Effect of hydraulic retention time (HRT) in an anaerobic baffled reactor (ABR) on the reduction of BOD and COD in slaughterhouse industrial wastewater

Document Type : Research Paper

Authors

1 Department of Environmental Engineering, Faculty of Engineering, Universitas PGRI Adi Buana Surabaya, Jalan Dukuh Menanggal XII/4 Surabaya, 60234, Indonesia

2 CV.Hadi Jaya Putra, Jalan Tandes Lor 22 Surabaya, 60187, Indonesia

Abstract

The slaughterhouse industry generates large volumes of wastewater with high pollutant levels, such as biological oxygen demand (BOD) and chemical oxygen demand (COD). This study investigates using anaerobic baffled reactor (ABR) technology with predetermined hydraulic retention time (HRT) to treat slaughterhouse wastewater containing BOD and COD. The study was carried out in the ABR reactor with a volume of 20,000 cm³ of wastewater on a laboratory scale. The study employed two HRTs: a 2-hour HRT (2h), wastewater was monitored at intervals of 2h for 10h, and a 6-hour HRT (6h), wastewater was monitored at 6h intervals over 30h. Undiluted (RPH-ud) and diluted (RPH-d) slaughterhouse wastewater were used. In the context of ABR technology, the HRT of the 2h and 6h applications demonstrated a strong correlation in reducing BOD₅ and COD levels in slaughterhouse wastewater. The correlation values between the two variables were within the range of 0.95 to 1.0. The most efficient values for the BOD₅ and COD parameters were attained at an HRT of 6h. For BOD₅, RPH-ud achieved a peak efficiency of 62.31%, while RPH-d reached 87.37%. Regarding COD, both RPH-ud and RPH-d exhibited their highest efficiencies with values of 66.98% and 92.69 %, respectively.

Graphical Abstract

Effect of hydraulic retention time (HRT) in an anaerobic baffled reactor (ABR) on the reduction of BOD and COD in slaughterhouse industrial wastewater

