Using biofilter aerobic reactor for optimizing the hydraulic loading rate in nitrification process for tofu-manufacturing wastewater management

Document Type : Research Paper

Authors

1 Department of Industrial Engineering, Faculty of Science and Technology, Universitas Prima Indonesia, Medan 20118, North Sumatra, Indonesia

2 Laboratory of Basic Sciences, Faculty of Medicine, Universitas Prima Indonesia, Medan 20118, North Sumatra, Indonesia

Abstract

The working anaerobic reactor in the tofu-manufacturing industry generates wastewater as the effluent which contains high organic nitrogen, the largest pollutant to the surrounding irrigation system of tofu-manufacturing industries. To minimize the environmental problems, this type of wastewater requires a waste management strategy that can transform organic nitrogen from ammonia into nitrate through the nitrification pathway. This study aimed at optimizing the hydraulic loading rate (HLR) of tofu-manufacturing wastewater nitrification employing an aerobic biofilter reactor. The liquid waste was collected from the active hybrid upflow anaerobic sludge blanket reactor of the tofu-manufacturing industry located in Polonia Medan, Indonesia. Using laboratory-standardized techniques, the waste was characterized based on the suspended solids, volatile suspended solids, chemical oxygen demand (COD), ammonia, and nitrate. The result indicated that higher HLR was ineffective for ammonia and COD removals. Treating the wastewater using a biofilter reactor resulted in a brownish-yellow color, suggesting the success of the treatment. The elevation of nitrate content from 55.06 mg/L in the influent to 190.25-225.25 mg/L in the effluent suggests an effective nitrification process. Moreover, the optimizing HLR up to 38 hours at 0.1397 m3/m2 is considered the best condition for operating a biofilter reactor for the nitrification process of tofu wastewater treatment. Finally, effective HLR for nitrification using an aerobic biofilter reactor significantly reduces the danger of environmental pollution from the tofu-manufacturing industries through ammonia and COD minimization.

Graphical Abstract

Using biofilter aerobic reactor for optimizing the hydraulic loading rate in nitrification process for tofu-manufacturing wastewater management

