Detection of Resistant Bacteria through Molecular Identification from Traditional Ponds in Tirang Beach, Semarang, Indonesia

Document Type : Research Paper

Authors

1 Department of Aquatic Resources, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Semarang, Indonesia

2 Laboratory of Water Quality, Department of Aquatic Resources, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Semarang, Indonesia

Abstract

The Tirang Beach area in Indonesia is a coastal area with many fish farming ponds, raising milkfish (Chanos chanos), saline tilapia (Oreochromis niloticus), and deep-bodied mojarra fish (Gerres erythrourus). Aquaculture activities in this area are often hampered by bacteria that infect the farmed fish. The use of antibiotics to prevent disease is a growing trend; however, it can lead to antibiotic resistance and residues in the environment. Antibiotic resistance is a global problem that is important to research. This study aimed to monitor the existence of resistant bacteria in sediment and fish from a traditional pond as well as to identify the most resistant bacteria using a molecular approach. The research was carried out from January to April 2024, with data collection using a random sampling method. Samples were taken from the pond sediment and fish gills at three different points. Based on the results, the abundance of bacteria in the sediment and fish gills from the traditional ponds in the Tirang Beach area ranged from 1.53 x 106 to 2.45 x 107 CFU/mL and 7.2 x 105 to 5.52 x 106 CFU/mL, respectively. Furthermore, the resistance level of bacteria against Tetracycline (30 µg), Chloramphenicol (30 µg), Erythromycin (15 µg), and Ciprofloxacin (5 µg) was 36.67, 6.67, 30.00, and 56.67 percent, respectively. Therefore, the antibiotic resistance tests showed that the highest resistance was to Ciprofloxacin. Even though the abundance of bacteria in the sediment was higher than in the fish gills, the resistance bacteria in the fish gills was 82% greater than in the sediment. Moreover, observation through the 16S rRNA gene revealed that the most resistant fish bacteria was Vibrio alginolyticus, which is a rod-shaped Gram-negative bacterium; the most resistant bacteria in the sediment was identified as Vibrio parahaemolyticus, a harmful bacterium well-known as a causative agent of Acute Hepatopancreatic Necrosis Disease (AHPND). Hence, the residual antibiotic in the environment could trigger resistance in Vibrio spp. associated with fish and sediment in the traditional pond, despite the absence of antibiotics usage in this farming.

Graphical Abstract

Detection of Resistant Bacteria through Molecular Identification from Traditional Ponds in Tirang Beach, Semarang, Indonesia

