[1] Barea, E., Montoro C., & Navarro, J.A. (2014). Toxic gas removal–metal–organic frameworks for the capture and degradation of toxic gases and vapours. Chemical Society Reviews, 43(16), 5419-5430.
https://doi.org/10.1039/C3CS60475F
[2] Martínez-Ahumada, E., López-Olvera, A., Jancik, V. J.E. Sánchez-Bautista, E. González-Zamora, V. Martis, D.R. Williams, and I.A. Ibarra, (2020). MOF Materials for the Capture of Highly Toxic H2S and SO2. Organometallics, 39(7),883-915.
https://doi.org/10.1021/acs.organomet.9b00735
[3] Kim, K. H., Kumar, P., Szulejko, J. E., Adelodun, A. A., Junaid, M. F., Uchimiya, M., & Chambers, S. (2017). Toward a better understanding of the impact of mass transit air pollutants on human health. Chemosphere, 174, 268-279.
https://doi.org/10.1016/j.chemosphere.2017.01.113
[4] Wilson, S. R., Madronich, S., Longstreth, J. D., & Solomon, K. R. (2019). Interactive effects of changing stratospheric ozone and climate on tropospheric composition and air quality, and the consequences for human and ecosystem health. Photochemical & Photobiological Sciences, 18(3), 775-803.
https://doi.org/10.1039/C8PP90064G
[5] Tan, K. H., & Wang, T. L. (2005). Asphyxiants: simple and chemical. Ann Disaster Med Vol, 4, 1.
http://disaster.org.tw/english/ann-med/Vol4suppl1/6
[6] Henretig, F. M., Kirk, M. A., & McKay Jr, C. A. (2019). Hazardous chemical emergencies and poisonings. New England journal of medicine, 380(17), 1638-1655.
https://nejm.org/doi/full/10.1056/NEJMra150469
[7] Zhao, Z., Wang, S., Yang, Y., Li, X., Li, J., & Li, Z. (2015). Competitive adsorption and selectivity of benzene and water vapor on the microporous metal organic frameworks (HKUST-1). Chemical engineering journal, 259, 79-89.
https://doi.org/10.1016/j.cej.2014.08.012
[8] Shannon, M. S., Irvin, A. C., Liu, H., Moon, J. D., Hindman, M. S., Turner, C. H., & Bara, J. E. (2015). Chemical and physical absorption of SO2 by N-functionalized imidazoles: experimental results and molecular-level insight. Industrial & Engineering Chemistry Research, 54(1), 462-471.
https://doi.org/10.1021/ie503752h
[9] Yang, J., Yu, X., Yan, J., & Tu, S. T. (2014). CO2 capture using amine solution mixed with ionic liquid. Industrial & Engineering Chemistry Research, 53(7), 2790-2799.
https://doi.org/10.1021/ie4040658
[10] McKinlay, A. C., Eubank, J. F., Wuttke, S., Xiao, B., Wheatley, P. S., Bazin, P., & Morris, R. E. (2013). Nitric oxide adsorption and delivery in flexible MIL-88 (Fe) metal–organic frameworks. Chemistry of Materials, 25(9), 1592-1599.
https://doi.org/10.1021/cm304037x
[11] Reed, D. A., Xiao, D. J., Gonzalez, M. I., Darago, L. E., Herm, Z. R., Grandjean, F., & Long, J. R. (2016). Reversible CO scavenging via adsorbate-dependent spin state transitions in an iron (II)–triazolate metal–organic framework. Journal of the American Chemical Society, 138(17), 5594-5602.
https://doi.org/10.1021/jacs.6b00248
[12] Xu, J., Xing, W., Wang, H., Xu, W., Ding, Q., Zhao, L., & Yan, Z. (2016). Monte Carlo simulation study of the halogenated MIL-47 (V) frameworks: influence of functionalization on H2S adsorption and separation properties. Journal of materials science, 51, 2307-2319.
https://doi.org/10.1007/s10853-015-9539-2
[13] Ma, X., Wang, X., & Song, C. (2009). “Molecular basket” sorbents for separation of CO2 and H2S from various gas streams. Journal of the American Chemical Society, 131(16), 5777-5783.
https://doi.org/10.1021/ja8074105
[14] Kim, K. C. (2018). Design strategies for metal-organic frameworks selectively capturing harmful gases. Journal of Organometallic Chemistry, 854, 94-105.
https://doi.org/10.1016/j.jorganchem.2017.11.017
[15] Wu, Z., & Zhao, D. (2011). Ordered mesoporous materials as adsorbents. Chemical Communications, 47(12), 3332-3338.
https://doi.org/10.1039/C0CC04909C
[16] Zhao, L., Bacsik, Z., Hedin, N., Wei, W., Sun, Y., Antonietti, M., & Titirici, M. M. (2010). Carbon dioxide capture on Amine‐Rich carbonaceous materials derived from glucose. ChemSusChem, 3(7), 840-845.
https://doi.org/10.1002/cssc.201000044
[17] Sigot, L., Ducom, G., & Germain, P. (2016). Adsorption of hydrogen sulfide (H2S) on zeolite (Z): retention mechanism. Chemical Engineering Journal, 287, 47-53.
https://doi.org/10.1016/j.cej.2015.11.010
[18] Cavenati, S., Grande, C. A., & Rodrigues, A. E. (2004). Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. Journal of Chemical & Engineering Data, 49(4), 1095-1101.
https://doi.org/10.1021/je0498917
[19] Li, J. R., Kuppler, R. J., & Zhou, H. C. (2009). Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews, 38(5), 1477-1504.
https://doi.org/10.1039/B802426J
[20] Vellingiri, K., Szulejko, J. E., Kumar, P., Kwon, E. E., Kim, K. H., Deep, A., & Brown, R. J. (2016). Metal organic frameworks as sorption media for volatile and semi-volatile organic compounds at ambient conditions. Scientific reports, 6(1), 27813.
https://doi.org/10.1038/srep27813
[21] Mishra, P., Mekala, S., Dreisbach, F., Mandal, B., & Gumma, S. (2012). Adsorption of CO2, CO, CH4 and N2 on a zinc based metal organic framework. Separation and Purification Technology, 94, 124-130.