Keywords


[1]  Faisal, M., Gani, A., Mulana, F., Daimon, H. (2016). Treatment and utilization of industrial tofu waste in Indonesia. Asian Journal of Chemistry, 28, 501-507.
https://doi.org/10.14233/ajchem.2016.19372
[2]  Faisal, M., Machdar, I., Mulana, F., Daimon, H. (2014). Potential renewable energy from tofu processing waste in Banda Aceh city, Indonesia. Asian Journal of Chemistry, 26, 6601.
https://doi.org/10.14233/ajchem.2014.16728
[3] Huang, J., Kankanamge, N. R., Chow, C., Welsh, D. T., Li, T., Teasdale, P. R. (2018). Removing ammonium from water and wastewater using cost-effective adsorbents: A review. Journal of Environmental Sciences, 63, 174-197.
https://doi.org/10.1016/j.jes.2017.09.009
[4]  Asadi, A., Zinatizadeh, A. A., Van Loosdrecht, M. (2016). High rate simultaneous nutrients removal in a single air lift bioreactor with continuous feed and intermittent discharge regime: Process optimization and effect of feed characteristics. Chemical Engineering Journal, 301, 200.
https://doi.org/10.1016/j.cej.2016.04.144
[5] Ge, S., Peng, Y., Wang, S., Guo, J., Ma, B., Zhang, L., Cao, X. (2010). Enhanced nutrient removal in a modified step feed process treating municipal wastewater with different inflow distribution ratios and nutrient ratios. Bioresource Technology, 101, 9012-9.
https://doi.org/10.1016/j.biortech.2010.06.151
[6] Papp, L. A., Cardinali-Rezende, J., Júdice, W. A. D. S., Sanchez, M. B., Araújo, W. L. (2023). Total phosphorus contents currently found in the raw wastewater – problems and technical solutions for its removal in full-scale wastewater treatment plants. Resources, Conservation and Recycling, 196, 107026.
https://doi.org/10.2139/ssrn.4345374
[7]  Moussavi, G., Jafari, S. J., Yaghmaeian, K. (2015). Enhanced biological denitrification in the cyclic rotating bed reactor with catechol as carbon source. Bioresource Technology, 189, 266. https://doi.org/10.1016/j.biortech.2010.06.151
[8] Jarvie, H. P., Macrae, M. L., Anderson, M., Celmer‐Repin, D., Plach, J., King, S. M. (2022). River metabolic fingerprints and regimes reveal ecosystem responses to enhanced wastewater treatment. Journal of Environmental Quality, 51, 811.
https://doi.org/10.1002/jeq2.20401
[9]  Siddiqui, M. I., Rameez, H., Farooqi, I. H., Basheer, F. (2022). Aeration control strategy design based on dissolved oxygen and redox potential profiles for nitrogen and phosphorus removal from sewage in a sequencing batch reactor. Journal of Water Process Engineering, 50, 103259.
https://doi.org/10.1016/j.jwpe.2022.103259
[10]  Correa, C. Z., Prates, K. V. M. C., De Oliveira, E. F., Lopes, D. D., Barana, A. C. (2018). Nitrification/denitrification of real municipal wastewater in an intermittently aerated structured bed reactor. Journal of Water Process Engineering, 23, 134.
https://doi.org/10.1016/j.jwpe.2018.03.013
[11]  Cortés-Lorenzo, C., Rodríguez-Díaz, M., Sipkema, D., Juárez-Jiménez, B., Rodelas, B., Smidt, H., González-López, J. (2015). Effect of salinity on nitrification efficiency and structure of ammonia-oxidizing bacterial communities in a submerged fixed bed bioreactor. Chemical Engineering Journal, 266, 233.
https://doi.org/10.1016/j.cej.2014.12.083
[12]  Peng, F., Gao, Y., Zhu, X., Pang, Q., Wang, L., Xu, W., Yu, J., Gao, P., Huang, J., Cui, Y. (2020). Removal of high-strength ammonia nitrogen in biofilters: Nitrifying bacterial community compositions and their effects on nitrogen transformation. Water, 12, 712.
https://doi.org/10.3390/w12030712
[13]  Dos Santos, P. R., Daniel, L. A. (2020). A review: Organic matter and ammonia removal by biological activated carbon filtration for water and wastewater treatment. International Journal of Environmental Science and Technology, 17, 591.
https://doi.org/10.1007/s13762-019-02567-1
[14]  Rodziewicz, J., Ostrowska, K., Janczukowicz, W., Mielcarek, A. (2019). Effectiveness of nitrification and denitrification processes in biofilters treating wastewater from de-icing airport runways. Water, 11, 630.
https://doi.org/10.3390/w11030630