Keywords

Main Subjects


[1]          Aziz, A., Basheer, F., Sengar, A., Khan, S. U., & Farooqi, I. H. (2019). Biological wastewater treatment (anaerobic-aerobic) technologies for safe discharge of treated slaughterhouse and meat processing wastewater. Science of the Total Environment, 686, 681-708.
http://doi.org/10/1016/j/scitotenv.2019.05.295 
[2]          Collivignarelli, M. C., Abbà, A., Miino, M. C., & Damiani, S. (2019). Treatments for color removal from wastewater: State of the art. Journal of Environmental Management, 236, 727-745.
https://doi.org/10.1016/j.jenvman.2018.11.094
[3]          Ng, M., Dalhatou, S., Wilson, J., Kamdem, B. P., Temitope, M. B., Paumo, H. K. Paumo, Djelal, H., Assadi, A.A., Nguyen-Tri, P., & Kane, A. (2022). Characterization of slaughterhouse wastewater and development of treatment techniques: a review. Processes, 10(7), 1300.
http://doi.org/10.3390/pr10071300
[4]          Al Kholif, M., Rohmah, M., Nurhayati, I., Walujo, D. A., & Majid, D. (2022). Penurunan beban pencemar rumah potong hewan (RPH) menggunakan sistem biofilter anaerob. Jurnal Sains & Teknologi Lingkungan, 14(2), 100-113.
https://doi.org/10.20885/jstl.vol14.iss2.art1
[5]          Bustillo-Lecompte, C. F., & Mehrvar, M. (2015). Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: A review on trends and advances. Journal of Environmental Management, 161, 287-302.
https://doi.org/10.1016/j.jenvman.2015.07.008
[6]          Liew, Y. X., Chan, Y. J., Manickam, S., Chong, M. F., Chong, S., Tiong, T. J., Lim, J.W., & Pan, G. T. (2020). Enzymatic pretreatment to enhance anaerobic bioconversion of high strength wastewater to biogas: A review. Science of the Total Environment, 713, 136373.
https://doi.org/10.1016/j.scitotenv.2019.136373
[7]          Farahdiba, A. U., Purnomo, Y. S., Sakti, S. N., & Kamal, M. F. (2019). Pengolahan Limbah Domestik Rumah Makan Dengan Proses Moving Bed Biofilm Reactor (MBBR). Jukung (Jurnal Teknik Lingkungan), 5(1).
http://dx.doi.org/10.20527/jukung.v5i1.6198
[8]          Syakhban, A. N. (2020). Analisis Efektivitas Biofilter Aerobik dengan Menggunakan Media Batu Apung dan Serabut Kelapa pada Limbah Rumah Potong Hewan (RPH) (Doctoral dissertation, Politeknik Perkapalan Negeri Surabaya).
http://repository.ppns.ac.id/id/eprint/3115
[9]          Shebl, A., Hassan, A. A., Salama, D. M., Abd El-Aziz, M. E., & Abd Elwahed, M. S. (2019). Green synthesis of nanofertilizers and their application as a foliar for Cucurbita pepo L. Journal of Nanomaterials, 2019(1), 3476347.
https://doi.org/10.1155/2019/3476347
[10]        Van Lier, J. B. (2008). High-rate anaerobic wastewater treatment: diversifying from end-of-the-pipe treatment to resource-oriented conversion techniques. Water Science and Technology, 57(8), 1137-1148.
https://doi.org/10.2166/wst.2008.040
[11]        Zerrouki, S., Rihani, R., Lekikot, K., & Ramdhane, I. (2021). Enhanced biogas production from anaerobic digestion of wastewater from the fruit juice industry by sonolysis: experiments and modelling. Water Science and Technology, 84(3), 644-655.
https://doi.org/10.2166/wst.2021.245
[12]        Hazrati, H., & Shayegan, J. (2011). Optimizing OLR and HRT in a UASB reactor for pretreating high-strength municipal wastewater. Chemical Engineering Transactions, 2011(24), 1285-1290.
https://doi.org/10.3303/CET1124215
[13]        Hu, S., Yang, F., Liu, S., & Yu, L. (2009). The development of a novel hybrid aerating membrane-anaerobic baffled reactor for the simultaneous nitrogen and organic carbon removal from wastewater. Water Research, 43(2), 381-388.
https://doi.org/10.1016/j.watres.2008.10.041
[14]        Cao, W., & Mehrvar, M. (2011). Slaughterhouse wastewater treatment by combined anaerobic baffled reactor and UV/H2O2 processes. Chemical Engineering Research and Design, 89(7), 1136-1143.
https://doi.org/10.1016/j.cherd.2010.12.001
[15]        Ratanatamskul, C., Charoenphol, C., & Yamamoto, K. (2015). Development of the anaerobic baffled reactor-membrane bioreactor (ABR-MBR) as a biological nutrient removal system for high-rise building wastewater recycling. Desalination and Water Treatment, 54(4-5), 908-915.
https://doi.org/10.1080/19443994.2014.910142
[16]        Sung, H. N., Katsou, E., Statiris, E., Anguilano, L., & Malamis, S. (2019). Operation of a modified anaerobic baffled reactor coupled with a membrane bioreactor for the treatment of municipal wastewater in Taiwan. Environmental technology, 40(10), 1233-1238.
https://doi.org/10.1080/09593330.2017.1420102
[17]        Al Smadi, B. M., Al-Hayek, W., & Abu Hajar, H. A. (2019). Treatment of Amman slaughterhouse wastewater by anaerobic baffled reactor. International Journal of Civil Engineering, 17, 1445-1454.
https://doi.org/10.1007/s40999-019-00406-5
[18]        Yousefi, Z., Behbodi, M., & Mohammadpour, R. A. (2018). Slaughterhouse wastewater treatment by combined anaerobic baffled reactor and anaerobic filter: study of OLR and HRT optimization in ABR/AF reactors. Environmental Health Engineering and Management Journal, 5(3), 137-142.
https://doi.10.15171/EHEM.2018.20 
[19]        Al Kholif, M., & Ratnawati, R. (2016). Removal ammonia (NH3) in industrial chicken slaughterhouse by anaerobic biofilter. In Proceeding Seminar International The 1st Seminar on Environment and Health Toward SDG’s Achievement (Vol. 2030, pp. 171-179).