https://doi.org/10.1016/j.seppur.2011.09.041
[22] Mishra, P., Edubilli, S., Mandal, B., & Gumma, S. (2013). Adsorption of CO2, CO, CH4 and N2 on DABCO based metal organic frameworks. Microporous and mesoporous materials, 169, 75-80.
https://doi.org/10.1016/j.micromeso.2012.10.025
[23] Kitagawa, S. (2014). Metal–organic frameworks (MOFs). Chemical Society Reviews, 43(16), 5415-5418.
https://doi.org/10.1039/C4CS90059F
[24] Benedetto, G., Cleary, B. M., Morrell, C. T., Durbin, C. G., Brinks, A. L., Tietjen, J., & Mirica, K. A. (2023). CD-MOF-1 for CO2 uptake: remote and hybrid green chemistry synthesis of a framework material with environmentally conscious applications. Journal of chemical education, 100(3), 1289-1295.
https://doi.org/10.1021/acs.jchemed.2c00922
[25] Zhu, Z. W., & Zheng, Q. R. (2023). Investigation of cryo-adsorption hydrogen storage capacity of rapidly synthesized MOF-5 by mechanochemical method. International Journal of Hydrogen Energy, 48(13), 5166-5174.
https://doi.org/10.1016/j.ijhydene.2022.11.026
[26] Lv, H. J., Fan, S. C., Jiang, Y. C., Li, S. N., & Zhai, Q. G. (2023). Design of a robust rod-packing scandium–organic framework for C2Hx/CO2 separation, CO2 storage, and catalytic CO2 cycloaddition. Inorganic Chemistry Frontiers, 10(10), 3015-3024.
https://doi.org/ 10.1039/D3QI00314K
[27] Peh, S. B., Farooq, S., & Zhao, D. (2023). Techno-economic analysis of MOF-based adsorption cycles for postcombustion CO2 capture from wet flue gas. Chemical Engineering Science, 268, 118390.
https://doi.org/10.1016/j.ces.2022.118390
[28] Kim, D., Kim, Y., Kim, D., Son, D., Doh, S. J., Kim, M., ... & Yoon, K. R. (2022). Rational process design for facile fabrication of dual functional hybrid membrane of MOF and electrospun nanofiber towards high removal efficiency of PM2. 5 and toxic gases. Macromolecular Rapid Communications, 43(4), 2100648.
https://doi.org/10.1002/marc.202100648
[29] Chae, Y. S., Park, S., Kang, D. W., Kim, D. W., Kang, M., San Choi, D., & Hong, C. S. (2022). Moisture-tolerant diamine-appended metal-organic framework composites for effective indoor CO2 capture through facile spray coating. Chemical Engineering Journal, 433, 133856.
https://doi.org/10.1016/j.cej.2021.133856
[30] López-Olvera, A., Pioquinto-García, S., Zárate, J. A., Diaz, G., Martínez-Ahumada, E., Obeso, J. L., & Dávila-Guzmán, N. E. (2022). SO2 capture in a chemical stable Al (III) MOF: DUT-4 as an effective adsorbent to clean CH4. Fuel, 322, 124213.
https://doi.org/10.1016/j.fuel.2022.124213
[31] Ko, Y., Bae, E. J., K Chitale, S., Soares, C. V., Leitão, A. A., Kim, M. K., ... & Lee, U. H. (2022). Washable and Reusable Zr-Metal–Organic Framework Nanostructure/Polyacrylonitrile Fibrous Mats for Catalytic Degradation of Real Chemical Warfare Agents. ACS Applied Nano Materials, 5(7), 9657-9665.
https://doi.org/10.1021/acsanm.2c01895
[32] Wang, Q. Y., Sun, Z. B., Zhang, M., Zhao, S. N., Luo, P., Gong, C. H., ... & Zang, S. Q. (2022). Cooperative catalysis between dual copper centers in a metal–organic framework for efficient detoxification of chemical warfare agent simulants. Journal of the American Chemical Society, 144(46), 21046-21055.
https://doi.org/10.1021/jacs.2c05176
[33] Gong, C. H., Sun, Z. B., Cao, M., Luo, X. M., Wu, J., Wang, Q. Y., ... & Mak, T. C. (2022). Phosphate anion-induced silver-chalcogenide cluster-based metal organic frameworks as dual-functional catalysts for detoxifying chemical warfare agent simulants. Chemical Communications, 58(70), 9806-9809.
https://doi.org/10.1039/D2CC03120E
[34] Yost, B. T. (2022). Raman Spectroscopy Studies of Defective Metal-Organic Framework Compounds for Use in Chemical Warfare Agent Decomposition (Doctoral dissertation, The University of North Carolina at Chapel Hill).
https://doi.org/10.17615/rgk3-3v28
[35] Petit, C., Mendoza, B., & Bandosz, T. J. (2010). Hydrogen sulfide adsorption on MOFs and MOF/graphite oxide composites. ChemPhysChem, 11(17), 3678-3684.
https://doi.org/10.1002/cphc.201000689
[36] Garibay, S. J., Wang, Z., Tanabe, K. K., & Cohen, S. M. (2009). Postsynthetic modification: a versatile approach toward multifunctional metal-organic frameworks. Inorganic chemistry, 48(15), 7341-7349.
https://doi.org/10.1021/ic900796n
[37] Luan, Y., Qi, Y., Gao, H., Andriamitantsoa, R. S., Zheng, N., & Wang, G. (2015). A general post-synthetic modification approach of amino-tagged metal–organic frameworks to access efficient catalysts for the Knoevenagel condensation reaction. Journal of Materials Chemistry A, 3(33), 17320-17331.
https://doi.org/10.1039/C5TA00816F
[38] Zhang, H. Y., Yang, C., Geng, Q., Fan, H. L., Wang, B. J., Wu, M. M., & Tian, Z. (2019). Adsorption of hydrogen sulfide by amine-functionalized metal organic framework (MOF-199): An experimental and simulation study. Applied Surface Science, 497, 143815.
https://doi.org/10.1016/j.apsusc.2019.143815
[39] Carter, J. H., Morris, C. G., Godfrey, H. G., Day, S. J., Potter, J., Thompson, S. P., ... & Schröder, M. (2020). Long-term stability of MFM-300 (Al) toward toxic air pollutants. ACS applied materials & interfaces, 12(38), 42949-42954.
