The impact of annealing temperature on photocatalytic degradation performance of rhodamine B by montmorillonite/zinc-oxide nanocomposite

Document Type : Research Paper

Authors

1 Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City, Vietnam - 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 700000, Viet Nam

2 Laboratory of Advanced Materials, University of Science, Ho Chi Minh City, Vietnam - 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 700000, Viet Nam

3 Vietnam National University, Ho Chi Minh City, Vietnam - Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam

Abstract

This paper investigates the impact of annealing temperature on the photocatalytic degradation efficiency of rhodamine B (rhB) using a montmorillonite/zinc-oxide (MMT/ZnO) nanocomposite. The MMT/ZnO nanocomposites, synthesized through a chemical method, are annealed for one hour at 300°C, 500°C, and 700°C. The study involves a comprehensive analysis of sample composition, surface morphology, and structure using various analytical methods, including Energy Dispersive X-ray Spectroscopy (EDX), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis, and Fourier Transform Infrared Spectroscopy (FTIR). RhB degradation efficiency is assessed by monitoring changes in dye concentration in the solution after exposure to UVC radiation, measured with UV-Vis spectroscopy. By-products resulting from the photocatalysis process are identified through LCMS analysis. The results demonstrate that MMT/ZnO annealed at 500°C (referred to as MZ@500) exhibits the highest capability for rhB decomposition, achieving a remarkable 95.5% degradation efficiency with 10 ppm of rhB and 0.1 g/L of MZ@500. Furthermore, this composite effectively fragments the dye's chromophore structure into smaller, ring-broken compounds.

Graphical Abstract

The impact of annealing temperature on photocatalytic degradation performance of rhodamine B by montmorillonite/zinc-oxide nanocomposite

