A review on H2S adsorption by metal-organic frameworks for air purification application

Document Type : Review Paper

Authors

1 Department of Occupational Health and Safety, Student Research Committee, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2 Department of Occupational Health and Safety, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran

3 Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran

4 Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

Removing hydrogen sulfide (H2S) from the air stream in the workplace is important because this toxic gas can cause health problems for workers and destructive effects on equipment. Metal-organic frameworks (MOFs) are one of the most suitable materials for H2S removal and separation. This review study attempted to comprehensively collect the studies and research regarding the removal of H2S from the air stream using MOFs as an effective adsorbent. The databases of Google Scholar, Pub-Med, Scopus, and Web of Science were used in this study. All sections of the articles were reviewed to extract the required data. Keywords such as hydrogen sulfide, metal-organic frameworks, air purification, removal, and adsorption were used to extract the relevant articles. The results showed that UIO-66 and TOUO were the most commonly used MOFs for H2S absorption. The average H2S absorption among all MOFs was 14.92 mg/g. Advances in MOF design, stability, regeneration efficiency, and process integration further enhance their performance, making them more attractive for industrial-scale applications in gas purification and other separation processes. This review article could provide useful information and insight into the remarkable progress in the field of H2S adsorption by MOFs.

Graphical Abstract

A review on H2S adsorption by metal-organic frameworks for air purification application

Keywords

Main Subjects


[1]          Barea, E., Montoro C., & Navarro, J.A. (2014). Toxic gas removal–metal–organic frameworks for the capture and degradation of toxic gases and vapours. Chemical Society Reviews, 43(16), 5419-5430.
https://doi.org/10.1039/C3CS60475F
[2]          Martínez-Ahumada, E., López-Olvera, A., Jancik, V. J.E. Sánchez-Bautista, E. González-Zamora, V. Martis, D.R. Williams, and I.A. Ibarra, (2020). MOF Materials for the Capture of Highly Toxic H2S and SO2. Organometallics, 39(7),883-915.
https://doi.org/10.1021/acs.organomet.9b00735
[3]          Kim, K. H., Kumar, P., Szulejko, J. E., Adelodun, A. A., Junaid, M. F., Uchimiya, M., & Chambers, S. (2017). Toward a better understanding of the impact of mass transit air pollutants on human health. Chemosphere, 174, 268-279.
https://doi.org/10.1016/j.chemosphere.2017.01.113
[4]          Wilson, S. R., Madronich, S., Longstreth, J. D., & Solomon, K. R. (2019). Interactive effects of changing stratospheric ozone and climate on tropospheric composition and air quality, and the consequences for human and ecosystem health. Photochemical & Photobiological Sciences, 18(3), 775-803.
https://doi.org/10.1039/C8PP90064G
[5]          Tan, K. H., & Wang, T. L. (2005). Asphyxiants: simple and chemical. Ann Disaster Med Vol, 4, 1.
http://disaster.org.tw/english/ann-med/Vol4suppl1/6
[6]          Henretig, F. M., Kirk, M. A., & McKay Jr, C. A. (2019). Hazardous chemical emergencies and poisonings. New England journal of medicine, 380(17), 1638-1655.
https://nejm.org/doi/full/10.1056/NEJMra150469
[7]          Zhao, Z., Wang, S., Yang, Y., Li, X., Li, J., & Li, Z. (2015). Competitive adsorption and selectivity of benzene and water vapor on the microporous metal organic frameworks (HKUST-1). Chemical engineering journal, 259, 79-89.
https://doi.org/10.1016/j.cej.2014.08.012
[8]          Shannon, M. S., Irvin, A. C., Liu, H., Moon, J. D., Hindman, M. S., Turner, C. H., & Bara, J. E. (2015). Chemical and physical absorption of SO2 by N-functionalized imidazoles: experimental results and molecular-level insight. Industrial & Engineering Chemistry Research, 54(1), 462-471.
https://doi.org/10.1021/ie503752h
[9]          Yang, J., Yu, X., Yan, J., & Tu, S. T. (2014). CO2 capture using amine solution mixed with ionic liquid. Industrial & Engineering Chemistry Research, 53(7), 2790-2799.
https://doi.org/10.1021/ie4040658
[10]        McKinlay, A. C., Eubank, J. F., Wuttke, S., Xiao, B., Wheatley, P. S., Bazin, P., & Morris, R. E. (2013). Nitric oxide adsorption and delivery in flexible MIL-88 (Fe) metal–organic frameworks. Chemistry of Materials, 25(9), 1592-1599.
https://doi.org/10.1021/cm304037x
[11]        Reed, D. A., Xiao, D. J., Gonzalez, M. I., Darago, L. E., Herm, Z. R., Grandjean, F., & Long, J. R. (2016). Reversible CO scavenging via adsorbate-dependent spin state transitions in an iron (II)–triazolate metal–organic framework. Journal of the American Chemical Society, 138(17), 5594-5602.
https://doi.org/10.1021/jacs.6b00248
[12]        Xu, J., Xing, W., Wang, H., Xu, W., Ding, Q., Zhao, L., & Yan, Z. (2016). Monte Carlo simulation study of the halogenated MIL-47 (V) frameworks: influence of functionalization on H2S adsorption and separation properties. Journal of materials science, 51, 2307-2319.
https://doi.org/10.1007/s10853-015-9539-2
[13]        Ma, X., Wang, X., & Song, C. (2009). “Molecular basket” sorbents for separation of CO2 and H2S from various gas streams. Journal of the American Chemical Society, 131(16), 5777-5783.
https://doi.org/10.1021/ja8074105
[14]        Kim, K. C. (2018). Design strategies for metal-organic frameworks selectively capturing harmful gases. Journal of Organometallic Chemistry, 854, 94-105.
https://doi.org/10.1016/j.jorganchem.2017.11.017
[15]        Wu, Z., & Zhao, D. (2011). Ordered mesoporous materials as adsorbents. Chemical Communications, 47(12), 3332-3338.
https://doi.org/10.1039/C0CC04909C
[16]        Zhao, L., Bacsik, Z., Hedin, N., Wei, W., Sun, Y., Antonietti, M., & Titirici, M. M. (2010). Carbon dioxide capture on Amine‐Rich carbonaceous materials derived from glucose. ChemSusChem, 3(7), 840-845.
https://doi.org/10.1002/cssc.201000044
[17]        Sigot, L., Ducom, G., & Germain, P. (2016). Adsorption of hydrogen sulfide (H2S) on zeolite (Z): retention mechanism. Chemical Engineering Journal, 287, 47-53.
