[1] Ha Thuc, C. N., Grillet, A-C., Duclaux, L., Reinert, L., Ha Thuc, H. (2010). Separation and purification of montmorillonite and polyethylene oxide modified montmorillonite from Vietnamese bentonites. Applied Clay Science, 49 (3), 229-238.
https://doi.org/10.1016/j.clay.2010.05.011
[2] Yujin, B., Chanyoung, S., Taehyun, Y., Yongsung, J., Ho, Y. J. (2023). Prediction of Na- and Ca-montmorillonite contents and swelling properties of clay mixtures using Vis-NIR spectroscopy. Geoderma, 430, 116294.
https://doi.org/10.1016/j.geoderma.2022.116294
[3] Ha Thuc, C. N., Cao, H. T., Nguyen, M. D., Tran., M. A., Laurent, D., Anne-Cecile, G., Ha Thuc, H. (2014). Preparation and Characterization of Polyurethane Nanocomposites Using Vietnamese Montmorillonite Modified by Polyol Surfactants. Journal of Nanomaterials, 12, 302735.
https://doi.org/10.1155/2014/302735
[4] Sunki, K., Jongmyoung, L., Donghoon, S., Youngjin, C., Byungkyu, P. (2023). Comparative study of the cesium adsorption behavior of montmorillonite and illite based on their mineralogical properties and interlayer cations. Journal of Hazardous Materials Advances, 10, 100258. https://doi.org/10.1016/j.hazadv.2023.100258
[5] Nguyen, V. H., Chu, V. H., Luu, T. H., Vo Nguyen, D. K., Ha Thuc, C. N. (2020). The starch-modified montmorillonite for the removal of Pb (II), Cd (II), and Ni(II) ions from aqueous solutions. Arabian Journal of Chemistry, 13, 7212–7223.
https://doi.org/10.1016/j.arabjc.2020.08.003
[6] Zhi-lei, Z., Chuang, Y., Rao-ping, L., Xiaoqing, C., Zhihao, C., Zhaokai, Y., Ze-xiang, W. (2023). Preparation and characterization of sodium polyacrylate grafted montmorillonite nanocomposite for the adsorption of cadmium ions from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 656 (B), 130389.
https://doi.org/10.1016/j.colsurfa.2022.130389
[7] Sen, Y., Gang, Y. (2023). Origin for superior adsorption of metal ions and efficient control of heavy metals by montmorillonite: A molecular dynamics exploration. Chemical Engineering Journal Advances, 14, 100467.
https://doi.org/10.1016/j.ceja.2023.100467
[8] Miguel, A., López, Z., Bernardo, F. B. (2022). Montmorillonite-perlite-iron ceramic membranes for the adsorption/removal of As (III) and other constituents from surface water. Ceramics International, 48 (21), 31695-31704.
https://doi.org/10.1016/j.ceramint.2022.07.091
[9] Min-min, W., Li, W. (2013). Synthesis and characterization of carboxymethyl cellulose/organic montmorillonite nanocomposites and its adsorption behavior for Congo Red dye. Water Science and Engineering, 6 (3), 272-282.
https://doi.org/10.3882/j.issn.1674-2370.2013.03.004
[10] Sirajudheen, P., Karthikeyan, P., Basheer, M. C., Meenakshi, S. (2020). Adsorptive removal of anionic azo dyes from effluent water using Zr(IV) encapsulated carboxymethyl cellulose-montmorillonite composite. Environmental Chemistry and Ecotoxicology, 2, 73-82.
https://doi.org/10.1016/j.enceco.2020.04.002
[11] Sedigheh, A., Maryam, H. (2017). Variation of the photocatalytic performance of decorated MWCNTs (MWCNTs-ZnO) with pH for photodegradation of methyl orange. J Mater Sci: Mater Electron., 28, 11846-11855.
https://doi.org/10.1007/s10854-017-6992-5
[12] Sedigheh, A., Maryam, H., Mehri-Saddat, E. K. (2017). Removal efficiency optimization of organic pollutant (methylene blue) with modified multi-walled carbon nanotubes using design of experiments (DOE). J. Mate.r Sci: Mate.r Electron., 28, 9900–9910.
https://doi.org/10.1007/s10854-017-6745-5
[13] Mehdi, A. K., Susmita, S., Krishna G., Bhattacharyya, G., Dhruba C. (2022). Montmorillonite and modified montmorillonite as adsorbents for removal of water-soluble organic dyes: A review on current status of the art. Inorganic Chemistry Communications, 143, 109686. https://doi.org/10.1016/j.inoche.2022.109686
[14] Nandana, C., Prabhat, R., Anand, G. C., Parag, R. G. (2023). Performance comparison of photocatalysts for degradation of organic pollutants using experimental studies supported with DFT and fundamental characterization. Catalysis Communications, 174, 106589.