Keywords

Main Subjects


[1]     Prahmani, Y.S., Deanova, D., Fariz, T.R., & Heriyanti, A.P. (2022). The Impact of Abrasion in the Tirang Coastal Area on the Physical Environment in Tugu District. Journal of Urban and Regional Planning, 3(2), 52-59.
http://dx.doi.org/10.26418/uniplan.v3i2.56675
[2]    Sinulingga, H.A., Muskananfola, M.R., & Rudiyanti, S. (2018). The Relationship between Sediment Texture and Organic Matter with Macrozoobentos in Mangrove Habitat of Tirang Beach, Semarang. Management of Aquatic Resources Journal, 6(3), 247-254.
https://doi.org/10.14710/marj.v6i3.20583
[3]    Pandey, P. K., Kass, P. H., Soupir, M. L., Biswas, S., & Singh, V. P. (2014). Contamination of water resources by pathogenic bacteria. AMB Express, 4, 51.
https://doi.org/10.1186/s13568-014-0051-x
[4]   Su, Y., Gao, R., Huang, F., Liang, B., Guo, J., Fan, L., Wang, A., & Gao, S.H. (2024). Occurence, transmission and risks assessment of pathogens in aquatic environments accessible to humans. Journal of Environmental Management, 354:120331. https://doi.org/10.1016/j.jenvman.2024.120331
[5]   Sabdaningsih, A., Adyasari, D., Suryanti, S., Febrianto, S., & Eshananda, Y. (2023). Environmental legacy of aquaculture and industrial activities in mangrove ecosystems. Journal of Sea Research, 196:102454.
https://doi.org/10.1016/j.seares.2023.102454
[6]   Tendencia, E.A., & de la Peña, L.D. (2001). Antibiotic resistance of bacteria from shrimp ponds. Aquaculture, 195(3-4):193-204.
https://doi.org/10.1016/S0044-8486(00)00570-6
[7]   Yuan, X., Lv, Z., Zhang, Z., Han, Y., Liu, Z., & Zhang, H. (2023). A Review of Antibiotics, Antibiotic Resistant Bacteria, and Resistance Genes in Aquaculture: Occurrence, Contamination, and Transmission. Toxics, 11, 420.
https://doi.org/10.3390/toxics11050420
[8] Wulandari, S., Nisa, Y. S., Taryono, T., Indarti, S. dan Sayekti, R. S. (2021). Sterilization of Tissue Culture Equipment and Media. Agrotechnology Innovation, 4(2): 16-19.
https://doi.org/10.22146/a.77010
[9]   Rosmania, R., & Yanti, F. (2020). Calculation of the Number of Bacteria in Microbiology Laboratory Using the Development of Spectrophotometry Method. Jurnal Penelitian Sains, 22(2): 76-86.
https://doi.org/10.56064/jps.v22i2.564
[10]  Tyas, D. E., WIdyorini, N., & Solichin, A. (2018). Differences in the Amount of Bacteria in Sediment in Mangrove and Non-Mangrove Areas in the Waters of Bedono Village, Demak. Management of Aquatic Resources Journal, 7(2): 189-196.
https://doi.org/10.14710/marj.v7i2.22541
[11]  Kurniawan, S.Y., & Ariami, P. (2023). Si Pinter as a Counting Tool for Bacterial Colonies Supporting Microbiology Laboratories. Jurnal Biotek, 11(1): 88-98.
https://doi.org/10.24252/jb.v11i1.35436
[12]        Nazhifah, A. K., Furtuna, D.K., Praja, R. K., Martani, N. S., & Ratnasari, A. (2024). Analysis of Total Plate Counts of Bacteria and the Presence of Salmonella typhi in Chili Sauce of Traders' Snacks in the University of Palangka Raya. Tropis: Jurnal Riset Teknologi Laboratorium Medis, 1(1): 25-44.
https://e-journal.upr.ac.id/index.php/tropis/article/view/11885
[13] Utami, S., Bintari, S. H., & Susanti, R. (2018). Detection of Escherichia coli in Jamu Gendong in Gunungpati With Differential Selective Medium.. Life science, 7(2): 73-81.
https://journal.unnes.ac.id/sju/UnnesJLifeSci/article/view/26968
[14]  Wantania, L. L., Ginting, E. L., & Wullur, S. (2016). Isolasi Bakteri Simbion dengan Spons dari Perairan Tongkeina, Sulawesi Utara. Jurnal LPPM Bidang Sains dan Teknologi, 3(1): 57-65.