https://doi.org/10.1016/j.cej.2015.11.010
[18]        Cavenati, S., Grande, C. A., & Rodrigues, A. E. (2004). Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. Journal of Chemical & Engineering Data, 49(4), 1095-1101.
https://doi.org/10.1021/je0498917
[19]        Li, J. R., Kuppler, R. J., & Zhou, H. C. (2009). Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews, 38(5), 1477-1504.
https://doi.org/10.1039/B802426J
[20]        Vellingiri, K., Szulejko, J. E., Kumar, P., Kwon, E. E., Kim, K. H., Deep, A., & Brown, R. J. (2016). Metal organic frameworks as sorption media for volatile and semi-volatile organic compounds at ambient conditions. Scientific reports, 6(1), 27813.
https://doi.org/10.1038/srep27813
[21]        Mishra, P., Mekala, S., Dreisbach, F., Mandal, B., & Gumma, S. (2012). Adsorption of CO2, CO, CH4 and N2 on a zinc based metal organic framework. Separation and Purification Technology, 94, 124-130.
https://doi.org/10.1016/j.seppur.2011.09.041
[22]        Mishra, P., Edubilli, S., Mandal, B., & Gumma, S. (2013). Adsorption of CO2, CO, CH4 and N2 on DABCO based metal organic frameworks. Microporous and mesoporous materials, 169, 75-80.
https://doi.org/10.1016/j.micromeso.2012.10.025
[23]        Kitagawa, S. (2014). Metal–organic frameworks (MOFs). Chemical Society Reviews, 43(16), 5415-5418.
https://doi.org/10.1039/C4CS90059F
[24]        Benedetto, G., Cleary, B. M., Morrell, C. T., Durbin, C. G., Brinks, A. L., Tietjen, J., & Mirica, K. A. (2023). CD-MOF-1 for CO2 uptake: remote and hybrid green chemistry synthesis of a framework material with environmentally conscious applications. Journal of chemical education, 100(3), 1289-1295.
https://doi.org/10.1021/acs.jchemed.2c00922
[25]        Zhu, Z. W., & Zheng, Q. R. (2023). Investigation of cryo-adsorption hydrogen storage capacity of rapidly synthesized MOF-5 by mechanochemical method. International Journal of Hydrogen Energy, 48(13), 5166-5174.
https://doi.org/10.1016/j.ijhydene.2022.11.026
[26]        Lv, H. J., Fan, S. C., Jiang, Y. C., Li, S. N., & Zhai, Q. G. (2023). Design of a robust rod-packing scandium–organic framework for C2Hx/CO2 separation, CO2 storage, and catalytic CO2 cycloaddition. Inorganic Chemistry Frontiers, 10(10), 3015-3024.
https://doi.org/ 10.1039/D3QI00314K
[27]        Peh, S. B., Farooq, S., & Zhao, D. (2023). Techno-economic analysis of MOF-based adsorption cycles for postcombustion CO2 capture from wet flue gas. Chemical Engineering Science, 268, 118390.
https://doi.org/10.1016/j.ces.2022.118390
[28]        Kim, D., Kim, Y., Kim, D., Son, D., Doh, S. J., Kim, M., ... & Yoon, K. R. (2022). Rational process design for facile fabrication of dual functional hybrid membrane of MOF and electrospun nanofiber towards high removal efficiency of PM2. 5 and toxic gases. Macromolecular Rapid Communications, 43(4), 2100648.
https://doi.org/10.1002/marc.202100648
[29]        Chae, Y. S., Park, S., Kang, D. W., Kim, D. W., Kang, M., San Choi, D., & Hong, C. S. (2022). Moisture-tolerant diamine-appended metal-organic framework composites for effective indoor CO2 capture through facile spray coating. Chemical Engineering Journal, 433, 133856.
https://doi.org/10.1016/j.cej.2021.133856
[30]        López-Olvera, A., Pioquinto-García, S., Zárate, J. A., Diaz, G., Martínez-Ahumada, E., Obeso, J. L., & Dávila-Guzmán, N. E. (2022). SO2 capture in a chemical stable Al (III) MOF: DUT-4 as an effective adsorbent to clean CH4. Fuel, 322, 124213.
https://doi.org/10.1016/j.fuel.2022.124213
[31]        Ko, Y., Bae, E. J., K Chitale, S., Soares, C. V., Leitão, A. A., Kim, M. K., ... & Lee, U. H. (2022). Washable and Reusable Zr-Metal–Organic Framework Nanostructure/Polyacrylonitrile Fibrous Mats for Catalytic Degradation of Real Chemical Warfare Agents. ACS Applied Nano Materials, 5(7), 9657-9665.
https://doi.org/10.1021/acsanm.2c01895
[32]        Wang, Q. Y., Sun, Z. B., Zhang, M., Zhao, S. N., Luo, P., Gong, C. H., ... & Zang, S. Q. (2022). Cooperative catalysis between dual copper centers in a metal–organic framework for efficient detoxification of chemical warfare agent simulants. Journal of the American Chemical Society, 144(46), 21046-21055.
https://doi.org/10.1021/jacs.2c05176
[33]        Gong, C. H., Sun, Z. B., Cao, M., Luo, X. M., Wu, J., Wang, Q. Y., ... & Mak, T. C. (2022). Phosphate anion-induced silver-chalcogenide cluster-based metal organic frameworks as dual-functional catalysts for detoxifying chemical warfare agent simulants. Chemical Communications, 58(70), 9806-9809.
https://doi.org/10.1039/D2CC03120E
[34]        Yost, B. T. (2022). Raman Spectroscopy Studies of Defective Metal-Organic Framework Compounds for Use in Chemical Warfare Agent Decomposition (Doctoral dissertation, The University of North Carolina at Chapel Hill).
https://doi.org/10.17615/rgk3-3v28
[35]        Petit, C., Mendoza, B., & Bandosz, T. J. (2010). Hydrogen sulfide adsorption on MOFs and MOF/graphite oxide composites. ChemPhysChem, 11(17), 3678-3684.
https://doi.org/10.1002/cphc.201000689
[36]        Garibay, S. J., Wang, Z., Tanabe, K. K., & Cohen, S. M. (2009). Postsynthetic modification: a versatile approach toward multifunctional metal-organic frameworks. Inorganic chemistry, 48(15), 7341-7349.