https://doi.org/10.1016/j.catcom.2022.106589
[15] Sedigheh, A., Mehri‑Saddat., E.K., Mostafa, T. (2017). Modeling and predicting the photodecomposition of methylene blue via ZnO–SnO2 hybrids using design of experiments (DOE). J Mater Sci: Mater Electron, 28 (3).
https://doi.org/ 10.1007/s10854-017-7414-4
[16] Amir, H. N., Mohammad, F., Mostafa, T., Sedigheh, A. (2019). Novel photocatalytic coatings based on tin oxide semiconductor. Surface Engineering, 35 (3), 216-226.
https://doi.org/10.1080/02670844.2018.1477559
[17] Dao, T. B. T., Ha, T. T. L., Nguyen, D. T., Le, H. N., Luu, Q. K., Nguyen, T. H., Ha-Thuc, C. N. (2023). Vietnamese Montmorillonite Supported ZnO: Preparation, Characterization and Photocatalytic Enhancement in Degradation of Rhodamine B. Kinetics and Catalysis, 64 (4), 390–402. https://doi.org/10.1134/S002315842304002X
[18] Dao, T. B., T., Ha, T. T. L., Nguyen, T. D., Le, H. N., Ha-Thuc, C. N., Nguyen, T. M. L., Patrick, P., Nguyen, D. M. (2021). Effectiveness of photocatalyst of MMT–supported TiO2 and TiO2 nanotubes for rhodamine B degradation. Chemosphere, 280, 130802.
https://doi.org/10.1016/j.chemosphere.2021.130802
[19] Abbasi, S., Dastan, D., Țălu, Ș., Tahir, M., Elias, M., Lin, T., Zhi, L. (2022). Evaluation of the dependence of methyl orange organic pollutant removal rate on the amount of titanium dioxide nanoparticles in MWCNTs-TiO2 photocatalyst using statistical methods and Duncan’s multiple range test. International Journal of Environmental Analytical Chemistry, 248252147.
https://doi.org/10.1080/03067319.2022.2060085
[20] Sedigheh, A. (2023). Studying the destruction of pollutant in the presence of photocatalysts based on MWCNTs with controlled values of TiO2 nanoparticles. Applied Water Science, 13, 100.
https://doi.org/10.1007/s13201-023-01903-8
[21] Sedigheh, A., Maryam, H., Fatemeh, A., Mika, S., Davoud, D., Amine, A. (2021). Application of the statistical analysis methodology for photodegradation of methyl orange using a new nanocomposite containing modified TiO2 semiconductor with SnO2. International Journal Of Environmental Analytical Chemistry, 101 (2), 208 – 224.
https://doi.org/10.1080/03067319.2019.1662414
[22] Suguna, A., Prabhu, S., Selvaraj, M., Geerthana, Geerthana, M., Silambarasan, A., Navaneethan, M., Ramesh, R., Sridevi, C. (2022). Annealing effect on photocatalytic activity of ZnO nanostructures for organic dye degradation. Journal of Materials Science: Materials in Electronics, 33, 8868–8879.
https://doi.org/10.1007/s10854-021-06942-y
[23] Ahmad, U., Rajesh, K., Girish, K., Algarni, H., Kim, S. H. (2015). Effect of annealing temperature on the properties and photocatalytic efficiencies of ZnO nanoparticles. Journal of Alloys and Compounds, 648, 46-52.
https://doi.org/10.1016/j.jallcom.2015.04.236
[24] Nadir, F. H., Raid, I., Husam, R. A. (2014). Effect of Annealing Temperature on the Optical Properties of ZnO Nanoparticles. International Letters of Chemistry Physics and Astronomy, 4, 47-47.
https://doi.org/10.18052/www.scipress.com/ILCPA.23.37
[25] Najmeh, R., Sedigheh, A., Mahdieh, G. (2017). Statistical analysis of the photocatalytic activity of decorated multi-walled carbon nanotubes with ZnO nanoparticles. J Mater Sci: Mater Electron, 28, 6047–6055.
https://doi.org/10.1007/s10854-016-6280-9
[26] Najmeh, R., Sedigheh, A., Mahdieh, G. (2017). The experimental and statistical investigation of the photo degradation of methyl orange using modified MWCNTs with different amount of ZnO nanoparticles. J Mater Sci: Mater Electron, 28, 7343-7352.
https://doi.org/10.1007/s10854-017-6421-9
[27] Redouane, H., Hamza, I., Rahime, E., M., Said, A., Fadi, A., Eman, A., Huda, A., Hassan, O., Abdelaziz, A. A., Amane, J. (2023). Exploring ZnO/Montmorillonite photocatalysts for the removal of hazardous RhB Dye: A combined study using molecular dynamics simulations and experiments. Materials Today Communications, 35, 105915.
https://doi.org/10.1016/j.mtcomm.2023.105915
[28] Jixiang, X., Jianyang, G., Wenbo, W., Chao, W., Lei, W. (2018). Noble metal-free NiCo nanoparticles supported on montmorillonite/MoS2 heterostructure as an efficient UV–visible light-driven photocatalyst for hydrogen evolution. International Journal of Hydrogen Energy, 43 (3), 1375-1385.