Keywords

Main Subjects


[1]   Ha Thuc, C. N., Grillet, A-C., Duclaux, L., Reinert, L., Ha Thuc, H. (2010). Separation and purification of montmorillonite and polyethylene oxide modified montmorillonite from Vietnamese bentonites. Applied Clay Science, 49 (3), 229-238.
https://doi.org/10.1016/j.clay.2010.05.011
[2]   Yujin, B., Chanyoung, S., Taehyun, Y., Yongsung, J., Ho, Y. J. (2023). Prediction of Na- and Ca-montmorillonite contents and swelling properties of clay mixtures using Vis-NIR spectroscopy. Geoderma, 430, 116294.
 https://doi.org/10.1016/j.geoderma.2022.116294
[3]   Ha Thuc, C. N., Cao, H. T., Nguyen, M. D., Tran., M. A., Laurent, D., Anne-Cecile, G., Ha Thuc, H. (2014). Preparation and Characterization of Polyurethane Nanocomposites Using Vietnamese Montmorillonite Modified by Polyol Surfactants. Journal of Nanomaterials, 12, 302735.
https://doi.org/10.1155/2014/302735
[4]   Sunki, K., Jongmyoung, L., Donghoon, S., Youngjin, C., Byungkyu, P. (2023). Comparative study of the cesium adsorption behavior of montmorillonite and illite based on their mineralogical properties and interlayer cations. Journal of Hazardous Materials Advances, 10, 100258. https://doi.org/10.1016/j.hazadv.2023.100258
[5]   Nguyen, V. H., Chu, V. H., Luu, T. H., Vo Nguyen, D. K., Ha Thuc, C. N. (2020). The starch-modified montmorillonite for the removal of Pb (II), Cd (II), and Ni(II) ions from aqueous solutions. Arabian Journal of Chemistry, 13, 7212–7223.
https://doi.org/10.1016/j.arabjc.2020.08.003
[6]   Zhi-lei, Z., Chuang, Y., Rao-ping, L., Xiaoqing, C., Zhihao, C., Zhaokai, Y., Ze-xiang, W. (2023). Preparation and characterization of sodium polyacrylate grafted montmorillonite nanocomposite for the adsorption of cadmium ions from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 656 (B), 130389.
https://doi.org/10.1016/j.colsurfa.2022.130389
[7]   Sen, Y., Gang, Y. (2023). Origin for superior adsorption of metal ions and efficient control of heavy metals by montmorillonite: A molecular dynamics exploration. Chemical Engineering Journal Advances, 14, 100467.
https://doi.org/10.1016/j.ceja.2023.100467
[8]   Miguel, A., López, Z., Bernardo, F. B. (2022). Montmorillonite-perlite-iron ceramic membranes for the adsorption/removal of As (III) and other constituents from surface water. Ceramics International, 48 (21), 31695-31704.
https://doi.org/10.1016/j.ceramint.2022.07.091
[9]   Min-min, W., Li, W. (2013). Synthesis and characterization of carboxymethyl cellulose/organic montmorillonite nanocomposites and its adsorption behavior for Congo Red dye. Water Science and Engineering, 6 (3), 272-282.
https://doi.org/10.3882/j.issn.1674-2370.2013.03.004
[10] Sirajudheen, P., Karthikeyan, P.,  Basheer, M. C.,  Meenakshi, S.  (2020). Adsorptive removal of anionic azo dyes from effluent water using Zr(IV) encapsulated carboxymethyl cellulose-montmorillonite composite. Environmental Chemistry and Ecotoxicology, 2, 73-82.
https://doi.org/10.1016/j.enceco.2020.04.002
[11] Sedigheh, A., Maryam, H. (2017). Variation of the photocatalytic performance of decorated MWCNTs (MWCNTs-ZnO) with pH for photodegradation of methyl orange.  J Mater Sci: Mater Electron., 28, 11846-11855.
https://doi.org/10.1007/s10854-017-6992-5
[12] Sedigheh, A., Maryam, H., Mehri-Saddat, E. K. (2017). Removal efficiency optimization of organic pollutant (methylene blue) with modified multi-walled carbon nanotubes using design of experiments (DOE). J. Mate.r Sci: Mate.r Electron., 28, 9900–9910.
https://doi.org/10.1007/s10854-017-6745-5
[13] Mehdi, A. K., Susmita, S., Krishna G., Bhattacharyya, G., Dhruba C. (2022). Montmorillonite and modified montmorillonite as adsorbents for removal of water-soluble organic dyes: A review on current status of the art. Inorganic Chemistry Communications, 143, 109686. https://doi.org/10.1016/j.inoche.2022.109686