https://doi.org/10.1021/ic900796n
[37]        Luan, Y., Qi, Y., Gao, H., Andriamitantsoa, R. S., Zheng, N., & Wang, G. (2015). A general post-synthetic modification approach of amino-tagged metal–organic frameworks to access efficient catalysts for the Knoevenagel condensation reaction. Journal of Materials Chemistry A, 3(33), 17320-17331.
https://doi.org/10.1039/C5TA00816F
[38]        Zhang, H. Y., Yang, C., Geng, Q., Fan, H. L., Wang, B. J., Wu, M. M., & Tian, Z. (2019). Adsorption of hydrogen sulfide by amine-functionalized metal organic framework (MOF-199): An experimental and simulation study. Applied Surface Science, 497, 143815.
https://doi.org/10.1016/j.apsusc.2019.143815
[39]        Carter, J. H., Morris, C. G., Godfrey, H. G., Day, S. J., Potter, J., Thompson, S. P., ... & Schröder, M. (2020). Long-term stability of MFM-300 (Al) toward toxic air pollutants. ACS applied materials & interfaces, 12(38), 42949-42954.
https://doi.org/10.1021/acsami.0c11134
[40]        Valizadeh, B., Nguyen, T. N., Smit, B., & Stylianou, K. C. (2018). Porous metal–organic framework@ polymer beads for iodine capture and recovery using a gas‐sparged column. Advanced Functional Materials, 28(30), 1801596.
https://doi.org/10.1002/adfm.201801596
[41]        Wang, H., Lustig, W. P., & Li, J. (2018). Sensing and capture of toxic and hazardous gases and vapors by metal-organic frameworks. Chemical Society Reviews, 47(13), 4729-4756.
https://doi.org/10.1039/C7CS00885F
[42]        Li, S., Shan, S., Chen, S., Li, H., Li, Z., Liang, Y., & Li, J. (2021). Photocatalytic degradation of hazardous organic pollutants in water by Fe-MOFs and their composites: A review. Journal of Environmental Chemical Engineering, 9(5), 105967.
https://doi.org/10.1016/j.jece.2021.105967
[43]        Bandosz, T. J. (2002). On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures. Journal of colloid and Interface Science, 246(1), 1-20.
https://doi.org/10.1006/jcis.2001.7952
[44]        Borron, S. W., & Bebarta, V. S. (2015). Asphyxiants. Emergency Medicine Clinics, 33(1), 89-115.
https://doi.org/10.1016/j.emc.2014.09.014
[45]        Earnest, G. S., Mickelsen, R. L., McCammon, J. B., & O'Brien, D. M. (1997). Carbon monoxide poisonings from small, gasoline-powered, internal combustion engines: just what is a “well-ventilated area”?. American Industrial Hygiene Association Journal, 58(11), 787-791.
https://doi.org/10.1080/15428119791012289
[46]        Guidotti, T. L. (2010). Hydrogen sulfide: advances in understanding human toxicity. International journal of toxicology, 29(6), 569-581.
https://doi.org/10.1177/109158181038488
[47]        Wylie, S., Wilder, E., Vera, L., Thomas, D., & McLaughlin, M. (2017). Materializing exposure: Developing an indexical method to visualize health hazards related to fossil fuel extraction. Engaging science, technology, and society, 3, 426.
https://doi.org/ 10.17351/ests2017.123.
[48]        Shah, M. S., Tsapatsis, M., & Siepmann, J. I. (2017). Hydrogen sulfide capture: from absorption in polar liquids to oxide, zeolite, and metal–organic framework adsorbents and membranes. Chemical reviews, 117(14), 9755-9803.
https://doi.org/10.1021/acs.chemrev.7b00095
[49]        De Crisci, A. G., Moniri, A., & Xu, Y. (2019). Hydrogen from hydrogen sulfide: towards a more sustainable hydrogen economy. International Journal of Hydrogen Energy, 44(3), 1299-1327.
https://doi.org/10.1016/j.ijhydene.2018.10.035
[50]        Kailasa, S. K., Koduru, J. R., Vikrant, K., Tsang, Y. F., Singhal, R. K., Hussain, C. M., & Kim, K. H. (2020). Recent progress on solution and materials chemistry for the removal of hydrogen sulfide from various gas plants. Journal of Molecular Liquids, 297, 111886.
https://doi.org/10.1016/j.molliq.2019.111886
[51]        Hancock, J. T. (2019). Hydrogen sulfide and environmental stresses. Environmental and Experimental Botany, 161, 50-56.
https://doi.org/10.1016/j.envexpbot.2018.08.034
[52]        Azizi, M., Biard, P. F., Couvert, A., & Ben Amor, M. (2014). Simulation of hydrogen sulphide absorption in alkaline solution using a packed column. Environmental technology, 35(24), 3105-3115.
https://doi.org/10.1080/09593330.2014.931470
[53]        Van Durme, G. P., McNamara, B. F., & McGinley, C. M. (1992). Bench‐scale removal of odor and volatile organic compounds at a composting facility. Water Environment Research, 64(1), 19-27.
https://doi.org/10.2175/WER.64.1.4
[54]        Piché, S., Ribeiro, N., & Bacaoui, A. (2005). Assessment of a redox alkaline/iron-chelate absorption process for the removal of dilute hydrogen sulfide in air emissions. Chemical Engineering Science, 60(22), 6452-6461.
https://doi.org/10.1016/j.ces.2005.04.065
[55]        Zhang, J., & Tong, Z. (2006). Study on catalytic wet oxidation of H2S into sulfur on Fe/Cu catalyst. Journal of Natural Gas Chemistry, 15(1), 63-69.
https://doi.org/10.1016/S1003-9953(06)60009-1
[56]        Couvert, A., Charron, I., Laplanche, A., Renner, C., Patria, L., & Requieme, B. (2006). Treatment of odorous sulphur compounds by chemical scrubbing with hydrogen peroxide—application to a laboratory plant. Chemical Engineering Science, 61(22), 7240-7248.
https://doi.org/10.1016/j.ces.2006.07.030
[57]        Couvert, A., Sanchez, C., Laplanche, A., & Renner, C. (2008). Scrubbing intensification for sulphur and ammonia compounds removal. Chemosphere, 70(8), 1510-1517.
https://doi.org/10.1016/j.chemosphere.2007.08.020
[58]        Krischan, J., Makaruk, A., & Harasek, M. (2012). Design and scale-up of an oxidative scrubbing process for the selective removal of hydrogen sulfide from biogas. Journal of hazardous materials, 215, 49-56.
