[1] Faisal, M., Gani, A., Mulana, F., Daimon, H. (2016). Treatment and utilization of industrial tofu waste in Indonesia. Asian Journal of Chemistry, 28, 501-507.
https://doi.org/10.14233/ajchem.2016.19372
[2] Faisal, M., Machdar, I., Mulana, F., Daimon, H. (2014). Potential renewable energy from tofu processing waste in Banda Aceh city, Indonesia. Asian Journal of Chemistry, 26, 6601.
https://doi.org/10.14233/ajchem.2014.16728
[3] Huang, J., Kankanamge, N. R., Chow, C., Welsh, D. T., Li, T., Teasdale, P. R. (2018). Removing ammonium from water and wastewater using cost-effective adsorbents: A review. Journal of Environmental Sciences, 63, 174-197.
https://doi.org/10.1016/j.jes.2017.09.009
[4] Asadi, A., Zinatizadeh, A. A., Van Loosdrecht, M. (2016). High rate simultaneous nutrients removal in a single air lift bioreactor with continuous feed and intermittent discharge regime: Process optimization and effect of feed characteristics. Chemical Engineering Journal, 301, 200.
https://doi.org/10.1016/j.cej.2016.04.144
[5] Ge, S., Peng, Y., Wang, S., Guo, J., Ma, B., Zhang, L., Cao, X. (2010). Enhanced nutrient removal in a modified step feed process treating municipal wastewater with different inflow distribution ratios and nutrient ratios. Bioresource Technology, 101, 9012-9.
https://doi.org/10.1016/j.biortech.2010.06.151
[6] Papp, L. A., Cardinali-Rezende, J., Júdice, W. A. D. S., Sanchez, M. B., Araújo, W. L. (2023). Total phosphorus contents currently found in the raw wastewater – problems and technical solutions for its removal in full-scale wastewater treatment plants. Resources, Conservation and Recycling, 196, 107026.
https://doi.org/10.2139/ssrn.4345374
[7] Moussavi, G., Jafari, S. J., Yaghmaeian, K. (2015). Enhanced biological denitrification in the cyclic rotating bed reactor with catechol as carbon source. Bioresource Technology, 189, 266. https://doi.org/10.1016/j.biortech.2010.06.151
[8] Jarvie, H. P., Macrae, M. L., Anderson, M., Celmer‐Repin, D., Plach, J., King, S. M. (2022). River metabolic fingerprints and regimes reveal ecosystem responses to enhanced wastewater treatment. Journal of Environmental Quality, 51, 811.
https://doi.org/10.1002/jeq2.20401
[9] Siddiqui, M. I., Rameez, H., Farooqi, I. H., Basheer, F. (2022). Aeration control strategy design based on dissolved oxygen and redox potential profiles for nitrogen and phosphorus removal from sewage in a sequencing batch reactor. Journal of Water Process Engineering, 50, 103259.
https://doi.org/10.1016/j.jwpe.2022.103259
[10] Correa, C. Z., Prates, K. V. M. C., De Oliveira, E. F., Lopes, D. D., Barana, A. C. (2018). Nitrification/denitrification of real municipal wastewater in an intermittently aerated structured bed reactor. Journal of Water Process Engineering, 23, 134.
https://doi.org/10.1016/j.jwpe.2018.03.013
[11] Cortés-Lorenzo, C., Rodríguez-Díaz, M., Sipkema, D., Juárez-Jiménez, B., Rodelas, B., Smidt, H., González-López, J. (2015). Effect of salinity on nitrification efficiency and structure of ammonia-oxidizing bacterial communities in a submerged fixed bed bioreactor. Chemical Engineering Journal, 266, 233.
https://doi.org/10.1016/j.cej.2014.12.083
[12] Peng, F., Gao, Y., Zhu, X., Pang, Q., Wang, L., Xu, W., Yu, J., Gao, P., Huang, J., Cui, Y. (2020). Removal of high-strength ammonia nitrogen in biofilters: Nitrifying bacterial community compositions and their effects on nitrogen transformation. Water, 12, 712.