https://doi.org/10.1021/acsami.0c11134
[40] Valizadeh, B., Nguyen, T. N., Smit, B., & Stylianou, K. C. (2018). Porous metal–organic framework@ polymer beads for iodine capture and recovery using a gas‐sparged column. Advanced Functional Materials, 28(30), 1801596.
https://doi.org/10.1002/adfm.201801596
[41] Wang, H., Lustig, W. P., & Li, J. (2018). Sensing and capture of toxic and hazardous gases and vapors by metal-organic frameworks. Chemical Society Reviews, 47(13), 4729-4756.
https://doi.org/10.1039/C7CS00885F
[42] Li, S., Shan, S., Chen, S., Li, H., Li, Z., Liang, Y., & Li, J. (2021). Photocatalytic degradation of hazardous organic pollutants in water by Fe-MOFs and their composites: A review. Journal of Environmental Chemical Engineering, 9(5), 105967.
https://doi.org/10.1016/j.jece.2021.105967
[43] Bandosz, T. J. (2002). On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures. Journal of colloid and Interface Science, 246(1), 1-20.
https://doi.org/10.1006/jcis.2001.7952
[44] Borron, S. W., & Bebarta, V. S. (2015). Asphyxiants. Emergency Medicine Clinics, 33(1), 89-115.
https://doi.org/10.1016/j.emc.2014.09.014
[45] Earnest, G. S., Mickelsen, R. L., McCammon, J. B., & O'Brien, D. M. (1997). Carbon monoxide poisonings from small, gasoline-powered, internal combustion engines: just what is a “well-ventilated area”?. American Industrial Hygiene Association Journal, 58(11), 787-791.
https://doi.org/10.1080/15428119791012289
[46] Guidotti, T. L. (2010). Hydrogen sulfide: advances in understanding human toxicity. International journal of toxicology, 29(6), 569-581.
https://doi.org/10.1177/109158181038488
[47] Wylie, S., Wilder, E., Vera, L., Thomas, D., & McLaughlin, M. (2017). Materializing exposure: Developing an indexical method to visualize health hazards related to fossil fuel extraction. Engaging science, technology, and society, 3, 426.
https://doi.org/ 10.17351/ests2017.123.
[48] Shah, M. S., Tsapatsis, M., & Siepmann, J. I. (2017). Hydrogen sulfide capture: from absorption in polar liquids to oxide, zeolite, and metal–organic framework adsorbents and membranes. Chemical reviews, 117(14), 9755-9803.
https://doi.org/10.1021/acs.chemrev.7b00095
[49] De Crisci, A. G., Moniri, A., & Xu, Y. (2019). Hydrogen from hydrogen sulfide: towards a more sustainable hydrogen economy. International Journal of Hydrogen Energy, 44(3), 1299-1327.
https://doi.org/10.1016/j.ijhydene.2018.10.035
[50] Kailasa, S. K., Koduru, J. R., Vikrant, K., Tsang, Y. F., Singhal, R. K., Hussain, C. M., & Kim, K. H. (2020). Recent progress on solution and materials chemistry for the removal of hydrogen sulfide from various gas plants. Journal of Molecular Liquids, 297, 111886.
https://doi.org/10.1016/j.molliq.2019.111886
[51] Hancock, J. T. (2019). Hydrogen sulfide and environmental stresses. Environmental and Experimental Botany, 161, 50-56.
https://doi.org/10.1016/j.envexpbot.2018.08.034
[52] Azizi, M., Biard, P. F., Couvert, A., & Ben Amor, M. (2014). Simulation of hydrogen sulphide absorption in alkaline solution using a packed column. Environmental technology, 35(24), 3105-3115.
https://doi.org/10.1080/09593330.2014.931470
[53] Van Durme, G. P., McNamara, B. F., & McGinley, C. M. (1992). Bench‐scale removal of odor and volatile organic compounds at a composting facility. Water Environment Research, 64(1), 19-27.
https://doi.org/10.2175/WER.64.1.4
[54] Piché, S., Ribeiro, N., & Bacaoui, A. (2005). Assessment of a redox alkaline/iron-chelate absorption process for the removal of dilute hydrogen sulfide in air emissions. Chemical Engineering Science, 60(22), 6452-6461.
https://doi.org/10.1016/j.ces.2005.04.065
[55] Zhang, J., & Tong, Z. (2006). Study on catalytic wet oxidation of H2S into sulfur on Fe/Cu catalyst. Journal of Natural Gas Chemistry, 15(1), 63-69.
https://doi.org/10.1016/S1003-9953(06)60009-1
[56] Couvert, A., Charron, I., Laplanche, A., Renner, C., Patria, L., & Requieme, B. (2006). Treatment of odorous sulphur compounds by chemical scrubbing with hydrogen peroxide—application to a laboratory plant. Chemical Engineering Science, 61(22), 7240-7248.
https://doi.org/10.1016/j.ces.2006.07.030
[57] Couvert, A., Sanchez, C., Laplanche, A., & Renner, C. (2008). Scrubbing intensification for sulphur and ammonia compounds removal. Chemosphere, 70(8), 1510-1517.
https://doi.org/10.1016/j.chemosphere.2007.08.020
[58] Krischan, J., Makaruk, A., & Harasek, M. (2012). Design and scale-up of an oxidative scrubbing process for the selective removal of hydrogen sulfide from biogas. Journal of hazardous materials, 215, 49-56.
https://doi.org/10.1016/j.jhazmat.2012.02.028
[59] Chen, F. E., Mandel, R. M., Woods, J. J., Lee, J. H., Kim, J., Hsu, J. H., & Milner, P. J. (2021). Biocompatible metal–organic frameworks for the storage and therapeutic delivery of hydrogen sulfide. Chemical Science, 12(22), 7848-7857.
https://doi.org/10.1039/D1SC00691F
[60] Biasca, F. E., Korens, N., Schulman, B. L., & Simbeck, D. R. (1987). Process screening study of alternative gas treating and sulfur removal systems for IGCC (Integrated Gasification Combined Cycle) power plant applications (No. EPRI-AP-5505). SFA Pacific, Inc., Mountain View, CA (USA).