https://doi.org/10.35801/jlppmsains.3.1.2016.15208
[15]  Aviany, H.B., & Pujiyanto, S. (2020). Analysis of the Effectiveness of Probiotics in Beauty Products as Antibacterial against Staphylococcus epidermidis Bacteria. Berkala Bioteknologi, 3(2): 24-30.
https://ejournal2.undip.ac.id/index.php/bb/article/view/9657
[16]  Soleha, T. U. (2015). Antibiotic Sensitivity Test. Juke Unila, 5(9): 119-123.
http://download.garuda.kemdikbud.go.id/article.php?article=328320&val=5503&title=Uji%20Kepekaan%20terhadap%20Antibiotik
[17] Muslim, Z., Novrianti, A., & Irnameria, D. (2020). Resistance test of bacterial causes of urinary tract infection against ciprofloxacin and ceftriaxone antibiotics. SANITAS: Jurnal Teknologi Dan Seni Kesehatan, 11(2), 203-212. https://doi.org/10.36525/sanitas.2020.19
[18]  Toy, T. S., Lampus, B. S., & Hutagalung, B. S. (2015). Inhibition Test of Gracilaria sp. Seaweed Extract Against the Growth of Staphylococcus aureus Bacteria. E-GIGI, 3(1): 153-159. https://doi.org/10.35790/eg.3.1.2015.6600
[19]  Ayuningrum, D., Kristiana, R., Asagabaldan, M. A., Sabdono, A., Radjasa, O. K., Nuryadi, H., & Trianto, A. (2017). Isolation, Characterisation and Antagonistic Activity of Bacteria Symbionts Hardcoral Pavona sp. Isolated from Panjang Island, Jepara Against Infectious Multi-Drug Resistant (MDR) Bacteria. In IOP Conference Series: Earth and Environmental Science, 55(1):1-8. https://doi:10.1088/1755-1315/55/1/012029
[20]  Aris, M., Sukenda, H. E., Fatuhcri, M. S., & Munti, Y. (2013). Molecular identification of pathogenic bacteria and PCR primary design. Jurnal Budidaya Perairan, 1(4): 43-50
https://doi.org/10.35800/bdp.1.3.2013.2733
[21] Dewi, D. G. D. P., Mastra, N., & Jirna, I. N. (2018). Differences in Staphylococcus aureus Growth Inhibition Zones in Various Concentrations of Ethanol Extract of Biduri Leaves in Vitro. Meditory, 6(5), 39-45.
https://doi.org/10.33992/m.v6i1.227
[22]  Pratiwi, R. H. (2017). Mechanisms of Defense of Pathogenic Bacteria against Antibiotics. Jurnal pro-life, 4(3): 418-429.
https://doi.org/10.33541/jpvol6Iss2pp102
[23] Anasa, R. B. (2015). Effect of Irrational Antibiotic Use on Bacterial Resistance Rate in Intensive Care Units. Jurnal Agromedicine, 2(4): 486-492. https://juke.kedokteran.unila.ac.id/index.php/agro/article/view/1243
[24] Sukarni, S., Maftuch, M., & Nursyam, H. (2012). Study on the Use of Ciprofloxacin on the Histology of Gill and Liver of Botia Fish (Botia macracanthus, bleeker) Infected with Aeromonas hydrophila Bacteria. The Journal of Experimental Life Science, 2(1): 6-12.
https://doi.org/10.21776/ub.jels.2012.002.01.02
[25] Pusparani, R., Widyorini, N., & Jati, O. E. (2021). Total Analysis of Aeromonas sp. on Tilapia (Oreochromis niloticus) in the Floating Net Cage (KJA) and Non-KJA Rawa Pening Area. Jurnal Pasir Laut, 5(1): 9-16.
https://doi.org/10.14710/jpl.2021.31885
[26] Kamelia, M., Widiani, N., & Adistyaningrum, N. (2018). Analysis of Differences in the Number of Bacteria in Tilapia (Oreochromis niloticus) Aquaculture. Biospecies, 11(2): 76-82.
https://doi.org/10.22437/biospecies.v11i2.5718
[27] Mzula, A., Wambura, P. N., Mdegela, R. H., & G.M. Shirima. (2019). Phenotypic and Molecular Detection of Aeromonas Infection in Farmed Nile Tilapia in Southern Highland and Northern Tanzania. Heliyon, (5): 1 – 8. https://doi.org/10.1016/j.heliyon.2019. e02220
[28] Tjay, T. H., & Raharja, K. (2015). Essential Medicines, 7th Edition. PT. Elex Media Komputindo, Jakarta