https://doi.org/10.1016/j.jhazmat.2012.02.028
[59]        Chen, F. E., Mandel, R. M., Woods, J. J., Lee, J. H., Kim, J., Hsu, J. H., & Milner, P. J. (2021). Biocompatible metal–organic frameworks for the storage and therapeutic delivery of hydrogen sulfide. Chemical Science, 12(22), 7848-7857.
https://doi.org/10.1039/D1SC00691F
[60]        Biasca, F. E., Korens, N., Schulman, B. L., & Simbeck, D. R. (1987). Process screening study of alternative gas treating and sulfur removal systems for IGCC (Integrated Gasification Combined Cycle) power plant applications (No. EPRI-AP-5505). SFA Pacific, Inc., Mountain View, CA (USA).
https://doi.org/10.1215/j.spmv..1987.03.013
[61]        Burr, B., & Lyddon, L. (2008, March). A comparison of physical solvents for acid gas removal. In Gas Processors’ Association Convention, Grapevine, TX.
https://www.digitalrefining.com/article/1000560
[62]        Kriebel, M. (1989). Ullmann’s encyclopedia of industrial chemistry, gas production.. In.: VCH Verlagsgesellschaft mbH, Weinheim.
https://doi.org/10.1002/14356007.o17_o02
[63]        Roberts, B. E., & Mather, A. E. (1988). Solubility of H2S and CO2 in sulfolane. The Canadian Journal of Chemical Engineering, 66(3), 519-520.
https://doi.org/10.1002/cjce.5450660328
[64]        Rivas, O. R., & Prausnitz, J. M. (1979). Sweetening of sour natural gases by mixed‐solvent absorption: solubilities of ethane, carbon dioxide, and hydrogen sulfide in mixtures of physical and chemical solvents. AIChE Journal, 25(6), 975-984.
https://doi.org/10.1002/aic.690250608
[65]        Alcalde, R., Garcia, G., Atilhan, M., & Aparicio, S. (2015). Systematic study on the viscosity of ionic liquids: measurement and prediction. Industrial & Engineering Chemistry Research, 54(43), 10918-10924.
https://doi.org/10.1021/acs.iecr.5b02713
[66]        Krishnan, A., Gopinath, K. P., Vo, D. V. N., Malolan, R., Nagarajan, V. M., & Arun, J. (2020). Ionic liquids, deep eutectic solvents and liquid polymers as green solvents in carbon capture technologies: a review. Environmental Chemistry Letters, 18, 2031-2054.
https://doi.org/10.1007/s10311-020-01057-y
[67]        El Achkar, T., Greige-Gerges, H., & Fourmentin, S. (2021). Basics and properties of deep eutectic solvents: a review. Environmental chemistry letters, 19, 3397-3408.
https://doi.org/10.1007/s10311-021-01225-8
[68]        Li, F., Laaksonen, A., Zhang, X., & Ji, X. (2022). Rotten eggs revaluated: Ionic liquids and deep eutectic solvents for removal and utilization of hydrogen sulfide. Industrial & Engineering Chemistry Research, 61(7), 2643-2671.
https://doi.org/10.1021/acs.iecr.1c04142
[69]        Ozekmekci, M., Salkic, G., & Fellah, M. F. (2015). Use of zeolites for the removal of H2S: A mini-review. Fuel Processing Technology, 139, 49-60.
https://doi.org/10.1016/j.fuproc.2015.08.015
[70]        Quan, W., Wang, X., & Song, C. (2017). Selective removal of H2S from biogas using solid amine-based “molecular basket” sorbent. Energy & Fuels, 31(9), 9517-9528.
https://doi.org/10.1021/acs.energyfuels.7b01473
[71]        Cavenati, S., Grande, C. A., & Rodrigues, A. E. (2005). Upgrade of methane from landfill gas by pressure swing adsorption. Energy & fuels, 19(6), 2545-2555.
https://doi.org/10.1021/ef050072h
[72]        Speltini, A., Merli, D., & Profumo, A. (2013). Analytical application of carbon nanotubes, fullerenes and nanodiamonds in nanomaterials-based chromatographic stationary phases: A review. Analytica chimica acta, 783, 1-16.
https://doi.org/10.1016/j.aca.2013.03.041
[73]        Puchana-Rosero, M. J., Adebayo, M. A., Lima, E. C., Machado, F. M., Thue, P. S., Vaghetti, J. C., & Gutterres, M. (2016). Microwave-assisted activated carbon obtained from the sludge of tannery-treatment effluent plant for removal of leather dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 504, 105-115.
https://doi.org/10.1016/j.colsurfa.2016.05.059
[74]        Baker, R. W., & Lokhandwala, K. (2008). Natural gas processing with membranes: an overview. Industrial & Engineering Chemistry Research, 47(7), 2109-2121.
https://doi.org/10.1021/ie071083w
[75]        Mansourizadeh, A., & Ismail, A. F. (2009). Hollow fiber gas–liquid membrane contactors for acid gas capture: a review. Journal of hazardous materials, 171(1-3), 38-53.
https://doi.org/10.1016/j.jhazmat.2009.06.026
[76]        Lallemand, F., Lecomte, F., & Streicher, C. (2005, November). Highly sour gas processing: H2S bulk removal with the Sprex process. In International petroleum technology conference (pp. IPTC-10581). IPTC.
https://doi.org/10.2523/IPTC-10581-MS
[77]        Liu, D., Li, B., Wu, J., & Liu, Y. (2020). Sorbents for hydrogen sulfide capture from biogas at low temperature: A review. Journal of Environmental Chemical Engineering, 18(1), 113-128.
https://doi.org/10.1007/s10311-019-00925-6
[78]        Zulkefli, N. N., Noor Azam, A. M. I., Masdar, M. S., & Isahak, W. N. R. W. (2023). Adsorption–desorption behavior of hydrogen sulfide capture on a modified activated carbon surface. Materials, 16(1), 462.
https://doi.org/10.3390/ma16010462
[79]        Georgiadis, A. G., Charisiou, N., Yentekakis, I. V., & Goula, M. A. (2020). Hydrogen sulfide   (H2S) removal via MOFs. Materials, 13(16), 3640.
https://doi.org/10.3390/ma13163640
[80]        Dey, C., Kundu, T., Biswal, B. P., Mallick, A., & Banerjee, R. (2014). Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 70(1), 3-10.