https://doi.org/10.1215/j.spmv..1987.03.013
[61] Burr, B., & Lyddon, L. (2008, March). A comparison of physical solvents for acid gas removal. In Gas Processors’ Association Convention, Grapevine, TX.
https://www.digitalrefining.com/article/1000560
[62] Kriebel, M. (1989). Ullmann’s encyclopedia of industrial chemistry, gas production.. In.: VCH Verlagsgesellschaft mbH, Weinheim.
https://doi.org/10.1002/14356007.o17_o02
[63] Roberts, B. E., & Mather, A. E. (1988). Solubility of H2S and CO2 in sulfolane. The Canadian Journal of Chemical Engineering, 66(3), 519-520.
https://doi.org/10.1002/cjce.5450660328
[64] Rivas, O. R., & Prausnitz, J. M. (1979). Sweetening of sour natural gases by mixed‐solvent absorption: solubilities of ethane, carbon dioxide, and hydrogen sulfide in mixtures of physical and chemical solvents. AIChE Journal, 25(6), 975-984.
https://doi.org/10.1002/aic.690250608
[65] Alcalde, R., Garcia, G., Atilhan, M., & Aparicio, S. (2015). Systematic study on the viscosity of ionic liquids: measurement and prediction. Industrial & Engineering Chemistry Research, 54(43), 10918-10924.
https://doi.org/10.1021/acs.iecr.5b02713
[66] Krishnan, A., Gopinath, K. P., Vo, D. V. N., Malolan, R., Nagarajan, V. M., & Arun, J. (2020). Ionic liquids, deep eutectic solvents and liquid polymers as green solvents in carbon capture technologies: a review. Environmental Chemistry Letters, 18, 2031-2054.
https://doi.org/10.1007/s10311-020-01057-y
[67] El Achkar, T., Greige-Gerges, H., & Fourmentin, S. (2021). Basics and properties of deep eutectic solvents: a review. Environmental chemistry letters, 19, 3397-3408.
https://doi.org/10.1007/s10311-021-01225-8
[68] Li, F., Laaksonen, A., Zhang, X., & Ji, X. (2022). Rotten eggs revaluated: Ionic liquids and deep eutectic solvents for removal and utilization of hydrogen sulfide. Industrial & Engineering Chemistry Research, 61(7), 2643-2671.
https://doi.org/10.1021/acs.iecr.1c04142
[69] Ozekmekci, M., Salkic, G., & Fellah, M. F. (2015). Use of zeolites for the removal of H2S: A mini-review. Fuel Processing Technology, 139, 49-60.
https://doi.org/10.1016/j.fuproc.2015.08.015
[70] Quan, W., Wang, X., & Song, C. (2017). Selective removal of H2S from biogas using solid amine-based “molecular basket” sorbent. Energy & Fuels, 31(9), 9517-9528.
https://doi.org/10.1021/acs.energyfuels.7b01473
[71] Cavenati, S., Grande, C. A., & Rodrigues, A. E. (2005). Upgrade of methane from landfill gas by pressure swing adsorption. Energy & fuels, 19(6), 2545-2555.
https://doi.org/10.1021/ef050072h
[72] Speltini, A., Merli, D., & Profumo, A. (2013). Analytical application of carbon nanotubes, fullerenes and nanodiamonds in nanomaterials-based chromatographic stationary phases: A review. Analytica chimica acta, 783, 1-16.
https://doi.org/10.1016/j.aca.2013.03.041
[73] Puchana-Rosero, M. J., Adebayo, M. A., Lima, E. C., Machado, F. M., Thue, P. S., Vaghetti, J. C., & Gutterres, M. (2016). Microwave-assisted activated carbon obtained from the sludge of tannery-treatment effluent plant for removal of leather dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 504, 105-115.
https://doi.org/10.1016/j.colsurfa.2016.05.059
[74] Baker, R. W., & Lokhandwala, K. (2008). Natural gas processing with membranes: an overview. Industrial & Engineering Chemistry Research, 47(7), 2109-2121.
https://doi.org/10.1021/ie071083w
[75] Mansourizadeh, A., & Ismail, A. F. (2009). Hollow fiber gas–liquid membrane contactors for acid gas capture: a review. Journal of hazardous materials, 171(1-3), 38-53.
https://doi.org/10.1016/j.jhazmat.2009.06.026
[76] Lallemand, F., Lecomte, F., & Streicher, C. (2005, November). Highly sour gas processing: H2S bulk removal with the Sprex process. In International petroleum technology conference (pp. IPTC-10581). IPTC.
https://doi.org/10.2523/IPTC-10581-MS
[77] Liu, D., Li, B., Wu, J., & Liu, Y. (2020). Sorbents for hydrogen sulfide capture from biogas at low temperature: A review. Journal of Environmental Chemical Engineering, 18(1), 113-128.
https://doi.org/10.1007/s10311-019-00925-6
[78] Zulkefli, N. N., Noor Azam, A. M. I., Masdar, M. S., & Isahak, W. N. R. W. (2023). Adsorption–desorption behavior of hydrogen sulfide capture on a modified activated carbon surface. Materials, 16(1), 462.
https://doi.org/10.3390/ma16010462
[79] Georgiadis, A. G., Charisiou, N., Yentekakis, I. V., & Goula, M. A. (2020). Hydrogen sulfide (H2S) removal via MOFs. Materials, 13(16), 3640.
https://doi.org/10.3390/ma13163640
[80] Dey, C., Kundu, T., Biswal, B. P., Mallick, A., & Banerjee, R. (2014). Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 70(1), 3-10.
https://doi.org/10.1107/S2052520613029557
[81] Safaei, M., Foroughi, M. M., Ebrahimpoor, N., Jahani, S., Omidi, A., & Khatami, M. (2019). A review on metal-organic frameworks: Synthesis and applications. TrAC Trends in Analytical Chemistry, 118, 401-425.
https://doi.org/10.1016/j.trac.2019.06.007
[82] Raptopoulou, C. P. (2021). Metal-organic frameworks: Synthetic methods and potential applications. Materials, 14(2), 310.
https://doi.org/10.3390/ma14020310
[83] Halper, S. R., Do, L., Stork, J. R., & Cohen, S. M. (2006). Topological control in heterometallic metal− organic frameworks by anion templating and metalloligand design. Journal of the American Chemical Society, 128(47), 15255-15268.
