[1] Sarwar, N., Imran, M., Shaheen, M.R., Ishaque, W., Kamran, M.A., Matloob, A., Rehim, A., & Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere, 171, 710-721.
https://doi.org/10.1016/j.chemosphere.2016.12.116
[2] Kumar, S., Prasad, S., Yadav, K.K., Shrivastava, M., Gupta, N., Nagar, S., Bach, Q.V., Kamyab, H., Khan, S.A., Yadav, S., & Malav, L.C. (2019). Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches-A review. Environmental Research, 108792.
https://doi.org/10.1016/j.envres.2019.108792
[3] He, Z., Shentu, J., Yang, X., Baligar, V.C., Zhang, T., & Stoffella, P.J. (2015). Heavy metal contamination of soils: sources, indicators and assessment. Journal of Environmental Indicators, 9, 17-18.
https://www.scirp.org/reference/referencespapers?referenceid=2474102
[4] Ashraf, S., Ali, Q., Zahir, Z.A., Ashraf, S., & Asghar, H.N. (2019). Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety, 174, 714-727.
https://doi.org/10.1016/j.ecoenv.2019.02.068
[5] Kabirifar, K., Mojtahedi, M., Wang, C., & Tam, V. W. (2020). Construction and demolition waste management contributing factors coupled with reduce, reuse, and recycle strategies for effective waste management: A review. Journal of Cleaner Production, 263, 121265.
https://doi.org/10.1016/j.jclepro.2020.121265
[6] Liao, N., Li, Q., Zhang, W., Zhou, G., Ma, L., Min, W., et al. (2016). Effects of biochar on soil microbial community composition and activity in drip-irrigated desert soil. European Journal of Soil Biology, 72, 27-34.
https://doi.org/10.1016/j.ejsobi.2015.12.008
[7] Past, V., Yaghmaeian, K., Naderi, M., & Naderi, N. (2023). Management of the construction and demolition waste (CDW) and determination of the best disposal alternative by FAHP (Fuzzy Analytic Hierarchy Process): A case study of Tehran, Iran. Journal of the Air & Waste Management Association, 73(4), 271-284.
https://doi.org/10.1080/10962247.2023.2178542
[8] Yao, Y., Tong, L., Zhao, R., Wang, Q., Qiu, J., Wang, F., Li, J., Yan, Y., He, Y., & Li, S. (2023). Leaching of heavy metal(loids) from historical Pb–Zn mining tailing in abandoned tailing deposit: Up-flow column and batch tests. Journal of Environmental Management, 325, 116572.
https://doi.org/10.1016/j.jenvman.2022.116572
[9] Grathwohl, P. (2014). On equilibration of pore water in column leaching tests. Waste Management, 34(5), 908-918.
https://doi.org/10.1016/j.wasman.2014.02.012
[10] Wang, F., Li, W., Wang, H., Hu, Y., & Cheng, H. (2024). The leaching behavior of heavy metal from contaminated mining soil: The effect of rainfall conditions and the impact on surrounding agricultural lands. Science of the Total Environment, 914, 169877.
https://doi.org/10.1016/j.scitotenv.2024.169877
[11] Kalbe, U., Berger, W., Eckardt, J., & Simon, F. G. (2008). Evaluation of leaching and extraction procedures for soil and waste. Waste Management, 28(6), 1027-1038.
https://doi.org/10.1016/j.wasman.2007.03.008
[12] El-Naggar, A., Lee, S. S., Rinklebe, J., Farooq, M., Song, H., Sarmah, A. K., et al. (2019). Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma, 337, 536-554.
https://doi.org/10.1016/j.geoderma.2018.09.034
[13] Burachevskaya, M., Mandzhieva, S., Bauer, T., Minkina, T., Rajput, V., Chaplygin, V., et al. (2021). The effect of granular activated carbon and biochar on the availability of Cu and Zn to Hordeum sativum Distichum in contaminated soil. Plants, 10(5), 841.
https://doi.org/10.3390/plants10050841
[14] Chen, Y., Wang, Y., Zheng, R., Wen, J., Li, J. Y., Wang, Q., et al. (2021). Stabilization of heavy metals in sediments: A bioavailability-based assessment of carbon adsorbent efficacy using diffusive gradients in thin films. Aquaculture and Fisheries, 6(6), 601-608.