https://doi.org/10.3390/w12030712
[13] Dos Santos, P. R., Daniel, L. A. (2020). A review: Organic matter and ammonia removal by biological activated carbon filtration for water and wastewater treatment. International Journal of Environmental Science and Technology, 17, 591.
https://doi.org/10.1007/s13762-019-02567-1
[14] Rodziewicz, J., Ostrowska, K., Janczukowicz, W., Mielcarek, A. (2019). Effectiveness of nitrification and denitrification processes in biofilters treating wastewater from de-icing airport runways. Water, 11, 630.
https://doi.org/10.3390/w11030630
[15] Zhang, M., Lawlor, P. G., Hu, Z., Zhan, X. (2013). Nutrient removal from separated pig manure digestate liquid using hybrid biofilters. Environmental Technology, 34, 645.
https://doi.org/10.1080/09593330.2012.710406
[16] Feng, F., Liu, Z.-G., Song, Y.-X., Jiang, C.-K., Chai, X.-L., Tang, C.-J., Chai, L.-Y. (2019). The application of aged refuse in nitrification biofilter: Process performance and characterization. Science of The Total Environment, 657, 1227-1236.
https://doi.org/10.1016/j.scitotenv.2018.12.020.
[17] Aslan, S., Simsek, E. (2012). Influence of salinity on partial nitrification in a submerged biofilter. Bioresource Technology, 118, 24.
https://doi.org/10.1016/j.biortech.2012.05.057
[18] Lunardi, C. N., Gomes, A. J., Rocha, F. S., De Tommaso, J., Patience, G. S. (2021). Experimental methods in chemical engineering: Zeta potential. The Canadian Journal of Chemical Engineering, 99, 627.
https://doi.org/10.1002/cjce.23914
[19] American Public Health Association. (2012). Standard methods for the examination of water and wastewater (22 ed.). Washington, DC: American Public Health Association.
https://www.scirp.org/reference/ReferencesPapers?ReferenceID=1982598
[20] Ji, G., He, C., Tan, Y. (2013). The spatial distribution of nitrogen removal functional genes in multimedia biofilters for sewage treatment. Ecological Engineering, 55, 35-42.
https://doi.org/10.1016/j.ecoleng.2013.02.009
[21] Van De Graff, A. A., De, B. P., Robertson, L. A., Jetten, M. S. M., Kuenen, J. G. (1996). Autotrophic growth of anaerobic in a fluidized bed reactor. Microbiology, 142, 2187.
https://doi.org/10.1099/13500872-142-8-2187
[22] Ji, G., Tong, J., Tan, Y. (2011). Wastewater treatment efficiency of a multi-media biological aerated filter (MBAF) containing clinoptilolite and bioceramsite in a brick-wall embedded design. Bioresource Technology, 102, 550.
https://doi.org/10.1016/j.biortech.2010.07.075
[23] Kato, K., Inoue, T., Ietsugu, H., Koba, T., Sasaki, H., Miyaji, N., Kitagawa, K., Sharma, P. K., Nagasawa, T. (2013). Performance of six multi-stage hybrid wetland systems for treating high-content wastewater in the cold climate of Hokkaido. Japanese Journal of Ecology, 51, 256.
https://doi.org/10.1016/j.ecoleng.2012.12.002
[24] Yanqoritha, N., Turmuzi, M., Derlini. (2017). Acclimatization process of tofu wastewater on hybrid upflow anaerobic sludge blanket reactor using polyvinyl chloride rings as a growth medium. AIP Conference Proceedings, 1840, 110013.
https://doi.org/10.1063/1.4982343
[25] Yanqoritha, N., Turmuzi, M., Irvan, I., Batubara, F., Ilmi, I. (2018). Acclimatization process on hybrid upflow anaerobic sludge blanket reactor (HUASBR) using bioball as growth media with OLR variation for treating tofu wastewater. Oriental Journal of Chemistry, 34, 3100.