https://doi.org/10.1021/ja0645483
[84] Du, M., Li, C. P., & Zhao, X. J. (2006). Metal-controlled assembly of coordination polymers with the flexible building block 4-pyridylacetic acid (Hpya). Crystal growth & design, 6(1), 335-341.
https://doi.org/10.1021/cg0502542
[85] Hashemi, L., & Morsali, A. (2019). Pillared metal-organic frameworks: Properties and applications. John Wiley & Sons.
https://doi.org/10.1115/j.ws.2019.06.003
[86] Hashemi, L., Morsali, A. (2016). Metal-Organic Frameworks (MOFs); Principles, synthesis and application. Donyaye Nano, 11(39), 53-57.[in Persian]
https://doi.org/10.1005/vic.440120645
[87] Jiang, J. (2012). Recent development of in silico molecular modeling for gas and liquid separations in metal–organic frameworks. Current Opinion in Chemical Engineering, 1(2), 138-144.
https://doi.org/10.1016/j.coche.2011.11.002
[88] Akeremale OK, Ore OT, Bayode AA, Badamasi H, Olusola JA, Durodola SS.(2023). Synthesis, characterization, and activation of metal-organic frameworks (MOFs) for the removal of emerging organic contaminants through the adsorption-oriented process: A review. Results in Chemistry. 1;5:100866.
https://doi.org/10.1016/j.rechem.2023.100866
[89] Yilmaz, B., Trukhan, N., & Müller, U. (2012). Industrial outlook on zeolites and metal-organic frameworks. Chinese Journal of Catalysis, 33(1), 3-10.
https://doi.org/10.1016/S1872-2067(10)60302-6
[90] Rabenau, A. (1985). The role of hydrothermal synthesis in preparative chemistry. Angewandte Chemie International Edition in English, 24(12), 1026-1040.
https://doi.org/10.1002/anie.198510261
[91] Biemmi, E., Christian, S., Stock, N., & Bein, T. (2009). High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1. Microporous and Mesoporous Materials, 117(1-2), 111-117.
https://doi.org/10.1016/j.micromeso.2008.06.040
[92] Qiu, S., & Zhu, G. (2009). Molecular engineering for synthesizing novel structures of metal–organic frameworks with multifunctional properties. Coordination Chemistry Reviews, 253(23-24), 2891-2911.
https://doi.org/10.1016/j.ccr.2009.07.020
[93] Yaghi, O. M., & Li, H. (1995). Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. Journal of the American Chemical Society, 117(41), 10401-10402.
https://doi.org/10.1021/ja00146a033
[94] Stock, N., & Biswas, S. (2012). Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chemical reviews, 112(2), 933-969.
https://doi.org/10.1021/cr200304e
[95] Dybtsev, D. N., Nuzhdin, A. L., Chun, H., Bryliakov, K. P., Talsi, E. P., Fedin, V. P., & Kim, K. (2006). A homochiral metal–organic material with permanent porosity, enantioselective sorption properties, and catalytic activity. Angewandte Chemie, 118(6), 930-934.
https://doi.org/10.1002/ange.200503023
[96] Kim, J., Kim, S. H., Yang, S. T., & Ahn, W. S. (2012). Bench-scale preparation of Cu3 (BTC) 2 by ethanol reflux: Synthesis optimization and adsorption/catalytic applications. Microporous and mesoporous materials, 161, 48-55.
https://doi.org/10.1016/j.micromeso.2012.05.021
[97] Millange, F., El Osta, R., Medina, M. E., & Walton, R. I. (2011). A time-resolved diffraction study of a window of stability in the synthesis of a copper carboxylate metal–organic framework. CrystEngComm, 13(1), 103-108.
https://doi.org/10.1039/C0CE00530D
[98] Li, P., Cheng, F. F., Xiong, W. W., & Zhang, Q. (2018). New synthetic strategies to prepare metal–organic frameworks. Inorganic Chemistry Frontiers, 5(11), 2693-2708.
https://doi.org/10.1039/C8QI00543E
[99] Sun C, Zhao KY, Huang ML, Luo CL, Chen XD, Wang M.(2024).Structure regulating of metal clusters in carbonized metallic organic frameworks for high-efficient microwave absorption via tuning interaction strength between metals and ligands. Nano Research. 17(3):1699-709.
https://doi.org/10.1007/s12274-023-6255-0
[100] Jhung, S. H., Lee, J. H., Yoon, J. W., Serre, C., Férey, G., & San Chang, J. (2007). Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Advanced Materials, 19(1), 121-124.
https://doi.org/10.1002/adma.200601604
[101] Ni, Z., & Masel, R. I. (2008). Synthesis of non-linear metal-organic framework material useful in eg hydrogen storage involves exposing solution including metal-organic framework precursors to microwave dose to induce crystallization of the framework material (Doctoral dissertation, Ph. D Thesis, University of Illinois).
https://doi.org/10.1032/vr19031
[102] Hu, Y., Liu, C., Zhang, Y., Ren, N., & Tang, Y. (2009). Microwave-assisted hydrothermal synthesis of nanozeolites with controllable size. Microporous and Mesoporous Materials, 119(1-3), 306-314.
https://doi.org/10.1016/j.micromeso.2008.11.005
[103] Zhang, S. H., Song, Y., Liang, H., & Zeng, M. H. (2009). Microwave-assisted synthesis, crystal structure and properties of a disc-like heptanuclear Co (II) cluster and a heterometallic cubanic Co (II) cluster. CrystEngComm, 11(5), 865-872.
https://doi.org/10.1039/B815675A
[104] Firmino, A. D., Mendes, R. F., Ananias, D., Vilela, S. M., Carlos, L. D., Tome, J. P., & Paz, F. A. A. (2017). Microwave Synthesis of a photoluminescent Metal-Organic Framework based on a rigid tetraphosphonate linker. Inorganica chimica acta, 455, 584-594.
https://doi.org/10.1016/j.ica.2016.05.029
[105] Lee, Y. R., Kim, J., & Ahn, W. S. (2013). Synthesis of metal-organic frameworks: A mini review. Korean Journal of Chemical Engineering, 30, 1667-1680.