https://doi.org/10.1107/S2052520613029557
[81]        Safaei, M., Foroughi, M. M., Ebrahimpoor, N., Jahani, S., Omidi, A., & Khatami, M. (2019). A review on metal-organic frameworks: Synthesis and applications. TrAC Trends in Analytical Chemistry, 118, 401-425.
https://doi.org/10.1016/j.trac.2019.06.007
[82]        Raptopoulou, C. P. (2021). Metal-organic frameworks: Synthetic methods and potential applications. Materials, 14(2), 310.
https://doi.org/10.3390/ma14020310
[83]        Halper, S. R., Do, L., Stork, J. R., & Cohen, S. M. (2006). Topological control in heterometallic metal− organic frameworks by anion templating and metalloligand design. Journal of the American Chemical Society, 128(47), 15255-15268.
https://doi.org/10.1021/ja0645483
[84]        Du, M., Li, C. P., & Zhao, X. J. (2006). Metal-controlled assembly of coordination polymers with the flexible building block 4-pyridylacetic acid (Hpya). Crystal growth & design, 6(1), 335-341.
https://doi.org/10.1021/cg0502542
[85]        Hashemi, L., & Morsali, A. (2019). Pillared metal-organic frameworks: Properties and applications. John Wiley & Sons.
https://doi.org/10.1115/j.ws.2019.06.003
[86]        Hashemi, L., Morsali, A. (2016). Metal-Organic Frameworks (MOFs); Principles, synthesis and application. Donyaye Nano, 11(39), 53-57.[in Persian]
https://doi.org/10.1005/vic.440120645
[87]        Jiang, J. (2012). Recent development of in silico molecular modeling for gas and liquid separations in metal–organic frameworks. Current Opinion in Chemical Engineering, 1(2), 138-144.
https://doi.org/10.1016/j.coche.2011.11.002
[88]        Akeremale OK, Ore OT, Bayode AA, Badamasi H, Olusola JA, Durodola SS.(2023). Synthesis, characterization, and activation of metal-organic frameworks (MOFs) for the removal of emerging organic contaminants through the adsorption-oriented process: A review. Results in Chemistry. 1;5:100866.
https://doi.org/10.1016/j.rechem.2023.100866
[89]        Yilmaz, B., Trukhan, N., & Müller, U. (2012). Industrial outlook on zeolites and metal-organic frameworks. Chinese Journal of Catalysis, 33(1), 3-10.
https://doi.org/10.1016/S1872-2067(10)60302-6
[90]        Rabenau, A. (1985). The role of hydrothermal synthesis in preparative chemistry. Angewandte Chemie International Edition in English, 24(12), 1026-1040.
https://doi.org/10.1002/anie.198510261
[91]        Biemmi, E., Christian, S., Stock, N., & Bein, T. (2009). High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1. Microporous and Mesoporous Materials, 117(1-2), 111-117.
https://doi.org/10.1016/j.micromeso.2008.06.040
[92]        Qiu, S., & Zhu, G. (2009). Molecular engineering for synthesizing novel structures of metal–organic frameworks with multifunctional properties. Coordination Chemistry Reviews, 253(23-24), 2891-2911.
https://doi.org/10.1016/j.ccr.2009.07.020
[93]        Yaghi, O. M., & Li, H. (1995). Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. Journal of the American Chemical Society, 117(41), 10401-10402.
https://doi.org/10.1021/ja00146a033
[94]        Stock, N., & Biswas, S. (2012). Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chemical reviews, 112(2), 933-969.
https://doi.org/10.1021/cr200304e
[95]        Dybtsev, D. N., Nuzhdin, A. L., Chun, H., Bryliakov, K. P., Talsi, E. P., Fedin, V. P., & Kim, K. (2006). A homochiral metal–organic material with permanent porosity, enantioselective sorption properties, and catalytic activity. Angewandte Chemie, 118(6), 930-934.
https://doi.org/10.1002/ange.200503023
[96]        Kim, J., Kim, S. H., Yang, S. T., & Ahn, W. S. (2012). Bench-scale preparation of Cu3 (BTC) 2 by ethanol reflux: Synthesis optimization and adsorption/catalytic applications. Microporous and mesoporous materials, 161, 48-55.
https://doi.org/10.1016/j.micromeso.2012.05.021
[97]        Millange, F., El Osta, R., Medina, M. E., & Walton, R. I. (2011). A time-resolved diffraction study of a window of stability in the synthesis of a copper carboxylate metal–organic framework. CrystEngComm, 13(1), 103-108.
https://doi.org/10.1039/C0CE00530D
[98]        Li, P., Cheng, F. F., Xiong, W. W., & Zhang, Q. (2018). New synthetic strategies to prepare metal–organic frameworks. Inorganic Chemistry Frontiers, 5(11), 2693-2708.
https://doi.org/10.1039/C8QI00543E
[99]        Sun C, Zhao KY, Huang ML, Luo CL, Chen XD, Wang M.(2024).Structure regulating of metal clusters in carbonized metallic organic frameworks for high-efficient microwave absorption via tuning interaction strength between metals and ligands. Nano Research. 17(3):1699-709.
https://doi.org/10.1007/s12274-023-6255-0
[100]      Jhung, S. H., Lee, J. H., Yoon, J. W., Serre, C., Férey, G., & San Chang, J. (2007). Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Advanced Materials, 19(1), 121-124.
https://doi.org/10.1002/adma.200601604
[101]      Ni, Z., & Masel, R. I. (2008). Synthesis of non-linear metal-organic framework material useful in eg hydrogen storage involves exposing solution including metal-organic framework precursors to microwave dose to induce crystallization of the framework material (Doctoral dissertation, Ph. D Thesis, University of Illinois).
https://doi.org/10.1032/vr19031
[102]      Hu, Y., Liu, C., Zhang, Y., Ren, N., & Tang, Y. (2009). Microwave-assisted hydrothermal synthesis of nanozeolites with controllable size. Microporous and Mesoporous Materials, 119(1-3), 306-314.
https://doi.org/10.1016/j.micromeso.2008.11.005
[103]      Zhang, S. H., Song, Y., Liang, H., & Zeng, M. H. (2009). Microwave-assisted synthesis, crystal structure and properties of a disc-like heptanuclear Co (II) cluster and a heterometallic cubanic Co (II) cluster. CrystEngComm, 11(5), 865-872.
https://doi.org/10.1039/B815675A
[104]      Firmino, A. D., Mendes, R. F., Ananias, D., Vilela, S. M., Carlos, L. D., Tome, J. P., & Paz, F. A. A. (2017). Microwave Synthesis of a photoluminescent Metal-Organic Framework based on a rigid tetraphosphonate linker. Inorganica chimica acta, 455, 584-594.