[15]  Zhang, M., Lawlor, P. G., Hu, Z., Zhan, X. (2013). Nutrient removal from separated pig manure digestate liquid using hybrid biofilters. Environmental Technology, 34, 645.
https://doi.org/10.1080/09593330.2012.710406
[16]  Feng, F., Liu, Z.-G., Song, Y.-X., Jiang, C.-K., Chai, X.-L., Tang, C.-J., Chai, L.-Y. (2019). The application of aged refuse in nitrification biofilter: Process performance and characterization. Science of The Total Environment, 657, 1227-1236.
https://doi.org/10.1016/j.scitotenv.2018.12.020.
[17] Aslan, S., Simsek, E. (2012). Influence of salinity on partial nitrification in a submerged biofilter. Bioresource Technology, 118, 24.
https://doi.org/10.1016/j.biortech.2012.05.057
[18]  Lunardi, C. N., Gomes, A. J., Rocha, F. S., De Tommaso, J., Patience, G. S. (2021). Experimental methods in chemical engineering: Zeta potential. The Canadian Journal of Chemical Engineering, 99, 627.
https://doi.org/10.1002/cjce.23914
[19]  American Public Health Association. (2012). Standard methods for the examination of water and wastewater (22 ed.). Washington, DC: American Public Health Association.
https://www.scirp.org/reference/ReferencesPapers?ReferenceID=1982598
[20]  Ji, G., He, C., Tan, Y. (2013). The spatial distribution of nitrogen removal functional genes in multimedia biofilters for sewage treatment. Ecological Engineering, 55, 35-42.
https://doi.org/10.1016/j.ecoleng.2013.02.009
[21]  Van De Graff, A. A., De, B. P., Robertson, L. A., Jetten, M. S. M., Kuenen, J. G. (1996). Autotrophic growth of anaerobic in a fluidized bed reactor. Microbiology, 142, 2187.
https://doi.org/10.1099/13500872-142-8-2187
[22]  Ji, G., Tong, J., Tan, Y. (2011). Wastewater treatment efficiency of a multi-media biological aerated filter (MBAF) containing clinoptilolite and bioceramsite in a brick-wall embedded design. Bioresource Technology, 102, 550.
https://doi.org/10.1016/j.biortech.2010.07.075
[23] Kato, K., Inoue, T., Ietsugu, H., Koba, T., Sasaki, H., Miyaji, N., Kitagawa, K., Sharma, P. K., Nagasawa, T. (2013). Performance of six multi-stage hybrid wetland systems for treating high-content wastewater in the cold climate of Hokkaido. Japanese Journal of Ecology, 51, 256.
https://doi.org/10.1016/j.ecoleng.2012.12.002
[24] Yanqoritha, N., Turmuzi, M., Derlini. (2017). Acclimatization process of tofu wastewater on hybrid upflow anaerobic sludge blanket reactor using polyvinyl chloride rings as a growth medium. AIP Conference Proceedings, 1840, 110013.
https://doi.org/10.1063/1.4982343
[25]  Yanqoritha, N., Turmuzi, M., Irvan, I., Batubara, F., Ilmi, I. (2018). Acclimatization process on hybrid upflow anaerobic sludge blanket reactor (HUASBR) using bioball as growth media with OLR variation for treating tofu wastewater. Oriental Journal of Chemistry, 34, 3100.
https://doi.org/10.13005/ojc/340654
[26] Mei, L., Cui, D., Shen, J., Dutta, D., Brown, W., Zhang, L., Dabipi, I. K. (2021). Electroosmotic mixing of non-newtonian fluid in a microchannel with obstacles and zeta potential heterogeneity. Micromachines, 12, 431.
https://doi.org/10.3390/mi12040431
[27]  Peng, Y., Pedersen, B., Ng, S., De Weerdt, K., Jacobsen, S. (2018). Filler and water reducer effects on sedimentation, bleeding and zeta-potential of cement paste. Nordic Concrete Research, 58, 107-125.
https://doi.org/10.2478/ncr-2018-0007
[28]  Meng, J., Li, J., He, J., Li, J., Deng, K., Nan, J. (2019). Nutrient removal from high ammonium swine wastewater in upflow microaerobic biofilm reactor suffered high hydraulic load. Journal of Environmental Management, 233, 69.
https://doi.org/10.1016/j.jenvman.2018.12.027
[29] Mroczko, D., Zimoch, I. (2019). The use of zeta potential measurement in surface water coagulation process optimization. Innovations Sustainability Modernity Openness Conference, 16, 21.
https://doi.org/10.3390/proceedings2019016021