https://doi.org/10.1007/s11814-013-0140-6
[106] Friščić, T., Halasz, I., Beldon, P. J., Belenguer, A. M., Adams, F., Kimber, S. A., & Dinnebier, R. E. (2013). Real-time and in situ monitoring of mechanochemical milling reactions. Nature chemistry, 5(1), 66-73.
https://doi.org/10.1038/NCHEM.1505
[107] Garay, A. L., Pichon, A., & James, S. L. (2007). Solvent-free synthesis of metal complexes. Chemical Society Reviews, 36(6), 846-855.
https://doi.org/10.1039/B600363J
[108] Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K., & Pastre, J. (2006). Metal-organic frameworks—prospective industrial applications. Journal of Materials Chemistry, 16(7), 626-636.
https://doi.org/10.1039/B511962F
[109] Martinez Joaristi, A., Juan-Alcañiz, J., Serra-Crespo, P., Kapteijn, F., & Gascon, J. (2012). Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Crystal Growth & Design, 12(7), 3489-3498.
https://doi.org/10.1021/cg300552w
[110] Suslick, K. S., Choe, S. B., Cichowlas, A. A., & Grinstaff, M. W. (1991). Sonochemical synthesis of amorphous iron. nature, 353(6343), 414-416.
https://doi.org/ 10.1038/353414a0
[111] Lee J, Park S, Woo S, Bae C, Jeon Y, Gu M, Kim J, Kim Y, Nam SY, Jung JH, Kim J.(2023). Soft seed-mediated dimensional control of metal-organic framework nanocrystals through oil-in-water microemulsions. Inorganic Chemistry Frontiers. 10(24):7146-54.
https://doi.org/10.1039/D3QI01567J
[112] Gedanken, A. (2004). Using sonochemistry for the fabrication of nanomaterials. Ultrasonics sonochemistry, 11(2), 47-55.
https://doi.org/10.1016/j.ultsonch.2004.01.037
[113] Son, W.J., Kim, J., Kim, J., Ahn, W.S.(2008). Sonochemical synthesis of MOF-5. Chemical Communications, 47, 6336-6338.
https://doi.org/10.1016/j.cc.2008.110985
[114] Jung, D. W., Yang, D. A., Kim, J., Kim, J., & Ahn, W. S. (2010). Facile synthesis of MOF-177 by a sonochemical method using 1-methyl-2-pyrrolidinone as a solvent. Dalton Transactions, 39(11), 2883-2887.
https://doi.org/10.1039/B925088C
[115] Ye, R., Ni, M., Xu, Y., Chen, H., & Li, S. (2018). Synthesis of Zn-based metal–organic frameworks in ionic liquid microemulsions at room temperature. RSC advances, 8(46), 26237-26242.
https://doi.org/ 10.1039/C8RA04573A
[116] Zheng, W., Hao, X., Zhao, L., & Sun, W. (2017). Controllable preparation of nanoscale metal–organic frameworks by ionic liquid microemulsions. Industrial & Engineering Chemistry Research, 56(20), 5899-5905.
https://doi.org/10.1021/acs.iecr.7b00694
[117] Soleimani, B., Niknam-Shahrak, M., Ghahramaninejad, M. (2017). A review on post synthesis modification methods in the MOFs. Farayandno, 12(58),98-121.[in Persian]
https://doi.org/20.1001.1.17356466.1396.12.58.7.6
[118] Burrows, A.D. (2013) Post-synthetic modification of MOFs. Metal-organic frameworks as heterogeneous catalysts, RSC, 31-75.
https://doi.org/10.1039/9781849737586-00031
[119] Evans, J. D., Sumby, C. J., & Doonan, C. J. (2014). Post-synthetic metalation of metal–organic frameworks. Chemical Society Reviews, 43(16), 5933-5951.
https://doi.org/10.1039/C4CS00076E
[120] Karagiaridi, O., Bury, W., Mondloch, J. E., Hupp, J. T., & Farha, O. K. (2014). Solvent‐assisted linker exchange: an alternative to the de novo synthesis of unattainable metal–organic frameworks. Angewandte Chemie International Edition, 53(18), 4530-4540.
https://doi.org/10.1002/anie.201306923
[121] Fang, Z., Bueken, B., De Vos, D. E., & Fischer, R. A. (2015). Defect‐engineered metal–organic frameworks. Angewandte Chemie International Edition, 54(25), 7234-7254.
https://doi.org/10.1002/anie.201411540
[122] Zhao, N., Cai, K., & He, H. (2020). The synthesis of metal–organic frameworks with template strategies. Dalton Transactions, 49(33), 11467-11479.
https://doi.org/10.1039/D0DT01879A
[123] Kooti, M., Pourreza, A., & Rashidi, A. (2018). Preparation of MIL-101-nanoporous carbon as a new type of nanoadsorbent for H2S removal from gas stream. Journal of Natural Gas Science and Engineering, 57, 331-338.
https://doi.org/10.1016/j.jngse.2018.07.015
[124] Alivand, M. S., Shafiei-Alavijeh, M., Tehrani, N. H. M. H., Ghasemy, E., Rashidi, A., & Fakhraie, S. (2019). Facile and high-yield synthesis of improved MIL-101 (Cr) metal-organic framework with exceptional CO2 and H2S uptake; the impact of excess ligand-cluster. Microporous and Mesoporous Materials, 279, 153-164.
https://doi.org/10.1016/j.micromeso.2018.12.033
[125] Petit, C., Mendoza, B., & Bandosz, T. J. (2010). Hydrogen sulfide adsorption on MOFs and MOF/graphite oxide composites. ChemPhysChem, 11(17), 3678-3684.
https://doi.org/10.1002/cphc.201000689
[126] Daraee, M., Saeedirad, R., & Rashidi, A. (2019). Adsorption of hydrogen sulfide over a novel metal organic framework–metal oxide nanocomposite: TOUO-x (TiO2/UiO-66). Journal of Solid State Chemistry, 278, 120866.
https://doi.org/10.1016/j.jssc.2019.07.027
[127] Li, Y., Zhou, J., Wang, L., & Xie, Z. (2020). Endogenous hydrogen sulfide-triggered MOF-based nanoenzyme for synergic cancer therapy. ACS applied materials & interfaces, 12(27), 30213-30220.