https://doi.org/10.1016/j.ica.2016.05.029
[105]      Lee, Y. R., Kim, J., & Ahn, W. S. (2013). Synthesis of metal-organic frameworks: A mini review. Korean Journal of Chemical Engineering, 30, 1667-1680.
https://doi.org/10.1007/s11814-013-0140-6
[106]      Friščić, T., Halasz, I., Beldon, P. J., Belenguer, A. M., Adams, F., Kimber, S. A., & Dinnebier, R. E. (2013). Real-time and in situ monitoring of mechanochemical milling reactions. Nature chemistry, 5(1), 66-73.
https://doi.org/10.1038/NCHEM.1505
[107]      Garay, A. L., Pichon, A., & James, S. L. (2007). Solvent-free synthesis of metal complexes. Chemical Society Reviews, 36(6), 846-855.
https://doi.org/10.1039/B600363J
[108]      Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K., & Pastre, J. (2006). Metal-organic frameworks—prospective industrial applications. Journal of Materials Chemistry, 16(7), 626-636.
https://doi.org/10.1039/B511962F
[109]      Martinez Joaristi, A., Juan-Alcañiz, J., Serra-Crespo, P., Kapteijn, F., & Gascon, J. (2012). Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Crystal Growth & Design, 12(7), 3489-3498.
https://doi.org/10.1021/cg300552w
[110]      Suslick, K. S., Choe, S. B., Cichowlas, A. A., & Grinstaff, M. W. (1991). Sonochemical synthesis of amorphous iron. nature, 353(6343), 414-416.
https://doi.org/ 10.1038/353414a0
[111]      Lee J, Park S, Woo S, Bae C, Jeon Y, Gu M, Kim J, Kim Y, Nam SY, Jung JH, Kim J.(2023). Soft seed-mediated dimensional control of metal-organic framework nanocrystals through oil-in-water microemulsions. Inorganic Chemistry Frontiers. 10(24):7146-54.
https://doi.org/10.1039/D3QI01567J
[112]      Gedanken, A. (2004). Using sonochemistry for the fabrication of nanomaterials. Ultrasonics sonochemistry, 11(2), 47-55.
https://doi.org/10.1016/j.ultsonch.2004.01.037
[113]      Son, W.J., Kim, J., Kim, J., Ahn, W.S.(2008). Sonochemical synthesis of MOF-5. Chemical Communications, 47, 6336-6338.
https://doi.org/10.1016/j.cc.2008.110985
[114]      Jung, D. W., Yang, D. A., Kim, J., Kim, J., & Ahn, W. S. (2010). Facile synthesis of MOF-177 by a sonochemical method using 1-methyl-2-pyrrolidinone as a solvent. Dalton Transactions, 39(11), 2883-2887.
https://doi.org/10.1039/B925088C
[115]      Ye, R., Ni, M., Xu, Y., Chen, H., & Li, S. (2018). Synthesis of Zn-based metal–organic frameworks in ionic liquid microemulsions at room temperature. RSC advances, 8(46), 26237-26242.
https://doi.org/ 10.1039/C8RA04573A
[116]      Zheng, W., Hao, X., Zhao, L., & Sun, W. (2017). Controllable preparation of nanoscale metal–organic frameworks by ionic liquid microemulsions. Industrial & Engineering Chemistry Research, 56(20), 5899-5905.
https://doi.org/10.1021/acs.iecr.7b00694
[117]      Soleimani, B., Niknam-Shahrak, M., Ghahramaninejad, M. (2017). A review on post synthesis modification methods in the MOFs. Farayandno, 12(58),98-121.[in Persian]
https://doi.org/20.1001.1.17356466.1396.12.58.7.6
[118]      Burrows, A.D. (2013) Post-synthetic modification of MOFs. Metal-organic frameworks as heterogeneous catalysts, RSC, 31-75.
https://doi.org/10.1039/9781849737586-00031
[119]      Evans, J. D., Sumby, C. J., & Doonan, C. J. (2014). Post-synthetic metalation of metal–organic frameworks. Chemical Society Reviews, 43(16), 5933-5951.
https://doi.org/10.1039/C4CS00076E
[120]      Karagiaridi, O., Bury, W., Mondloch, J. E., Hupp, J. T., & Farha, O. K. (2014). Solvent‐assisted linker exchange: an alternative to the de novo synthesis of unattainable metal–organic frameworks. Angewandte Chemie International Edition, 53(18), 4530-4540.
https://doi.org/10.1002/anie.201306923
[121]      Fang, Z., Bueken, B., De Vos, D. E., & Fischer, R. A. (2015). Defect‐engineered metal–organic frameworks. Angewandte Chemie International Edition, 54(25), 7234-7254.
https://doi.org/10.1002/anie.201411540
[122]      Zhao, N., Cai, K., & He, H. (2020). The synthesis of metal–organic frameworks with template strategies. Dalton Transactions, 49(33), 11467-11479.
https://doi.org/10.1039/D0DT01879A
[123]      Kooti, M., Pourreza, A., & Rashidi, A. (2018). Preparation of MIL-101-nanoporous carbon as a new type of nanoadsorbent for H2S removal from gas stream. Journal of Natural Gas Science and Engineering, 57, 331-338.
https://doi.org/10.1016/j.jngse.2018.07.015
[124]      Alivand, M. S., Shafiei-Alavijeh, M., Tehrani, N. H. M. H., Ghasemy, E., Rashidi, A., & Fakhraie, S. (2019). Facile and high-yield synthesis of improved MIL-101 (Cr) metal-organic framework with exceptional CO2 and H2S uptake; the impact of excess ligand-cluster. Microporous and Mesoporous Materials, 279, 153-164.
https://doi.org/10.1016/j.micromeso.2018.12.033
[125]      Petit, C., Mendoza, B., & Bandosz, T. J. (2010). Hydrogen sulfide adsorption on MOFs and MOF/graphite oxide composites. ChemPhysChem, 11(17), 3678-3684.
https://doi.org/10.1002/cphc.201000689
[126]      Daraee, M., Saeedirad, R., & Rashidi, A. (2019). Adsorption of hydrogen sulfide over a novel metal organic framework–metal oxide nanocomposite: TOUO-x (TiO2/UiO-66). Journal of Solid State Chemistry, 278, 120866.