[30]   Ordaz-Díaz, L. A., Valle-Cervantes, S., Rodríguez-Rosales, J., Bailón-Salas, A. M., Madrid-Del Palacio, M., Torres-Fraga, K., De La Peña-Arellano, L. A. (2017). Zeta potential as a tool to evaluate the optimum performance of a coagulation-flocculation process for wastewater internal treatment for recirculation in the pulp and paper process. Bioresource Technology, 12, 5953.
https://doi.org/10.15376/biores.12.3.5953-5969
[31]        Krasnits, E., Beliavsky, M., Tarre, S., Green, M. (2013). PHA based denitrification: Municipal wastewater vs. Acetate. Bioresource Technology, 132C, 28-37.
https://doi.org/10.1016/j.biortech.2012.11.074
[32] Chowdhury, S. D., Bhunia, P. (2021). Simultaneous carbon and nitrogen removal from domestic wastewater using high rate vermifilter. Indian Journal of Microbiology, 61, 218.
https://doi.org/10.1007/s12088-021-00936-4
[33]  Guo, J., Zhou, Y., Yang, Y., Chen, C., Xu, J. (2018). Effects of hydraulic loading rate on nutrients removal from anaerobically digested swine wastewater by multi soil layering treatment bioreactor. International Journal of Environmental Research and Public Health, 15, 2688.
https://doi.org/10.3390/ijerph15122688
[34] Gu, S., Liu, L., Zhuang, X., Qiu, J., Zhou, Z. (2022). Enhanced nitrogen removal in a pilot-scale anoxic/aerobic (A/O) process coupling PE carrier and nitrifying bacteria PE carrier: Performance and microbial shift. Sustainability, 14, 7193.
https://doi.org/10.3390/su14127193
[35]  Amanatidou, E., Samiotis, G., Bellos, D., Pekridis, G., Trikoilidou, E. (2015). Net biomass production under complete solids retention in high organic load activated sludge process. Bioresource Technology, 182, 193-199.
https://doi.org/10.1016/j.biortech.2015.01.119
[36] Abdalrahman, G., Lai, S. H., Kumar, P., Ahmed, A. N., Sherif, M., Sefelnasr, A., ... & Elshafie, A. (2022). Modeling the infiltration rate of wastewater infiltration basins considering water quality parameters using different artificial neural network techniques. Engineering Applications of Computational Fluid Mechanics, 16(1), 397-421.
https://doi.org/10.1080/19942060.2021.2019126.
[37]  Duan, H., Zheng, M., Li, J., Liu, T., Wang, Z., Shrestha, S., ... & Yuan, Z. (2023). High hydraulic loading rates favored mainstream partial nitritation: experimental demonstration and model-based analysis. Acs Es&T Water, 3(2), 556-564.
https://doi.org/10.1021/acsestwater.2c00569
[38] Tra, V. T., Dang, B. T., Binh, Q. A., Nguyen, Q. H., Nguyen, P. T., Nguyen, H. H., ... & Bui, X. T. (2021). Influence of hydraulic loading rate on performance and energy-efficient of a pilot-scale down-flow hanging sponge reactor treating domestic wastewater. Environmental Technology & Innovation, 21, 101273.
https://doi.org/10.1016/J.ETI.2020.101273.
[39]    Batubara, F., Turmuzi, M., Irvan, I., & Yanqoritha, N. (2023). Variations of Organic Loading Rate on Tofu Wastewater Degradation using Upflow Anaerobic Sludge Blanket Reactor by Modified Stover-Kincannon Model. International Journal of Engineering, 36(3), 490-496.
https://doi.org/10.5829/IJE.2023.36.03C.08.
[40]   Yanqoritha, N., & Turmuzi, M. (2018). The effect of organic loading rate variation on digestion of tofu wastewater using PVC rings as growth media in a hybrid UASB reactor. Oriental Journal of Chemistry, 34(3), 1653.
https://doi.org/10.13005/ojc/340361.
[41]   Effendi, A. J., & Sandi, R. R. (2018). Removal of COD & NH3 from Produced Water using Modified Horizontal Subsurface Flow Constructed Wetlands (HSCW). Reaktor, 18(03), 166-170.
https://doi.org/10.14710/reaktor.18.03.166-170
[42]   Batubara, F., Turmuzi, M., Irvan, I., & Yanqoritha, N. (2023). Variations of Organic Loading Rate on Tofu Wastewater Degradation using Upflow Anaerobic Sludge Blanket Reactor by Modified Stover-Kincannon Model. International Journal of Engineering, 36(3), 490-496.
https://doi.org/10.5829/ije.2023.36.03c.08
[43]   N. Yanqoritha, M. Turmuzi, and Derlini. (2017). Acclimatization process of tofu wastewater on hybrid upflow anaerobic sludge blanket reactor using polyvinyl chloride rings as a growth medium. in AIP Conference Proceedings. vol. 1840, p. 110013.
https://doi.org/10.1063/1.4982343
 