https://doi.org/ 10.1016/j.aaf.2020.07.007
[15] Skjennum, K. A., French, H. K., Carotenuto, P., & Okkenhaug, G. (2023). Combined column test for characterization of leaching and transport of trace elements in contaminated soils. Water, 15(5), 874.
https://doi.org/10.3390/w15050874
[16] Li, X., Shen, Q., Zhang, D., Mei, X., Ran, W., Xu, Y., et al. (2013). Functional groups determine biochar properties (pH and EC) as studied by two-dimensional 13C NMR correlation spectroscopy. PLoS One, 8(6), e65949.
https://doi.org/10.1371/journal.pone.0065949
[17] DIN 19528. (2009). Leaching of solid materials - Percolation method for the joint examination of the leaching behaviour of organic and inorganic substances for materials with a particle size up to 32 mm - Basic characterization using a comprehensive column test and compliance test using a quick column test. German Standardisation Organisation.
https://www.dinmedia.de/en/standard/din-19528/104285985
[18] Oest, J. (2014). The Effects of Particle Size Distribution and Crushing on the Release of Substances from Recycled Construction and Demolition Waste (Master's thesis, University of Tubingen, Germany).
[19] American Public Health Association (APHA). (2005). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association.
[20] United States Environmental Protection Agency (USEPA). (1992). Method 3005A. Acid Digestion of Waters for Total Recoverable or Dissolved Metals for Analysis by FLAA or ICP Spectroscopy. In Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, SW-846 (3rd ed.). Washington, DC: United States Environmental Protection Agency.
https://www.epa.gov/hw-sw846/sw-846-test-method-3005a-acid-digestion-waters-total-recoverable-or-dissolved-metals
[21] Asgari, A., Ghorbanian, T., Yousefi, N., Dadashzadeh, D., Khalili, F., & Bagheri, A., et al. (2017). Quality and quantity of construction and demolition waste in Tehran. Journal of Environmental Health Science and Engineering, 15(1), 1-8.
https://doi.org/10.1186/s40201-017-0276-0
[22] Susset, B., & Grathwohl, P. (2011). Leaching standards for mineral recycling materials – A harmonized regulatory concept for the upcoming German Recycling Decree. Waste Management, 31(2), 201-214.
https://doi.org/10.1016/j.wasman.2010.08.017
[23] Susset, B., & Leuchs, W. (2008). Stofffreisetzung aus mineralischen Ersatzbaustoffen und Böden: Ermittlung der Quellstärke-Entwicklung und des Rückhalte-und/oder Abbaupotentials mittels Freilandlysimetern und Laborelutionen. Schlussbericht.
[24] Lehmann, J., & Joseph, S. (Eds.). (2024). Biochar for environmental management: Science, technology and implementation. Taylor & Francis.
[25] Puga, A. P., Melo, L. C. A., de Abreu, C. A., Coscione, A. R., & Paz-Ferreiro, J. (2016). Leaching and fractionation of heavy metals in mining soils amended with biochar. Soil and Tillage Research, 164, 25-33.
https://doi.org/10.1016/j.still.2016.01.008
[26] Yin, Y., Impellitteri, C. A., You, S. J., & Allen, H. E. (2002). The importance of organic matter distribution and extract soil: solution ratio on the desorption of heavy metals from soils. Science of the Total Environment, 287(1-2), 107-119.
https://doi.org/10.1016/s0048-9697(01)01000-2
[27] Yang, X., Liu, J., McGrouther, K., Huang, H., Lu, K., Guo, X., ... & Wang, H. (2016). Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environmental Science and Pollution Research, 23, 974-984.
https://doi.org/10.1007/s11356-015-4233-0
[28] Rees, F., Simonnot, M. O., & Morel, J. L. (2014). Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. European Journal of Soil Science, 65(1), 149-161.
https://doi.org/10.1111/ejss.12107
[29] Rombolà, A. G., Torri, C., Vassura, I., Venturini, E., Reggiani, R., & Fabbri, D. (2022). Effect of biochar amendment on organic matter and dissolved organic matter composition of agricultural soils from a two-year field experiment. Science of the Total Environment, 812, 151422.