[14] Nandana, C., Prabhat, R., Anand, G. C., Parag, R. G. (2023). Performance comparison of photocatalysts for degradation of organic pollutants using experimental studies supported with DFT and fundamental characterization. Catalysis Communications, 174, 106589.
https://doi.org/10.1016/j.catcom.2022.106589
[15] Sedigheh, A., Mehri‑Saddat., E.K., Mostafa, T. (2017). Modeling and predicting the photodecomposition of methylene blue via ZnO–SnO2 hybrids using design of experiments (DOE). J Mater Sci: Mater Electron, 28 (3).
https://doi.org/ 10.1007/s10854-017-7414-4
[16] Amir, H. N., Mohammad, F., Mostafa, T., Sedigheh, A. (2019). Novel photocatalytic coatings based on tin oxide semiconductor. Surface Engineering, 35 (3), 216-226.
https://doi.org/10.1080/02670844.2018.1477559
[17] Dao, T. B. T., Ha, T. T. L., Nguyen, D. T., Le, H. N., Luu, Q. K., Nguyen, T. H., Ha-Thuc, C. N. (2023). Vietnamese Montmorillonite Supported ZnO: Preparation, Characterization and Photocatalytic Enhancement in Degradation of Rhodamine B. Kinetics and Catalysis, 64 (4), 390–402. https://doi.org/10.1134/S002315842304002X
[18] Dao, T. B., T., Ha, T. T. L., Nguyen, T. D., Le, H. N., Ha-Thuc, C. N., Nguyen, T. M. L., Patrick, P., Nguyen, D. M. (2021). Effectiveness of photocatalyst of MMT–supported TiO2 and TiO2 nanotubes for rhodamine B degradation. Chemosphere, 280, 130802.
https://doi.org/10.1016/j.chemosphere.2021.130802
[19] Abbasi, S., Dastan, D., Țălu, Ș., Tahir, M., Elias, M., Lin, T., Zhi, L. (2022). Evaluation of the dependence of methyl orange organic pollutant removal rate on the amount of titanium dioxide nanoparticles in MWCNTs-TiO2 photocatalyst using statistical methods and Duncan’s multiple range test. International Journal of Environmental Analytical Chemistry, 248252147.
https://doi.org/10.1080/03067319.2022.2060085
[20] Sedigheh, A. (2023). Studying the destruction of pollutant in the presence of photocatalysts based on MWCNTs with controlled values of TiO2 nanoparticles. Applied Water Science, 13, 100.
https://doi.org/10.1007/s13201-023-01903-8
[21] Sedigheh, A., Maryam, H., Fatemeh, A., Mika, S., Davoud, D., Amine, A. (2021). Application of the statistical analysis methodology for photodegradation of methyl orange using a new nanocomposite containing modified TiO2 semiconductor with SnO2. International Journal Of Environmental Analytical Chemistry, 101 (2), 208 – 224.
https://doi.org/10.1080/03067319.2019.1662414
[22] Suguna, A., Prabhu, S., Selvaraj, M., Geerthana, Geerthana, M., Silambarasan, A., Navaneethan, M., Ramesh, R., Sridevi, C. (2022). Annealing effect on photocatalytic activity of ZnO nanostructures for organic dye degradation. Journal of Materials Science: Materials in Electronics, 33, 8868–8879.
https://doi.org/10.1007/s10854-021-06942-y
[23] Ahmad, U., Rajesh, K., Girish, K., Algarni, H., Kim, S. H. (2015). Effect of annealing temperature on the properties and photocatalytic efficiencies of ZnO nanoparticles. Journal of Alloys and Compounds, 648, 46-52.
https://doi.org/10.1016/j.jallcom.2015.04.236
[24] Nadir, F. H., Raid, I., Husam, R. A. (2014). Effect of Annealing Temperature on the Optical Properties of ZnO Nanoparticles. International Letters of Chemistry Physics and Astronomy, 4, 47-47.
https://doi.org/10.18052/www.scipress.com/ILCPA.23.37
[25] Najmeh, R., Sedigheh, A., Mahdieh, G. (2017). Statistical analysis of the photocatalytic activity of decorated multi-walled carbon nanotubes with ZnO nanoparticles. J Mater Sci: Mater Electron, 28, 6047–6055.
https://doi.org/10.1007/s10854-016-6280-9