[20]        BSN, SNI 6989.72:2009: Water and wastewater – Part 72: chemical oxygen demand (COD) and biochemical oxygen demand (BOD) test methods. Badan Standardisasi Nasional, 2009. Accessed: Jul. 12, 2023.
[21]        Chia, M. A., Odoh, O. A., & Ladan, Z. (2014). The indigo blue dye decolorization potential of immobilized Scenedesmus quadricauda. Water, Air, & Soil Pollution, 225, 1-9.
https://doi.org/10.1007/s11270-014-1920-2
[22]        Al Kholif, M., Nurhayati, I., Sari, D. A., Sutrisno, J., & Mujiyanti, D. R. (2023). Removal of BOD5 and COD from Domestic Wastewater by Using a Multi-Media-Layering (MML) System. Environment & Natural Resources Journal, 21(6).
https://doi.org/10.32526/ennrj/21/20230202
[23]        Sutrisno, J., Al Kholif, M., Purwanti, L., & Nurhayati, I. (2024). Bibliometrics analysis and future study trends in anaerobic biofilter systems for laundry wastewater treatment. International Journal of Marine Engineering Innovation and Research, 9(3), 486-494
http://dx.doi.org/10.12962/j25481479.v9i3.21544
[24]        Menteri Lingkungan Hidup. (2006). Peraturan Menteri Lingkungan Hidup Nomor 2 tahun 2006 tentang Baku Mutu Air Limbah Rumah Potong Hewan. Indonesia.
[25]        Al Kholif, M., Sutrisno, J., Nurhayati, I., & Setianingrum, R. (2021). The effect of rotor rotation speed on decreased laboratory liquid waste polluting parameters. Indonesian Journal of Urban and Environmental Technology, 5(1), 40-50.
https://doi.org/10.25105/urbanenvirotech.v5i1.10572
[26]        Mishra, S., Singh, V., Ormeci, B., Hussain, A., Cheng, L., & Venkiteshwaran, K. (2023). Anaerobic–aerobic treatment of wastewater and leachate: a review of process integration, system design, performance and associated energy revenue. Journal of Environmental Management, 327, 116898.
https://doi.org/10.1016/j.jenvman.2022.116898
[27]        Bunraksa, T., Kantachote, D., & Chaiprapat, S. (2020). The potential use of purple nonsulfur bacteria to simultaneously treat chicken slaughterhouse wastewater and obtain valuable plant growth promoting effluent and their biomass for agricultural application. Biocatalysis and Agricultural Biotechnology, 28, 101721.
https://doi.org/10.1016/j.bcab.2020.101721
[28]        Al Kholif, M., & Hermana, J. (2013). The Wastewater Treatment of Chicken Slaughterhouse by Using Submerged up flow Anaerobic Biofilter. In 4th International Seminar Department of Environmental Engineering Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember Public Health Program Study, Medical Faculty, Udayana University (pp. 1-7).
[29]        Al Kholif, M., & Abdul Jumali, M. (2017). The Effect of Pumice Stone Media in Reducing Pollutant Load in Grey Water by Using Anaerobic Biofilter. In Proceedings of the 2nd International Symposium of Public Health (Vol. 1, pp. 10-16).
http://dx.doi.org/10.5220/0007508300100016
[30]        Ombregt, J. P., & Bambridge, M. (2012). Meat processing: Green energy from wastewater. Filtration Separation, 49(3), 44-45.
https://doi.org/10.1016/S0015-1882(12)70147-7
[31]        Al Kholif, M. & Sugito. (2020). Pengaruh Beban Hidrolik pada Biofilter Anaerobik untuk Mengolah Air Limbah Rumah Potong Ayam dengan Menggunakan Persamaan Eckenfelder. Jurnal Ilmu Lingkungan, 18(3), 446-454.
https://doi.org/10.14710/jil.18.3.446-454
[32]        Aleksić, N., Nešović, A., Šušteršič, V., Gordić, D., & Milovanović, D. (2020). Slaughterhouse water consumption and wastewater characteristics in the meat processing industry in Serbia. Desalin Water Treat, 190, 98-112.
https://doi.org/10.5004/dwt.2020.25745
[33]        Agabo-García, C., Solera, R., & Pérez, M. (2020). First approaches to valorizate fat, oil and grease (FOG) as anaerobic co-substrate with slaughterhouse wastewater: Biomethane potential, settling capacity and microbial dynamics. Chemosphere, 259, 127474.
https://doi.org/10.1016/j.chemosphere.2020.127474
[34]        Yousefi, Z., Yazdani Cherati, J., Movahedi, M., & Kariminejad, F. (2015). Effect of organic loading rate on the performance of anaerobic process in treatment of pulp and paper mill effluents. Journal of Mazandaran University of Medical Sciences, 25(131), 136-150.
http://jmums.mazums.ac.ir/article-1-6580-en.html
[35]        Khan, A., Khan, S. J., Miran, W., Zaman, W. Q., Aslam, A., & Shahzad, H. M. A. (2023). Feasibility Study of Anaerobic Baffled Reactor Coupled with Anaerobic Filter Followed by Membrane Filtration for Wastewater Treatment. Membranes, 13(1), 79.
https://doi.org/10.3390/membranes13010079
[36]        Polprasert, C., Kemmadamrong, P., & Tran, F. T. (1992). Anaerobic baffle reactor (ABR) process for treating a slaughterhouse wastewater. Environmental Technology, 13(9), 857-865.
https://doi.org/10.1080/09593339209385220
[37]        Moradgholi, M., Massoudinejad, M., Aghayani, E., & Yazdanbakhsh, A. (2019). Performance of electrical stimulated anaerobic baffled reactor for removal of typical pollutants from low-strength municipal wastewater at low temperatures. Environmental Health Engineering and Management Journal. 6(2), 121-128.‎
https://doi.org/10.15171/EHEM.2019.14