[44]        D. Yanqoritha, N., Muhammad Turmuzi. (2017). Acclimatization process of tofu wastewater on Hybrid Upflow Anaerobic Sludge Blanket reactor using polyvinyl chloride rings as a growth medium. in AIP Conference Proceedings, 2017, p. 1840: 110013.
https://doi.org/10.1063/1.4982343
[45]    Nengzi, L., Meng, L., Qiu, Y., Li, X., Didi, K., Li, H., & Qiu, G. (2023). Influence of Nitrite on the Removal of Organic Matter and Manganese Using Pilot-Scale Biofilter: A Kinetic Study. Water, 15(12), 2145.
https://doi.org/10.3390/w15122145
[46]    Chaali, M., Naghdi, M., Brar, S. K., & Avalos‐Ramirez, A. (2018). A review on the advances in nitrifying biofilm reactors and their removal rates in wastewater treatment. Journal of Chemical Technology & Biotechnology, 93(11), 3113-3124.
https://doi.org/10.1002/JCTB.5692
[47]   Godoy-Olmos, S., Martínez-Llorens, S., Tomás-Vidal, A., Monge-Ortiz, R., Estruch, G., & Jover-Cerdá, M. (2019). Influence of temperature, ammonia load and hydraulic loading on the performance of nitrifying trickling filters for recirculating aquaculture systems. Journal of Environmental Chemical Engineering, 7(4), 103257.
https://doi.org/10.1016/J.JECE.2019.103257
[48]     Gu, X., Huang, Y., Hu, Y., Huang, W., & Zhang, M. (2022). Impact of nitrite on partial nitrification in aerobic sewage treatment reactors under mainstream conditions. Journal of Environmental Chemical Engineering, 10(5), 108414.
https://doi.org/10.1016/j.jece.2022.108414
[49]   Shao, Z., Shen, Y., Zeng, Z., Jian, Y., Russenberger, M., Zhou, L., & Zhuang, W. Q. (2023). Nitrogen removal crash of denitrification in anaerobic biofilm reactor due to dissimilatory nitrate reduction to ammonium (DNRA) for tofu processing wastewater treatment: Based on microbial community and functional genes. Journal of Water Process Engineering, 51, 103408.
https://doi.org/10.1016/j.jwpe.2022.103408
[50]   Wang, X., Cheng, B., Ji, C., Zhou, M., & Wang, L. (2017). Effects of hydraulic retention time on adsorption behaviours of EPS in an A/O-MBR: biofouling study with QCM-D. Scientific reports, 7(1), 2895.
https://doi.org/10.1038/S41598-017-03190-1
[51]        Kawan, J. A., Suja’, F., Pramanik, S. K., Yusof, A., Abdul Rahman, R., & Abu Hasan, H. (2022). Effect of hydraulic retention time on the performance of a compact moving bed biofilm reactor for effluent polishing of treated sewage. Water, 14(1), 81.
https://doi.org/10.3390/w14010081
[52]    Wang, X., Li, J., Zhang, X., Chen, Z., Shen, J., & Kang, J. (2021). Impact of hydraulic retention time on swine wastewater treatment by aerobic granular sludge sequencing batch reactor. Environmental Science and Pollution Research, 28, 5927-5937.
https://doi.org/10.1007/S11356-020-10922-W
[53]  Fuchigami, S., Hatamoto, M., Takagi, R., Akashi, T., Watari, T., & Yamaguchi, T. (2021). Long-term treatment of municipal wastewater using a mesh rotating biological reactor and changes in the biofilm community. Environmental Technology & Innovation, 24, 102074.
https://doi.org/10.1016/J.ETI.2021.102074
[54]        Correa, C. Z., Prates, K. V. M. C., de Oliveira, E. F., Lopes, D. D., & Barana, A. C. (2018). Nitrification/denitrification of real municipal wastewater in an intermittently aerated structured bed reactor. Journal of Water Process Engineering, 23, 134-141.
https://doi.org/10.1016/j.jwpe.2018.03.013
[55]  Cortés-Lorenzo, C., Rodríguez-Díaz, M., Sipkema, D., Juárez-Jiménez, B., Rodelas, B., Smidt, H., & González-López, J. (2015). Effect of salinity on nitrification efficiency and structure of ammonia-oxidizing bacterial communities in a submerged fixed bed bioreactor. Chemical Engineering Journal, 266, 233-240.
https://doi.org/10.1016/j.cej.2014.12.083
[56]        Dos Santos, P. R., & Daniel, L. A. (2020). A review: organic matter and ammonia removal by biological activated carbon filtration for water and wastewater treatment. International journal of environmental science and technology, 17(1), 591-606. 
https://doi.org/10.1007/s13762-019-02567-1
[57]  Rodziewicz, J., Ostrowska, K., Janczukowicz, W., & Mielcarek, A. (2019). Effectiveness of nitrification and denitrification processes in biofilters treating wastewater from de-icing airport runways. Water, 11(3), 630.
https://doi.org/10.3390/w11030630
[58]    Afrizal, A., Yandari, F., Kurniawan, S., & Razi, F. (2020, May). Biogas production from tofu wastewater substrate using HUASB reactors with addition of trace metal. In IOP Conference Series: Materials Science and Engineering (Vol. 801, No. 1, p. 012059). IOP Publishing.
https://doi.org/10.1088/1757-899X/801/1/012059
[59] Yanqoritha, N., Turmuzi, M., & Derlini, D. (2017, May). Acclimatization process of tofu wastewater on hybrid upflow anaerobic sludge blanket reactor using polyvinyl chloride rings as a growth medium. In AIP Conference Proceedings (Vol. 1840, No. 1). AIP Publishing.
https://doi.org/10.1063/1.4982343