https://doi.org/10.1016/j.jssc.2019.07.027
[127]      Li, Y., Zhou, J., Wang, L., & Xie, Z. (2020). Endogenous hydrogen sulfide-triggered MOF-based nanoenzyme for synergic cancer therapy. ACS applied materials & interfaces, 12(27), 30213-30220.
https://doi.org/10.1021/acsami.0c08659
[128]      Rallapalli, P. B. S., Cho, K., Kim, S. H., Kim, J. N., & Yoon, H. C. (2020). Upgrading pipeline-quality natural gas to liquefied-quality via pressure swing adsorption using MIL-101 (Cr) as adsorbent to remove CO2 and H2S from the gas. Fuel, 281, 118985.
https://doi.org/10.1016/j.fuel.2020.118985
[129]      Díaz-Ramírez, M. L., Sánchez-González, E., Álvarez, J. R., González-Martínez, G. A., Horike, S., Kadota, K., & Lima, E. (2019). Partially fluorinated MIL-101 (Cr): from a miniscule structure modification to a huge chemical environment transformation inspected by 129 Xe NMR. Journal of Materials Chemistry A, 7(25), 15101-15112.
https://doi.org/10.1039/C9TA02237F
[130]      Jameh, A. A., Mohammadi, T., Bakhtiari, O., & Mahdyarfar, M. (2019). Synthesis and modification of Zeolitic Imidazolate Framework (ZIF-8) nanoparticles as highly efficient adsorbent for H2S and CO2 removal from natural gas. Journal of Environmental Chemical Engineering, 7(3), 103058.
https://doi.org/10.1016/j.jece.2019.103058
[131]      Joshi, J. N., Zhu, G., Lee, J. J., Carter, E. A., Jones, C. W., Lively, R. P., & Walton, K. S. (2018). Probing metal–organic framework design for adsorptive natural gas purification. Langmuir, 34(29), 8443-8450.
https://doi.org/10.1021/acs.langmuir.8b00889
[132]      Pourreza, A., Askari, S., Rashidi, A., Seif, A., & Kooti, M. (2019). Highly efficient SO3Ag-functionalized MIL-101 (Cr) for adsorptive desulfurization of the gas stream: Experimental and DFT study. Chemical Engineering Journal, 363, 73-83.
https://doi.org/10.1016/j.cej.2019.01.133
[133]      Huang, Y., & Wang, R. (2019). Highly selective separation of H2S and CO2 using a H 2 S-imprinted polymers loaded on a polyoxometalate@ Zr-based metal–organic framework with a core–shell structure at ambient temperature. Journal of Materials Chemistry A, 7(19), 12105-12114.
https://doi.org/10.1039/C9TA01749F
[134]      Petit, C., Mendoza, B., & Bandosz, T. J. (2010). Hydrogen sulfide adsorption on MOFs and MOF/graphite oxide composites. ChemPhysChem, 11(17), 3678-3684.
https://doi.org/10.1002/cphc.201000689
[135]      Bhatt, P. M., Belmabkhout, Y., Assen, A. H., Weseliński, Ł. J., Jiang, H., Cadiau, A., ... & Eddaoudi, M. (2017). Isoreticular rare earth fcu-MOFs for the selective removal of H2S from CO2 containing gases. Chemical Engineering Journal, 324, 392-396.
https://doi.org/10.1016/j.cej.2017.05.008
[136]      Daraee, M., Ghasemy, E., & Rashidi, A. (2020). Synthesis of novel and engineered UiO-66/graphene oxide nanocomposite with enhanced H2S adsorption capacity. Journal of Environmental Chemical Engineering, 8(5), 104351.
https://doi.org/10.1016/j.jece.2020.104351
[137]      Allan, P. K., Wheatley, P. S., Aldous, D., Mohideen, M. I., Tang, C., Hriljac, J. A., & Morris, R. E. (2012). Metal–organic frameworks for the storage and delivery of biologically active hydrogen sulfide. Dalton transactions, 41(14), 4060-4066.
https://doi.org/10.1039/C2DT12069K
[138]      Assen, A. H. (2020). Mixed-Metal Approach towards Assembling Highly Stable MetalOrganic Framework based Adsorbent for Simultaneous Capture of CO2 and H2S. Abyssinia Journal of Science and Technology, 5(1), 9-17.
https://doi.org/ 10.1002/cssc.201301163
[139]      Hamon, L., Leclerc, H., Ghoufi, A., Oliviero, L., Travert, A., Lavalley, J. C., & Maurin, G. (2011). Molecular insight into the adsorption of H2S in the flexible MIL-53 (Cr) and rigid MIL-47 (V) MOFs: infrared spectroscopy combined to molecular simulations. The Journal of Physical Chemistry C, 115(5), 2047-2056.
https://doi.org/10.1021/jp1092724
[140]      Liu, J., Wei, Y., Li, P., Zhao, Y., & Zou, R. (2017). Selective H2S/CO2 separation by metal–organic frameworks based on chemical-physical adsorption. The Journal of Physical Chemistry C, 121(24), 13249-13255.
https://doi.org/10.1021/acs.jpcc.7b04465
[141]      Heymans, N., Vaesen, S., & De Weireld, G. (2012). A complete procedure for acidic gas separation by adsorption on MIL-53 (Al). Microporous and Mesoporous Materials, 154, 93-99.
https://doi.org/10.1016/j.micromeso.2011.10.020
[142]      Zhang, X., Hu, Q., Xia, T., Zhang, J., Yang, Y., Cui, Y., ... & Qian, G. (2016). Turn-on and ratiometric luminescent sensing of hydrogen sulfide based on metal–organic frameworks. ACS applied materials & interfaces, 8(47), 32259-32265.
https://doi.org/10.1021/acsami.6b12118
[143]      Shi, R. H., Zhang, Z. R., Fan, H. L., Zhen, T., Shangguan, J., & Mi, J. (2017). Cu-based metal–organic framework/activated carbon composites for sulfur compounds removal. Applied Surface Science, 394, 394-402.
https://doi.org/10.1016/j.apsusc.2017.10.071
[144]      Lee, M. H., Vikrant, K., Younis, S. A., Szulejko, J. E., & Kim, K. H. (2020). Chemisorption of hydrogen sulfide by metal-organic frameworks and covalent-organic polymers based on experimental/theoretical evaluation. Journal of Cleaner Production, 250, 119486.