https://doi.org/10.1016/j.scitotenv.2022.151422
[30] Chen, G., Zeng, G., Du, C., Huang, D., Tang, L., Wang, L., & Shen, G. (2010). Transfer of heavy metals from compost to red soil and groundwater under simulated rainfall conditions. Journal of Hazardous Materials, 181(1-3), 211-216.
https://doi.org/10.1016/j.jhazmat.2010.04.118
[31] Ting, Y., Chen, C., Ch’ng, B. L., Wang, Y. L., & Hsi, H. C. (2018). Using raw and sulfur-impregnated activated carbon as active cap for leaching inhibition of mercury and methylmercury from contaminated sediment. Journal of Hazardous Materials, 354, 116-124.
https://doi.org/10.1016/j.jhazmat.2018.04.074
[32] Gupta, V. K., Nayak, A., Bhushan, B., & Agarwal, S. (2015). A critical analysis on the efficiency of activated carbons from low-cost precursors for heavy metals remediation. Critical Reviews in Environmental Science and Technology, 45(6), 613-668.
https://doi.org/10.1080/10643389.2013.876526
[33] Jha, M. K., Joshi, S., Sharma, R. K., Kim, A. A., Pant, B., Park, M., & Pant, H. R. (2021). Surface modified activated carbons: Sustainable bio-based materials for environmental remediation. Nanomaterials, 11(11), 3140.
https://doi.org/10.3390/nano11113140
[34] Wang, B., Lan, J., Bo, C., Gong, B., & Ou, J. (2023). Adsorption of heavy metal onto biomass-derived activated carbon. RSC Advances, 13(7), 4275-4302.
https://doi.org/10.1039/D2RA07911A
[35] Jaradat, A. Q., Fowler, K., Grimberg, S. J., & Holsen, T. M. (2009). Transport of colloids and associated hydrophobic organic chemicals through a natural media filter. Journal of Environmental Engineering, 135(1), 36-45.
https://doi.org/10.1061/(ASCE)0733-9372(2009)135:1(36)
[36] Lekfeldt, J. D. S., Holm, P. E., Kjærgaard, C., & Magid, J. (2017). Heavy metal leaching as affected by long-time organic waste fertilizer application. Journal of Environmental Quality, 46(4), 871-878.
https://doi.org/10.2134/jeq2016.11.0458
[37] Bao, T., Wang, P., Hu, B., Wang, X., & Qian, J. (2023). Mobilization of colloids during sediment resuspension and its effect on the release of heavy metals and dissolved organic matter. Science of the Total Environment, 861, 160678.
https://doi.org/10.1016/j.scitotenv.2022.160678
[38] Liao, N., Li, Q., Zhang, W., Zhou, G., Ma, L., Min, W., et al. (2016). Effects of biochar on soil microbial community composition and activity in drip-irrigated desert soil. European Journal of Soil Biology, 72, 27-34.
https://doi.org/10.1016/j.ejsobi.2015.12.008
[39] Reddy, K. R., Yaghoubi, P., & Yukselen-Aksoy, Y. (2015). Effects of biochar amendment on geotechnical properties of landfill cover soil. Waste Management & Research, 33(6), 524-532.
https://doi.org/10.1177/0734242x15580192
[40] Li, X., Shen, Q., Zhang, D., Mei, X., Ran, W., Xu, Y., et al. (2013). Functional groups determine biochar properties (pH and EC) as studied by two-dimensional 13C NMR correlation spectroscopy. PLoS One, 8(6), e65949.
https://doi.org/10.1371/journal.pone.0065949
[41] Gravetter, F. J., Wallnau, L. B., Forzano, L. A. B., & Witnauer, J. E. (2021). Essentials of statistics for the behavioral sciences. Cengage Learning.
[42] Novak, J. M., Busscher, W. J., Watts, D. W., Amonette, J. E., Ippolito, J. A., Lima, I. M., et al. (2012). Biochars impact on soil-moisture storage in an ultisol and two aridisols. Soil Science, 177(5), 310-320.
https://doi.org/10.1097/SS.0b013e31824e5593