https://doi.org/10.13005/ojc/340654
[26] Mei, L., Cui, D., Shen, J., Dutta, D., Brown, W., Zhang, L., Dabipi, I. K. (2021). Electroosmotic mixing of non-newtonian fluid in a microchannel with obstacles and zeta potential heterogeneity. Micromachines, 12, 431.
https://doi.org/10.3390/mi12040431
[27] Peng, Y., Pedersen, B., Ng, S., De Weerdt, K., Jacobsen, S. (2018). Filler and water reducer effects on sedimentation, bleeding and zeta-potential of cement paste. Nordic Concrete Research, 58, 107-125.
https://doi.org/10.2478/ncr-2018-0007
[28] Meng, J., Li, J., He, J., Li, J., Deng, K., Nan, J. (2019). Nutrient removal from high ammonium swine wastewater in upflow microaerobic biofilm reactor suffered high hydraulic load. Journal of Environmental Management, 233, 69.
https://doi.org/10.1016/j.jenvman.2018.12.027
[29] Mroczko, D., Zimoch, I. (2019). The use of zeta potential measurement in surface water coagulation process optimization. Innovations Sustainability Modernity Openness Conference, 16, 21.
https://doi.org/10.3390/proceedings2019016021
[30] Ordaz-Díaz, L. A., Valle-Cervantes, S., Rodríguez-Rosales, J., Bailón-Salas, A. M., Madrid-Del Palacio, M., Torres-Fraga, K., De La Peña-Arellano, L. A. (2017). Zeta potential as a tool to evaluate the optimum performance of a coagulation-flocculation process for wastewater internal treatment for recirculation in the pulp and paper process. Bioresource Technology, 12, 5953.
https://doi.org/10.15376/biores.12.3.5953-5969
[31] Krasnits, E., Beliavsky, M., Tarre, S., Green, M. (2013). PHA based denitrification: Municipal wastewater vs. Acetate. Bioresource Technology, 132C, 28-37.
https://doi.org/10.1016/j.biortech.2012.11.074
[32] Chowdhury, S. D., Bhunia, P. (2021). Simultaneous carbon and nitrogen removal from domestic wastewater using high rate vermifilter. Indian Journal of Microbiology, 61, 218.
https://doi.org/10.1007/s12088-021-00936-4
[33] Guo, J., Zhou, Y., Yang, Y., Chen, C., Xu, J. (2018). Effects of hydraulic loading rate on nutrients removal from anaerobically digested swine wastewater by multi soil layering treatment bioreactor. International Journal of Environmental Research and Public Health, 15, 2688.
https://doi.org/10.3390/ijerph15122688
[34] Gu, S., Liu, L., Zhuang, X., Qiu, J., Zhou, Z. (2022). Enhanced nitrogen removal in a pilot-scale anoxic/aerobic (A/O) process coupling PE carrier and nitrifying bacteria PE carrier: Performance and microbial shift. Sustainability, 14, 7193.
https://doi.org/10.3390/su14127193
[35] Amanatidou, E., Samiotis, G., Bellos, D., Pekridis, G., Trikoilidou, E. (2015). Net biomass production under complete solids retention in high organic load activated sludge process. Bioresource Technology, 182, 193-199.
https://doi.org/10.1016/j.biortech.2015.01.119
[36] Abdalrahman, G., Lai, S. H., Kumar, P., Ahmed, A. N., Sherif, M., Sefelnasr, A., ... & Elshafie, A. (2022). Modeling the infiltration rate of wastewater infiltration basins considering water quality parameters using different artificial neural network techniques. Engineering Applications of Computational Fluid Mechanics, 16(1), 397-421.
https://doi.org/10.1080/19942060.2021.2019126.