[26] Najmeh, R., Sedigheh, A., Mahdieh, G. (2017). The experimental and statistical investigation of the photo degradation of methyl orange using modified MWCNTs with different amount of ZnO nanoparticles. J Mater Sci: Mater Electron, 28, 7343-7352.
https://doi.org/10.1007/s10854-017-6421-9
[27] Redouane, H., Hamza, I., Rahime, E., M., Said, A., Fadi, A., Eman, A., Huda, A., Hassan, O., Abdelaziz, A. A., Amane, J. (2023). Exploring ZnO/Montmorillonite photocatalysts for the removal of hazardous RhB Dye: A combined study using molecular dynamics simulations and experiments. Materials Today Communications, 35, 105915.
https://doi.org/10.1016/j.mtcomm.2023.105915
[28] Jixiang, X., Jianyang, G., Wenbo, W., Chao, W., Lei, W. (2018). Noble metal-free NiCo nanoparticles supported on montmorillonite/MoS2 heterostructure as an efficient UV–visible light-driven photocatalyst for hydrogen evolution. International Journal of Hydrogen Energy, 43 (3), 1375-1385.
https://doi.org/10.1016/j.ijhydene.2017.11.129
[29] Sedigheh, A., Fatemeh, A., Mohammad, I., MehriSaddat, E. K. (2020). Synthesis of magnetic Fe3O4@ZnO@graphene oxide nanocomposite for photodegradation of organic dye pollutant. International Journal Of Environmental Analytical Chemistry, 100(2), 225 – 240.
https://doi.org/10.1080/03067319.2019.1636038
[30] Ahmad, U., Rajesh, K., Girish, K., Algarni, H., Kim, S. H. (2015). Effect of annealing temperature on the properties and photocatalytic efficiencies of ZnO nanoparticles. Journal of Alloys and Compounds, 648, 46-52.
https://doi.org/10.1016/j.jallcom.2015.04.236
[31] Irshad, A., Yanhong, Z., Jiaying, Y., Yuyu, L., Shazia, S., Muhammad, Y. N., Humaira, H., Waheed, Q. K., Khalid N. R. (2023). Semiconductor photocatalysts: A critical review highlighting the various strategies to boost the photocatalytic performances for diverse applications. Advances in Colloid and Interface Science, 311, 102830.
https://doi.org/10.1016/j.cis.2022.102830
[32] Is, F., Sesy, A., Imam, S., Gani, P., Suresh, S., Ruey-An, D. (2021). Visible light sensitized porous clay heterostructure photocatalyst of zinc-silica modified montmorillonite by using tris (2,2′-bipyridyl) dichlororuthenium. Applied Clay Science, 204, 106023.
https://doi.org/10.1016/j.clay.2021.106023.
[33] Li, Z., Chitiphon, C., Vellaichamy, B., Karthikeyan, S., Bunsho, O., Keiko, S. (2022). Determination of the roles of FeIII in the interface between titanium dioxide and montmorillonite in FeIII-doped montmorillonite/titanium dioxide composites as photocatalysts. Applied Clay Science, 227, 106577.
https://doi.org/10.1016/j.clay.2022.106577
[34] Zhenshi, S., Yingxu, C., Qiang, K., Ye, Y., Jun, Y. (2002). Photocatalytic degradation of cationic azo dye by TiO2/bentonite nanocomposite. Journal of Photochemistry and Photobiology A: Chemistry, 149 (1-3), 169–174.
https://doi.org/10.1016/S1010-6030(01)00649-9
[35] Wangbing, H., Jie, M., Changdong, L., Shengyi, Y., Xin, H., Guobin, F. (2020). Effects of Temperature on Structural Properties of Hydrated Montmorillonite: Experimental Study and Molecular Dynamics Simulation. Advances in Civil Engineering, 2020, 8885215.
https://doi.org/10.1155/2020/8885215
[36] Walber, A. F., Barbara, E. C. F. S., Maxwell, S. R., Pollyana, T., Luzia, M. C. H., Ramón, P. G., Ana, C. S. A., Edson, C. S. F., Maria, G. F., Marcelo, B. F., Josy, A. O. (2022). Facile synthesis of ZnO-clay minerals composites using an ultrasonic approach for photocatalytic performance. Journal of Photochemistry and Photobiology A: Chemistry, 429, 113934.
https://doi.org/10.1016/j.jphotochem.2022.113934
[37] Sedigheh, A. (2021). Response Surface Methodology for Photo Degradation of Methyl Orange Using Magnetic Nanocomposites Containing Zinc Oxide.  Journal of Cluster Science, 32, 805-812.
https://doi.org/10.1007/s10876-020-01847-y