https://doi.org/10.1016/j.jclepro.2019.119486
[145]      Bhoria, N., Basina, G., Pokhrel, J., Reddy, K. S. K., Anastasiou, S., Balasubramanian, V. V., ... & Karanikolos, G. N. (2020). Functionalization effects on HKUST-1 and HKUST-1/graphene oxide hybrid adsorbents for hydrogen sulfide removal. Journal of hazardous materials, 394, 122565.
https://doi.org/10.1016/j.jhazmat.2020.122565
[146]      Karuppasamy, K., Sharma, B., Vikraman, D., Lee, J. H., Islam, M., Santhoshkumar, P., & Kim, H. S. (2022). Metal organic framework-derived Ni4Mo/MoO2@ C composite nanospheres as the sensing materials for hydrogen sulfide detection. Journal of Alloys and Compounds, 900, 163421.
https://doi.org/10.1016/j.jallcom.2021.163421
[147]      Heymans, N., Vaesen, S., & De Weireld, G. (2012). A complete procedure for acidic gas separation by adsorption on MIL-53 (Al). Microporous and Mesoporous Materials, 154, 93-99.
https://doi.org/10.1016/j.micromeso.2011.10.020
[148]      Zhang, H. Y., Yang, C., Geng, Q., Fan, H. L., Wang, B. J., Wu, M. M., & Tian, Z. (2019). Adsorption of hydrogen sulfide by amine-functionalized metal organic framework (MOF-199): An experimental and simulation study. Applied Surface Science, 497, 143815.
https://doi.org/10.1016/j.apsusc.2019.143815
[149]      Ajibade, P. A., & Oloyede, S. O. (2022). Synthesis of Metal-Organic Frameworks Quantum Dots Composites as Sensors for Endocrine-Disrupting Chemicals. International journal of molecular sciences, 23(14), 7980.
https://doi.org/10.3390/ijms23147980
[150]      Gupta, N. K., Rajput, K., & Viltres, H. (2023). Graphene-Based Materials for the Remediation of Hydrogen Sulfide Gas. In 3D Graphene: Fundamentals, Synthesis, and Emerging Applications (pp. 151-167). Cham: Springer Nature Switzerland.
https://doi.org/10.1007/978-3-031-36249-1_9
[151]      Gujja, C. S., Shelar, D. S., Asiwal, E. P., Manjare, S. T., & Pawar, S. D. (2023). Selective and sensitive detection of hydrogen sulfide using hydrolytically stable Cu-MOF. Journal of Molecular Structure, 1273, 134277.
https://doi.org/10.1016/j.molstruc.2022.134277
[152]      Al-Jadir, T. M., & Siperstein, F. R. (2018). The influence of the pore size in Metal-Organic Frameworks in adsorption and separation of hydrogen sulfide: A molecular simulation study. Microporous and Mesoporous Materials, 271, 160-168.
https://doi.org/10.1016/j.micromeso.2018.06.002
[153]      Peterson, G. W., Britt, D. K., Sun, D. T., Mahle, J. J., Browe, M., Demasky, T., & Rossin, J. A. (2015). Multifunctional purification and sensing of toxic hydride gases by CuBTC metal–organic framework. Industrial & Engineering Chemistry Research, 54(14), 3626-3633.
https://doi.org/10.1021/acs.iecr.5b00458
[154]      Dunning, S. G., Gupta, N. K., Reynolds III, J. E., Sagastuy-Breña, M., Flores, J. G., Martínez-Ahumada, E., & Humphrey, S. M. (2022). Mn-CUK-1: a flexible MOF for SO2, H2O, and H2S capture. Inorganic Chemistry, 61(38), 15037-15044.
https://doi.org/10.1021/acs.inorgchem.2c02012
[155]      Pokhrel, J. (2016). Functionalized metal-organic frameworks (MOF) and graphene oxide (GO) composites for natural gas sweetening (Master's thesis, The Petroleum Institute (United Arab Emirates).
https://doi.org/10.2160/ijvs26117461
[156]      Wang, Z., Wang, X., Li, J., Li, W., & Li, G. (2019). Eu3+/TFA functionalized MOF as luminescent enhancement platform: a ratiometric luminescent sensor for hydrogen sulfide in aqueous solution. Journal of Inorganic and Organometallic Polymers and Materials, 29, 2124-2132.
https://doi.org/10.1007/s10904-019-01171-7
[157]      Gupta, N. K., Kim, S., Bae, J., & Kim, K. S. (2021). Fabrication of Cu (BDC) 0.5 (BDC-NH2) 0.5 metal-organic framework for superior H2S removal at room temperature. Chemical Engineering Journal, 411, 128536.
https://doi.org/10.1016/j.cej.2021.128536
[158]      Yang, Y., Liu, X., Yang, C., Wang, Y., Wang, H., & Fan, H. (2023). Study on the essential features for MOFs to reversible adsorption of H2S at room temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 674, 131914.
https://doi.org/10.1016/j.colsurfa.2023.131914
[159]      Deng, Y., Vellingiri, K., Kim, K. H., Boukhvalov, D. W., & Philip, L. (2018). Activation strategies of metal-organic frameworks for the sorption of reduced sulfur compounds. Chemical Engineering Journal, 350, 747-756.
https://doi.org/10.1016/j.cej.2018.06.006
[160]      Martínez-Ahumada, E., Díaz-Ramírez, M. L., Velásquez-Hernández, M. D. J., Jancik, V., & Ibarra, I. A. (2021). Capture of toxic gases in MOFs: SO2, H2S, NH3 and NOx. Chemical science, 12(20), 6772-6799.
https://doi.org/ 10.1039/D1SC01609A
[161]      Petit, C., Mendoza, B., & Bandosz, T. J. (2010). Hydrogen sulfide adsorption on MOFs and MOF/graphite oxide composites. ChemPhysChem, 11(17), 3678-3684.
https://doi.org/10.1002/cphc.201000689
[162]      Georgiadis, A. G., Charisiou, N. D., Yentekakis, I. V., & Goula, M. A. (2020). Removal of hydrogen sulfide (H2S) using MOFs: a review of the latest developments. Chemistry Proceedings, 2(1), 27.
https://doi.org/10.3390/ECCS2020-07586
[163]      Hamon, L., Leclerc, H., Ghoufi, A., Oliviero, L., Travert, A., Lavalley, J. C., & Maurin, G. (2011). Molecular insight into the adsorption of H2S in the flexible MIL-53 (Cr) and rigid MIL-47 (V) MOFs: infrared spectroscopy combined to molecular simulations. The Journal of Physical Chemistry C, 115(5), 2047-2056.
https://doi.org/10.1021/jp1092724