[37] Duan, H., Zheng, M., Li, J., Liu, T., Wang, Z., Shrestha, S., ... & Yuan, Z. (2023). High hydraulic loading rates favored mainstream partial nitritation: experimental demonstration and model-based analysis. Acs Es&T Water, 3(2), 556-564.
https://doi.org/10.1021/acsestwater.2c00569
[38] Tra, V. T., Dang, B. T., Binh, Q. A., Nguyen, Q. H., Nguyen, P. T., Nguyen, H. H., ... & Bui, X. T. (2021). Influence of hydraulic loading rate on performance and energy-efficient of a pilot-scale down-flow hanging sponge reactor treating domestic wastewater. Environmental Technology & Innovation, 21, 101273.
https://doi.org/10.1016/J.ETI.2020.101273.
[39] Batubara, F., Turmuzi, M., Irvan, I., & Yanqoritha, N. (2023). Variations of Organic Loading Rate on Tofu Wastewater Degradation using Upflow Anaerobic Sludge Blanket Reactor by Modified Stover-Kincannon Model. International Journal of Engineering, 36(3), 490-496.
https://doi.org/10.5829/IJE.2023.36.03C.08.
[40] Yanqoritha, N., & Turmuzi, M. (2018). The effect of organic loading rate variation on digestion of tofu wastewater using PVC rings as growth media in a hybrid UASB reactor. Oriental Journal of Chemistry, 34(3), 1653.
https://doi.org/10.13005/ojc/340361.
[41] Effendi, A. J., & Sandi, R. R. (2018). Removal of COD & NH3 from Produced Water using Modified Horizontal Subsurface Flow Constructed Wetlands (HSCW). Reaktor, 18(03), 166-170.
https://doi.org/10.14710/reaktor.18.03.166-170
[42] Batubara, F., Turmuzi, M., Irvan, I., & Yanqoritha, N. (2023). Variations of Organic Loading Rate on Tofu Wastewater Degradation using Upflow Anaerobic Sludge Blanket Reactor by Modified Stover-Kincannon Model. International Journal of Engineering, 36(3), 490-496.
https://doi.org/10.5829/ije.2023.36.03c.08
[43] N. Yanqoritha, M. Turmuzi, and Derlini. (2017). Acclimatization process of tofu wastewater on hybrid upflow anaerobic sludge blanket reactor using polyvinyl chloride rings as a growth medium. in AIP Conference Proceedings. vol. 1840, p. 110013.
https://doi.org/10.1063/1.4982343
[44] D. Yanqoritha, N., Muhammad Turmuzi. (2017). Acclimatization process of tofu wastewater on Hybrid Upflow Anaerobic Sludge Blanket reactor using polyvinyl chloride rings as a growth medium. in AIP Conference Proceedings, 2017, p. 1840: 110013.
https://doi.org/10.1063/1.4982343
[45] Nengzi, L., Meng, L., Qiu, Y., Li, X., Didi, K., Li, H., & Qiu, G. (2023). Influence of Nitrite on the Removal of Organic Matter and Manganese Using Pilot-Scale Biofilter: A Kinetic Study. Water, 15(12), 2145.
https://doi.org/10.3390/w15122145
[46] Chaali, M., Naghdi, M., Brar, S. K., & Avalos‐Ramirez, A. (2018). A review on the advances in nitrifying biofilm reactors and their removal rates in wastewater treatment. Journal of Chemical Technology & Biotechnology, 93(11), 3113-3124.
https://doi.org/10.1002/JCTB.5692
[47] Godoy-Olmos, S., Martínez-Llorens, S., Tomás-Vidal, A., Monge-Ortiz, R., Estruch, G., & Jover-Cerdá, M. (2019). Influence of temperature, ammonia load and hydraulic loading on the performance of nitrifying trickling filters for recirculating aquaculture systems. Journal of Environmental Chemical Engineering, 7(4), 103257.
https://doi.org/10.1016/J.JECE.2019.103257
[48] Gu, X., Huang, Y., Hu, Y., Huang, W., & Zhang, M. (2022). Impact of nitrite on partial nitrification in aerobic sewage treatment reactors under mainstream conditions. Journal of Environmental Chemical Engineering, 10(5), 108414.