[38] Subash, B., Sasikala, R., Jayamoorthy, K., Magesan, P. (2023). Heterojunction of Bentonite Clay supported Bi2O3/ZnO composite for the detoxification of azo dyes under UV-A light illumination. Chemical Physics Impact, 6, 100152.
https://doi.org/10.1016/j.chphi.2022.100152
[39] Morteza, G., Moones, H., Amin, E. (2022). Biosynthesis of ZnO nanoparticles supported on bentonite and the evaluation of its photocatalytic activity. Materials Research Bulletin, 149, 111714.
https://doi.org/10.1016/j.materresbull.2021.111714
[40] Hannatu, A. S., Mansor, B. A., Mohd, Z. H., Nor, A. I., Aminu, M., Tawfik, A. S. (2017). Nanocomposite of ZnO with Montmorillonite for Removal of Lead and Copper Ions from aqueous solutions. Process Safety and Environment Protection, 109, 97-105.
https://doi.org/10.1016/j.psep.2017.03.024
[41] Sedigheh, A., Zhi, L., Davoud, D., Lin, T. (2023). The effect of individual factors, their binary and ternary interactions on photodegradation rate of organic contaminants using photocatalysts based on multi-walled carbon nanotubes (MWCNTs): statistical analysis based on ANOVA and RSM. Environmental Monitoring and Assessment, 195, 1191.
https://doi.org/10.1007/s10661-023-11704-w
[42] Sedigheh, A. (2023). Magnetic photocatalysts based on graphene oxide: synthesis, characterization, application in advanced oxidation processes and response surface analysis. Applied Water Science, 13, 128.
https://doi.org/10.1007/s13201-023-01931-4
[43] Sedigheh, A. (2020). Adsorption of Dye Organic Pollutant Using Magnetic ZnO Embedded on the Surface of Graphene Oxide. Journal of Inorganic and Organometallic Polymers and Materials, 30, 1924-1934.
https://doi.org/10.1007/s10904-019-01336-4
[44] Sedigheh, A. (2019). Photocatalytic activity study of coated anatase-rutile titania nanoparticles with nanocrystalline tin dioxide based on the statistical analysis. Environ Monit Assess., 191, 206.
https://doi.org/10.1007/s10661-019-7352-0
[45] Sedigheh, A., Mehri-Saddat, E. K. (2019). The influence of ZnO nanoparticles amount on the optimisation of photo degradation of methyl orange using decorated MWCNTs. Progress in Industrial Ecology – An International Journal, 13 (1), 3-15.
https://doi.org/10.1504/PIE.2019.098760
[46] Phetladda, P., Apisit, S., Weerapat, F., Pinit, K., Weekit, S. (2018). Homogeneous distribution of nanosized ZnO in montmorillonite clay sheets for the photocatalytic enhancement in degradation of Rhodamine B. Research on Chemical Intermediates, 44, 6861–6875.
https://doi.org/10.1007/s11164-018-3526-6
[47] Biyang, T., Shengqing, W., Haichun, X., Jianli, W., Yuying, M. (2024). Optimization of preparation conditions of Bi-doped TiO2/montmorillonite composites and its photodegradation of Rhodamine B. Desalination and Water Treatment, 100328.
https://doi.org/10.1016/j.dwt.2024.100328
[48] Is, F., Rico, N., Imam, S., Ganjar, F., Bambang, H. N., Azlan, K., Oki, M. (2020). Sonocatalytic degradation of rhodamine B using tin oxide/ montmorillonite. Journal of Water Process Engineering, 37 (2020) 101418.
https://doi.org/10.1016/j.jwpe.2020.101418
[49] Suguna, A., Sridevi, C., Parthibavarman, M., Manikandababu, C. S., Ramachandran, K., BoopathiRaja, R.  (2024). Design and fabrication of Zeolite Socony Mobil-5 incorporated ZnO composite for enhanced visible light photocatalytic performance. Chemical Physics Impact, 8, 100621.
https://doi.org/10.1016/j.chphi.2024.100621
[50] Yongxin, X., Tiwei, C. (2023). Development of nanostructured based ZnO@WO3 photocatalyst and its photocatalytic and electrochemical properties: Degradation of Rhodamine B. International Journal of Electrochemical Science, 18 (4), 100055.
https://doi.org/10.1016/j.ijoes.2023.100055