https://doi.org/10.1021/acsami.0c08659
[128] Rallapalli, P. B. S., Cho, K., Kim, S. H., Kim, J. N., & Yoon, H. C. (2020). Upgrading pipeline-quality natural gas to liquefied-quality via pressure swing adsorption using MIL-101 (Cr) as adsorbent to remove CO2 and H2S from the gas. Fuel, 281, 118985.
https://doi.org/10.1016/j.fuel.2020.118985
[129] Díaz-Ramírez, M. L., Sánchez-González, E., Álvarez, J. R., González-Martínez, G. A., Horike, S., Kadota, K., & Lima, E. (2019). Partially fluorinated MIL-101 (Cr): from a miniscule structure modification to a huge chemical environment transformation inspected by 129 Xe NMR. Journal of Materials Chemistry A, 7(25), 15101-15112.
https://doi.org/10.1039/C9TA02237F
[130] Jameh, A. A., Mohammadi, T., Bakhtiari, O., & Mahdyarfar, M. (2019). Synthesis and modification of Zeolitic Imidazolate Framework (ZIF-8) nanoparticles as highly efficient adsorbent for H2S and CO2 removal from natural gas. Journal of Environmental Chemical Engineering, 7(3), 103058.
https://doi.org/10.1016/j.jece.2019.103058
[131] Joshi, J. N., Zhu, G., Lee, J. J., Carter, E. A., Jones, C. W., Lively, R. P., & Walton, K. S. (2018). Probing metal–organic framework design for adsorptive natural gas purification. Langmuir, 34(29), 8443-8450.
https://doi.org/10.1021/acs.langmuir.8b00889
[132] Pourreza, A., Askari, S., Rashidi, A., Seif, A., & Kooti, M. (2019). Highly efficient SO3Ag-functionalized MIL-101 (Cr) for adsorptive desulfurization of the gas stream: Experimental and DFT study. Chemical Engineering Journal, 363, 73-83.
https://doi.org/10.1016/j.cej.2019.01.133
[133] Huang, Y., & Wang, R. (2019). Highly selective separation of H2S and CO2 using a H 2 S-imprinted polymers loaded on a polyoxometalate@ Zr-based metal–organic framework with a core–shell structure at ambient temperature. Journal of Materials Chemistry A, 7(19), 12105-12114.
https://doi.org/10.1039/C9TA01749F
[134] Petit, C., Mendoza, B., & Bandosz, T. J. (2010). Hydrogen sulfide adsorption on MOFs and MOF/graphite oxide composites. ChemPhysChem, 11(17), 3678-3684.
https://doi.org/10.1002/cphc.201000689
[135] Bhatt, P. M., Belmabkhout, Y., Assen, A. H., Weseliński, Ł. J., Jiang, H., Cadiau, A., ... & Eddaoudi, M. (2017). Isoreticular rare earth fcu-MOFs for the selective removal of H2S from CO2 containing gases. Chemical Engineering Journal, 324, 392-396.
https://doi.org/10.1016/j.cej.2017.05.008
[136] Daraee, M., Ghasemy, E., & Rashidi, A. (2020). Synthesis of novel and engineered UiO-66/graphene oxide nanocomposite with enhanced H2S adsorption capacity. Journal of Environmental Chemical Engineering, 8(5), 104351.
https://doi.org/10.1016/j.jece.2020.104351
[137] Allan, P. K., Wheatley, P. S., Aldous, D., Mohideen, M. I., Tang, C., Hriljac, J. A., & Morris, R. E. (2012). Metal–organic frameworks for the storage and delivery of biologically active hydrogen sulfide. Dalton transactions, 41(14), 4060-4066.
https://doi.org/10.1039/C2DT12069K
[138] Assen, A. H. (2020). Mixed-Metal Approach towards Assembling Highly Stable MetalOrganic Framework based Adsorbent for Simultaneous Capture of CO2 and H2S. Abyssinia Journal of Science and Technology, 5(1), 9-17.
https://doi.org/ 10.1002/cssc.201301163
[139] Hamon, L., Leclerc, H., Ghoufi, A., Oliviero, L., Travert, A., Lavalley, J. C., & Maurin, G. (2011). Molecular insight into the adsorption of H2S in the flexible MIL-53 (Cr) and rigid MIL-47 (V) MOFs: infrared spectroscopy combined to molecular simulations. The Journal of Physical Chemistry C, 115(5), 2047-2056.
https://doi.org/10.1021/jp1092724
[140] Liu, J., Wei, Y., Li, P., Zhao, Y., & Zou, R. (2017). Selective H2S/CO2 separation by metal–organic frameworks based on chemical-physical adsorption. The Journal of Physical Chemistry C, 121(24), 13249-13255.
https://doi.org/10.1021/acs.jpcc.7b04465
[141] Heymans, N., Vaesen, S., & De Weireld, G. (2012). A complete procedure for acidic gas separation by adsorption on MIL-53 (Al). Microporous and Mesoporous Materials, 154, 93-99.
https://doi.org/10.1016/j.micromeso.2011.10.020
[142] Zhang, X., Hu, Q., Xia, T., Zhang, J., Yang, Y., Cui, Y., ... & Qian, G. (2016). Turn-on and ratiometric luminescent sensing of hydrogen sulfide based on metal–organic frameworks. ACS applied materials & interfaces, 8(47), 32259-32265.
https://doi.org/10.1021/acsami.6b12118
[143] Shi, R. H., Zhang, Z. R., Fan, H. L., Zhen, T., Shangguan, J., & Mi, J. (2017). Cu-based metal–organic framework/activated carbon composites for sulfur compounds removal. Applied Surface Science, 394, 394-402.
https://doi.org/10.1016/j.apsusc.2017.10.071
[144] Lee, M. H., Vikrant, K., Younis, S. A., Szulejko, J. E., & Kim, K. H. (2020). Chemisorption of hydrogen sulfide by metal-organic frameworks and covalent-organic polymers based on experimental/theoretical evaluation. Journal of Cleaner Production, 250, 119486.
https://doi.org/10.1016/j.jclepro.2019.119486
[145] Bhoria, N., Basina, G., Pokhrel, J., Reddy, K. S. K., Anastasiou, S., Balasubramanian, V. V., ... & Karanikolos, G. N. (2020). Functionalization effects on HKUST-1 and HKUST-1/graphene oxide hybrid adsorbents for hydrogen sulfide removal. Journal of hazardous materials, 394, 122565.