https://doi.org/10.1016/j.jece.2022.108414
[49] Shao, Z., Shen, Y., Zeng, Z., Jian, Y., Russenberger, M., Zhou, L., & Zhuang, W. Q. (2023). Nitrogen removal crash of denitrification in anaerobic biofilm reactor due to dissimilatory nitrate reduction to ammonium (DNRA) for tofu processing wastewater treatment: Based on microbial community and functional genes. Journal of Water Process Engineering, 51, 103408.
https://doi.org/10.1016/j.jwpe.2022.103408
[50] Wang, X., Cheng, B., Ji, C., Zhou, M., & Wang, L. (2017). Effects of hydraulic retention time on adsorption behaviours of EPS in an A/O-MBR: biofouling study with QCM-D. Scientific reports, 7(1), 2895.
https://doi.org/10.1038/S41598-017-03190-1
[51] Kawan, J. A., Suja’, F., Pramanik, S. K., Yusof, A., Abdul Rahman, R., & Abu Hasan, H. (2022). Effect of hydraulic retention time on the performance of a compact moving bed biofilm reactor for effluent polishing of treated sewage. Water, 14(1), 81.
https://doi.org/10.3390/w14010081
[52] Wang, X., Li, J., Zhang, X., Chen, Z., Shen, J., & Kang, J. (2021). Impact of hydraulic retention time on swine wastewater treatment by aerobic granular sludge sequencing batch reactor. Environmental Science and Pollution Research, 28, 5927-5937.
https://doi.org/10.1007/S11356-020-10922-W
[53] Fuchigami, S., Hatamoto, M., Takagi, R., Akashi, T., Watari, T., & Yamaguchi, T. (2021). Long-term treatment of municipal wastewater using a mesh rotating biological reactor and changes in the biofilm community. Environmental Technology & Innovation, 24, 102074.
https://doi.org/10.1016/J.ETI.2021.102074
[54] Correa, C. Z., Prates, K. V. M. C., de Oliveira, E. F., Lopes, D. D., & Barana, A. C. (2018). Nitrification/denitrification of real municipal wastewater in an intermittently aerated structured bed reactor. Journal of Water Process Engineering, 23, 134-141.
https://doi.org/10.1016/j.jwpe.2018.03.013
[55] Cortés-Lorenzo, C., Rodríguez-Díaz, M., Sipkema, D., Juárez-Jiménez, B., Rodelas, B., Smidt, H., & González-López, J. (2015). Effect of salinity on nitrification efficiency and structure of ammonia-oxidizing bacterial communities in a submerged fixed bed bioreactor. Chemical Engineering Journal, 266, 233-240.
https://doi.org/10.1016/j.cej.2014.12.083
[56] Dos Santos, P. R., & Daniel, L. A. (2020). A review: organic matter and ammonia removal by biological activated carbon filtration for water and wastewater treatment. International journal of environmental science and technology, 17(1), 591-606.
https://doi.org/10.1007/s13762-019-02567-1
[57] Rodziewicz, J., Ostrowska, K., Janczukowicz, W., & Mielcarek, A. (2019). Effectiveness of nitrification and denitrification processes in biofilters treating wastewater from de-icing airport runways. Water, 11(3), 630.
https://doi.org/10.3390/w11030630
[58] Afrizal, A., Yandari, F., Kurniawan, S., & Razi, F. (2020, May). Biogas production from tofu wastewater substrate using HUASB reactors with addition of trace metal. In IOP Conference Series: Materials Science and Engineering (Vol. 801, No. 1, p. 012059). IOP Publishing.
https://doi.org/10.1088/1757-899X/801/1/012059
[59] Yanqoritha, N., Turmuzi, M., & Derlini, D. (2017, May). Acclimatization process of tofu wastewater on hybrid upflow anaerobic sludge blanket reactor using polyvinyl chloride rings as a growth medium. In AIP Conference Proceedings (Vol. 1840, No. 1). AIP Publishing.
https://doi.org/10.1063/1.4982343