsorption of cationic methylene blue dye from aqueous solution. Journal of Molecular Structure, 1247, 131352.
https://doi.org/10.1016/j.molstruc.2021.131352
[47]        Du, P., Zhang, J., Cai, Z., Ge, F. (2023). High adsorption of cationic dyes from aqueous solution using worm-like porous nanosilica: Isotherm, kinetics and thermodynamics. Materials Today Communications, 35, 105697.
https://doi.org/10.1016/j.mtcomm.2023.105697
[48]        Zhao, H., Ouyang, X.K., Yang, L.Y. (2021). Adsorption of lead ions from aqueous solutions by porous cellulose nanofiber–sodium alginate hydrogel beads. Journal of Molecular Liquids, 324, 115122.
https://doi.org/10.1016/j.molliq.2020.115122
[49]        Chouchane, T., Yahi, M., Boukari, A., Balaska, A., Chouchane, S. (2016). Adsorption of the copper in solution by the kaolin. Journal of Materials and Environmental Science, 7, 2825-2842.
http://www.jmaterenvironsci.com/Document/vol7/vol7_N8/295-JMES-1856-Chouchane.pdf
[50]        Jiang, S., Huang, L., Nguyen, T.A.H., Sik, O.k. Y., Rudolph, V., Yang, H. , Zhang D. (2016). Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions. Chemosphere, 142, 64-71.
https://doi.org/10.1016/j.chemosphere.2015.06.079
[51]        Iqbal, J., Wattoo, F.H., Wattoo, M.H.S., Malik, R., Tirmizi, S.A., Imran, M., Ghangro A.B. (2011). Adsorption of acid yellow dye on flakes of chitosan prepared from fishery wastes. Arabian Journal of Chemistry, 4, 389-395.
https://doi.org/10.1016/j.arabjc.2010.07.007
[52]        Chouchane, T., Abedghars, M.T., Chouchane, S., Boukari, A. (2024). Improvement of the sorption capacity of methylene blue dye using slag, a steel by product. Kuwait Journal of Science, 51, 100210.
https://doi.org/10.1016/j.kjs.2024.100210
[53]        Wekoye, J.N., Wanyonyi, W.C., Wangila, P.T., Tonui, M.K. (2020). Kinetic and equilibrium studies of congo red dye adsorption on cabbage waste powder. Environmental Chemistry and Ecotoxicology, 2, 24-31.
https://doi.org/10.1016/j.enceco.2020.01.004
[54]        Cherono, F., Mburu, N., Kakoi B. (2021). Adsorption of lead, copper and zinc in a multi-metal aqueous solution by waste rubber tires for the design of single batch adsorber. Heliyon, 7, e08254.
https://doi.org/10.1016/j.heliyon.2021.e08254
[55]        Chouchane, T., Chouchane, S., Boukari, A., Mesalhi, A. (2015). Adsorption of binary mixture lead nickel by kaolin. Journal of Materials and Environmental Science. 6, 924-941.
[56]        Goel, J., Kadirvelu, K., Rajagopal, C. (2004). Competitive sorption of Cu(II), Pb(II) and Hg(II) ions from aqueous solution using coconut shell-based activated carbon. Adsorption Science & Technology, 22, 257-273.
https://doi.org/10.1260/02636170415034
[57]        Gupta N., Sen R. (2017). Kinetic and equilibrium modelling of Cu (II) adsorption from aqueous solution by chemically modified Groundnut husk (Arachishypogaea). Journal of Environmental Chemical Engineering. 5, 4274-4281.
https://doi.org/10.1016/j.jece.2017.07.048
[58]        Jiang, S., Huang, L., Nguyen, T.A.H., Sik, O.k.Y., Rudolph, V., Yang, H., Zhang D. (2016). Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions. Chemosphere, 142, 64-71.
https://doi.org/10.1016/j.chemosphere.2015.06.079
[59]        Aquino, R.R., Tolentino, M.S., Elacion, R.M.P.D., Ladrillono, R., Laurenciana, T.R.C., Basilia, B.A. (2019). Adsorptive removal of lead (Pb2+) ion from water using cellulose acetate/polycaprolactone reinforced nanostructured membrane. IOP Conference Series Earth and Environmental Science, 191, 012139.
https://doi.org/10.1088/1755-1315/191/1/012139
[60]        Yogeshwaran, V., Priya, A.K. (2021). Adsorption of lead ion concentration from the aqueous solution using tobacco leaves. Materials Today: Proceedings, 37, 489-496.
https://doi.org/10.1016/j.matpr.2020.05.467
[61]        Raeia, B., Barekat, A., Shariatinia, H. (2019). Removal of Ni(II) from aqueous solution using modified MCM-41 nanoadsorbents. Advances in Environmental Technology, 3, 157-169.
https://doi.org/10.22104/aet.2020.4178.1207
[62]        Sihag, S., Pal, J. (2023). Adsorption of fluoride ions from aqueous solution by rice husk based nanocellulose. Advances in Environmental Technology, 9(3), 194-214.
https://doi.org/10.22104/AET.2023.5963.1643
[63]        Abdollah, F., Borghei, S.M., Moniri, E., Kimiagar, S., Panahi, H.A. (2019). Laser irradiation for controlling size of TiO2–Zeolite nanocomposite in removal of 2,4-dichlorophenoxyacetic acid herbicide. Water Science and Technology, 80, 864-873.
https://doi.org/10.2166/wst.2019.333