https://doi.org/10.1016/j.jhazmat.2020.122565
[146] Karuppasamy, K., Sharma, B., Vikraman, D., Lee, J. H., Islam, M., Santhoshkumar, P., & Kim, H. S. (2022). Metal organic framework-derived Ni4Mo/MoO2@ C composite nanospheres as the sensing materials for hydrogen sulfide detection. Journal of Alloys and Compounds, 900, 163421.
https://doi.org/10.1016/j.jallcom.2021.163421
[147] Heymans, N., Vaesen, S., & De Weireld, G. (2012). A complete procedure for acidic gas separation by adsorption on MIL-53 (Al). Microporous and Mesoporous Materials, 154, 93-99.
https://doi.org/10.1016/j.micromeso.2011.10.020
[148] Zhang, H. Y., Yang, C., Geng, Q., Fan, H. L., Wang, B. J., Wu, M. M., & Tian, Z. (2019). Adsorption of hydrogen sulfide by amine-functionalized metal organic framework (MOF-199): An experimental and simulation study. Applied Surface Science, 497, 143815.
https://doi.org/10.1016/j.apsusc.2019.143815
[149] Ajibade, P. A., & Oloyede, S. O. (2022). Synthesis of Metal-Organic Frameworks Quantum Dots Composites as Sensors for Endocrine-Disrupting Chemicals. International journal of molecular sciences, 23(14), 7980.
https://doi.org/10.3390/ijms23147980
[150] Gupta, N. K., Rajput, K., & Viltres, H. (2023). Graphene-Based Materials for the Remediation of Hydrogen Sulfide Gas. In 3D Graphene: Fundamentals, Synthesis, and Emerging Applications (pp. 151-167). Cham: Springer Nature Switzerland.
https://doi.org/10.1007/978-3-031-36249-1_9
[151] Gujja, C. S., Shelar, D. S., Asiwal, E. P., Manjare, S. T., & Pawar, S. D. (2023). Selective and sensitive detection of hydrogen sulfide using hydrolytically stable Cu-MOF. Journal of Molecular Structure, 1273, 134277.
https://doi.org/10.1016/j.molstruc.2022.134277
[152] Al-Jadir, T. M., & Siperstein, F. R. (2018). The influence of the pore size in Metal-Organic Frameworks in adsorption and separation of hydrogen sulfide: A molecular simulation study. Microporous and Mesoporous Materials, 271, 160-168.
https://doi.org/10.1016/j.micromeso.2018.06.002
[153] Peterson, G. W., Britt, D. K., Sun, D. T., Mahle, J. J., Browe, M., Demasky, T., & Rossin, J. A. (2015). Multifunctional purification and sensing of toxic hydride gases by CuBTC metal–organic framework. Industrial & Engineering Chemistry Research, 54(14), 3626-3633.
https://doi.org/10.1021/acs.iecr.5b00458
[154] Dunning, S. G., Gupta, N. K., Reynolds III, J. E., Sagastuy-Breña, M., Flores, J. G., Martínez-Ahumada, E., & Humphrey, S. M. (2022). Mn-CUK-1: a flexible MOF for SO2, H2O, and H2S capture. Inorganic Chemistry, 61(38), 15037-15044.
https://doi.org/10.1021/acs.inorgchem.2c02012
[155] Pokhrel, J. (2016). Functionalized metal-organic frameworks (MOF) and graphene oxide (GO) composites for natural gas sweetening (Master's thesis, The Petroleum Institute (United Arab Emirates).
https://doi.org/10.2160/ijvs26117461
[156] Wang, Z., Wang, X., Li, J., Li, W., & Li, G. (2019). Eu3+/TFA functionalized MOF as luminescent enhancement platform: a ratiometric luminescent sensor for hydrogen sulfide in aqueous solution. Journal of Inorganic and Organometallic Polymers and Materials, 29, 2124-2132.
https://doi.org/10.1007/s10904-019-01171-7
[157] Gupta, N. K., Kim, S., Bae, J., & Kim, K. S. (2021). Fabrication of Cu (BDC) 0.5 (BDC-NH2) 0.5 metal-organic framework for superior H2S removal at room temperature. Chemical Engineering Journal, 411, 128536.
https://doi.org/10.1016/j.cej.2021.128536
[158] Yang, Y., Liu, X., Yang, C., Wang, Y., Wang, H., & Fan, H. (2023). Study on the essential features for MOFs to reversible adsorption of H2S at room temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 674, 131914.
https://doi.org/10.1016/j.colsurfa.2023.131914
[159] Deng, Y., Vellingiri, K., Kim, K. H., Boukhvalov, D. W., & Philip, L. (2018). Activation strategies of metal-organic frameworks for the sorption of reduced sulfur compounds. Chemical Engineering Journal, 350, 747-756.
https://doi.org/10.1016/j.cej.2018.06.006
[160] Martínez-Ahumada, E., Díaz-Ramírez, M. L., Velásquez-Hernández, M. D. J., Jancik, V., & Ibarra, I. A. (2021). Capture of toxic gases in MOFs: SO2, H2S, NH3 and NOx. Chemical science, 12(20), 6772-6799.
https://doi.org/ 10.1039/D1SC01609A
[161] Petit, C., Mendoza, B., & Bandosz, T. J. (2010). Hydrogen sulfide adsorption on MOFs and MOF/graphite oxide composites. ChemPhysChem, 11(17), 3678-3684.
https://doi.org/10.1002/cphc.201000689
[162] Georgiadis, A. G., Charisiou, N. D., Yentekakis, I. V., & Goula, M. A. (2020). Removal of hydrogen sulfide (H2S) using MOFs: a review of the latest developments. Chemistry Proceedings, 2(1), 27.
https://doi.org/10.3390/ECCS2020-07586
[163] Hamon, L., Leclerc, H., Ghoufi, A., Oliviero, L., Travert, A., Lavalley, J. C., & Maurin, G. (2011). Molecular insight into the adsorption of H2S in the flexible MIL-53 (Cr) and rigid MIL-47 (V) MOFs: infrared spectroscopy combined to molecular simulations. The Journal of Physical Chemistry C, 115(5), 2047-2056.
https://doi.org/10.1021/jp1092724