[51] Loan, T. T. N., Dai-Viet, N. V., Lan, T. H. N., Anh, T. T. D., Hai, Q. N., Nhuong, M. C., Duyen, T. C. N., Thuan, V. C. (2022). Synthesis, characterization, and application of ZnFe2O4@ZnO nanoparticles for photocatalytic degradation of Rhodamine B under visible-light illumination. Environmental Technology & Innovation, 25, 102130.
https://doi.org/10.1016/j.eti.2021.102130
[52] Manmohan, L., Praveen, S., Lakhvinder, S., Chhotu, R. (2023) Photocatalytic degradation of hazardous Rhodamine B dye using sol-gel mediated ultrasonic hydrothermal synthesized of ZnO nanoparticles. Results in Engineering, 17, 100890.
https://doi.org/10.1016/j.rineng.2023.100890
[53] Abdulla,  S. M., Amran, M. H. S., Ishtiaque, M. S., Mahabub, A. B. (2024) Effective adsorption and visible light driven enhanced photocatalytic degradation of rhodamine B using ZnO nanoparticles immobilized on graphene oxide nanosheets. Results in Physics, 58, 107471.
https://doi.org/10.1016/j.rinp.2024.107471
[54] Alireza, K., Murat, K., Semra, K., Samira, A. O. (2016). Preparation and characterization of ZnO/MMT nanocomposite for photocatalytic ozonation of a disperse dye. Turkish Journal of Chemistry, 40, 546 – 564.
https://doi.org/10.3906/kim-1507-77
[55] Melike, K., Murat, K., Semra, K., Alireza, K., Atefeh, K. (2016). Sonocatalytic removal of naproxen by synthesized zinc oxide nanoparticles on montmorillonite. Ultrasonics Sonochemistry, 31, 250–256.
http://dx.doi.org/10.1016/j.ultsonch.2016.01.009
[56] Chunhui, Z., Dongshen, T., Weihua, Y. (2019). 7 - Smectite Nanomaterials: Preparation, Properties, and Functional Applications. Nanomaterials from Clay Minerals - A New Approach to Green Functional Materials Micro and Nano Technologies, 335-364.
https://doi.org/10.1016/B978-0-12-814533-3.00007-7
[57] Marina, M., Giuseppe, C., Giuseppe, L., Serena, R. (2020). 13 - Covalently modified nanoclays: synthesis, properties and applications. Clay Nanoparticles-Properties and Applications Micro and Nano Technologies, 305-333.
https://doi.org/10.1016/B978-0-12-816783-0.00013-X
[58] Yating, Q., Tongjiang, P., Hongjuan, S., Li, Z., Yao, L., Can, Z. (2021). Effect Of Montmorillonite Layer Charge On The Thermal Stability Of Bentonite. Clays and Clay Minerals, 69, 328–338.
https://doi.org/10.1007/s42860-021-00117-w
[59] Mohammad, H. H., Maryam, M. (2015). Effect of annealing temperature on optical properties of binary zinc tin oxide nano-composite prepared by sol–gel route using simple precursors: Structural and optical studies by DRS, FT-IR, XRD, FESEM investigations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 267-270.
https://doi.org/10.1016/j.saa.2014.08.031
[60] Sharmaa, G., Dionysiou, D., Sharm, S., Kumar, A., Al-Muhtaseb, A., Naushad, M., Stadler, F. (2019). Highly efficient Sr/Ce/activated carbon bimetallic nanocomposite for photoinduced degradation of rhodamine B. Catal. Today, 335, 437–451.
https://doi.org/10.1016/J.CATTOD.2019.03.063
[61] Hegazey, R., Abdelrahman, E., Kotp, Y. (2020). Facile fabrication of hematite nanoparticles from Egyptian insecticide cans for efficient photocatalytic degradation of rhodamine B dye. J. Mater. Res. Techno., 9, 1652–1661.
https://doi.org/10.1016/j.jmrt.2019.11.090
[62] Changren, X., Zijun, T., Cong, W., Xiaoqing, Y., Guoqing, Z., Huageng, P. (2018). Fabrication of In2O3/TiO2 nanotube arrays hybrids with homogeneously developed nanostructure for photocatalytic degradation of Rhodamine B. Materials Research Bulletin, 106, 197-203.
https://doi.org/10.1016/j.materresbull.2018.05.022
[63] Ali, A. I., Amir, P., Moslem, F., Sahand, J., Babak, K. (2018). Photocatalytic degradation of Rhodamine B and Real Textile Wastewater using Fe-Doped TiO2 anchored on Reduced Graphene Oxide (Fe-TiO2/rGO): Characterization and feasibility, mechanism and pathway studies. Applied Surface Science, 462, 549-564.
https://doi.org/10.1016/j.apsusc.2018.08.133