http://perpus.fik-unik.ac.id//index.php?p=show_detail&id=5847
[29] Faisal, H., Tarigan, R. E., & Lase, J. (2022). Antibacterial activity of Ag-hydroxyapatite composite of bone-in tuna (Thunnus albacores) against Streptococcus mutans. Jurnal Sains Natural, 12(2), 78-84.
https://doi.org/10.31938/jsn.v%2012i2.378
[30] Hutajulu, I. R., Antara, N. S., & Suhendra, L. (2022). Resistance of Lactic Acid Bacterial Isolate from Asinan Bamboo Bamboo Shoots (Gigantochloa nigrociliata Buse – Kurz) to Antibiotics. Jurnal Rekayasa Dan Manajemen Agroindustri, 10(1): 114-123.
https://doi.org/10.24843/JRMA.2022.v10.i01.p11
[31] Sasongko H. (2014). Resistance Test of Escherichia Coli Bacteria from Sungai Boyong, Sleman Regency to Antibiotics Amoxicillin, Chloramphenicol, Sulfametoxasol, and Streptomycin. Jurnal Bioedukatika, 2(1): 25-29.
https://core.ac.uk/download/pdf/324200569.pdf
[32] Dwidjoseputro. 2012. Fundamentals of Microbiology. UB Press, Jakarta. Dasar-dasar mikrobiologi /D. Dwidjoseputro | OPAC Perpustakaan Nasional RI.
[33] Amin, S.S. Ghozali, T. Z., & Efendi, M. R. S. 2023. Identification of Bacteria from the Palm by Gram Staining. Jurnal Kimia dan Ilmu Lingkungan, 1(1): 30-35.
https://doi.org/10.56071/chemviro.v1i1.563
[34]        Pękala-Safińska, A. 2018. Contemporary Threats of Bacterial Infections in Freshwater Fish. Journal of veterinary research, 62(3): 261-267.
https://doi.org/10.2478/jvetres-2018-0037
[35]  Nursyam, H., & Prihanto, A. A. (2018). Molecular Identification of Mangrove Endophytic Bacteria Rhizophora mucronata Gelatinase Producing (MMP2). Jurnal Pengolahan Hasil Perikanan Indonesia, 21(1), 143-147.
https://doi.org/10.17844/jphpi.v21i1.21537
[36]   Liu, X. F., Zhang, H., Liu, X., Gong, Y., Chen, Y., Cao, Y., & Hu, C. (2014). Pathogenic Analysis of Vibrio alginolyticus Infection in a Mouse Model. Folia microbiologica, 59, 167-171.
https://doi.org/10.1007/s12223-013-0279-x 
[37] Tukan, O. B., Salosso, Y., & Djonu, A. (2024). Prevention of Vibrio alginolyticus Bacterial Infection in Cantang Grouper Fish (Epinephelus sp.) Using Kersen Leaf Decoction (Muntingia calabura). Fisheries Journal, 13(3), 634–646.
https://doi.org/10.29303/jp.v13i3.55
[38]   Zhou, K., Tian, K. Y., Liu, X. Q., Liu, W., Zhang, X. Y., Liu, J. Y., & Sun, F. (2021). Characteristic and Otopathogenic Analysis of a Vibrio alginolyticus Strain Responsible for Chronic Otitis Externa in China. Frontiers in Microbiology, 12(750642):1-15
https://doi.org/10.3389/fmicb.2021.750642
[39]        TriWanda, A., Hastuti, Y. P., & Rahardjo, S. (2023). Antibacterial Activities of Mangrove Plant Extract (Rhizophora stylosa) to the Growth of Bacteria Vibrio parahaemolyticus. Aurelia Journal, 5(1), 47-54.
http://dx.doi.org/10.15578/aj.v5i1.11650
[40]    Vergara., & Jimenez. (2017). Bioactive Components in Moringa Oliefera Leaves Protect Againts Chronic Disease. Antioxidants. 6(4), 91-95.
https://doi.org/10.3390/antiox6040091
[41]  Chowdhury, N. N., Hicks, E., & Wiesner, M. R. (2022). Investigating and Modeling The Regulation of Extracellular Antibiotic Resistance Gene Bioavailability by Naturally Occurring Nanoparticles. Environmental Science and Technology, 56(21): 1-20,
https://doi.org/10.1021/acs.est.2c02878
[42]  Saudi, A.D.A., & Rusdy. (2018). Antibiotic Resistance Test against Bacteria Causing Urinary Tract Infections at Salewangang Maros Hospital. Media Farmasi, 14(2): 27-31.
https://doi.org/10.32382/mf.v14i2.587