https://doi.org/10.1016/j.ijhydene.2017.11.129
[29] Sedigheh, A., Fatemeh, A., Mohammad, I., MehriSaddat, E. K. (2020). Synthesis of magnetic Fe3O4@ZnO@graphene oxide nanocomposite for photodegradation of organic dye pollutant. International Journal Of Environmental Analytical Chemistry, 100(2), 225 – 240.
https://doi.org/10.1080/03067319.2019.1636038
[30] Ahmad, U., Rajesh, K., Girish, K., Algarni, H., Kim, S. H. (2015). Effect of annealing temperature on the properties and photocatalytic efficiencies of ZnO nanoparticles. Journal of Alloys and Compounds, 648, 46-52.
https://doi.org/10.1016/j.jallcom.2015.04.236
[31] Irshad, A., Yanhong, Z., Jiaying, Y., Yuyu, L., Shazia, S., Muhammad, Y. N., Humaira, H., Waheed, Q. K., Khalid N. R. (2023). Semiconductor photocatalysts: A critical review highlighting the various strategies to boost the photocatalytic performances for diverse applications. Advances in Colloid and Interface Science, 311, 102830.
https://doi.org/10.1016/j.cis.2022.102830
[32] Is, F., Sesy, A., Imam, S., Gani, P., Suresh, S., Ruey-An, D. (2021). Visible light sensitized porous clay heterostructure photocatalyst of zinc-silica modified montmorillonite by using tris (2,2′-bipyridyl) dichlororuthenium. Applied Clay Science, 204, 106023.
https://doi.org/10.1016/j.clay.2021.106023.
[33] Li, Z., Chitiphon, C., Vellaichamy, B., Karthikeyan, S., Bunsho, O., Keiko, S. (2022). Determination of the roles of FeIII in the interface between titanium dioxide and montmorillonite in FeIII-doped montmorillonite/titanium dioxide composites as photocatalysts. Applied Clay Science, 227, 106577.
https://doi.org/10.1016/j.clay.2022.106577
[34] Zhenshi, S., Yingxu, C., Qiang, K., Ye, Y., Jun, Y. (2002). Photocatalytic degradation of cationic azo dye by TiO2/bentonite nanocomposite. Journal of Photochemistry and Photobiology A: Chemistry, 149 (1-3), 169–174.
https://doi.org/10.1016/S1010-6030(01)00649-9
[35] Wangbing, H., Jie, M., Changdong, L., Shengyi, Y., Xin, H., Guobin, F. (2020). Effects of Temperature on Structural Properties of Hydrated Montmorillonite: Experimental Study and Molecular Dynamics Simulation. Advances in Civil Engineering, 2020, 8885215.
https://doi.org/10.1155/2020/8885215
[36] Walber, A. F., Barbara, E. C. F. S., Maxwell, S. R., Pollyana, T., Luzia, M. C. H., Ramón, P. G., Ana, C. S. A., Edson, C. S. F., Maria, G. F., Marcelo, B. F., Josy, A. O. (2022). Facile synthesis of ZnO-clay minerals composites using an ultrasonic approach for photocatalytic performance. Journal of Photochemistry and Photobiology A: Chemistry, 429, 113934.
https://doi.org/10.1016/j.jphotochem.2022.113934
[37] Sedigheh, A. (2021). Response Surface Methodology for Photo Degradation of Methyl Orange Using Magnetic Nanocomposites Containing Zinc Oxide. Journal of Cluster Science, 32, 805-812.
https://doi.org/10.1007/s10876-020-01847-y
[38] Subash, B., Sasikala, R., Jayamoorthy, K., Magesan, P. (2023). Heterojunction of Bentonite Clay supported Bi2O3/ZnO composite for the detoxification of azo dyes under UV-A light illumination. Chemical Physics Impact, 6, 100152.
https://doi.org/10.1016/j.chphi.2022.100152
[39] Morteza, G., Moones, H., Amin, E. (2022). Biosynthesis of ZnO nanoparticles supported on bentonite and the evaluation of its photocatalytic activity. Materials Research Bulletin, 149, 111714.
https://doi.org/10.1016/j.materresbull.2021.111714
[40] Hannatu, A. S., Mansor, B. A., Mohd, Z. H., Nor, A. I., Aminu, M., Tawfik, A. S. (2017). Nanocomposite of ZnO with Montmorillonite for Removal of Lead and Copper Ions from aqueous solutions. Process Safety and Environment Protection, 109, 97-105.
https://doi.org/10.1016/j.psep.2017.03.024
[41] Sedigheh, A., Zhi, L., Davoud, D., Lin, T. (2023). The effect of individual factors, their binary and ternary interactions on photodegradation rate of organic contaminants using photocatalysts based on multi-walled carbon nanotubes (MWCNTs): statistical analysis based on ANOVA and RSM. Environmental Monitoring and Assessment, 195, 1191.
https://doi.org/10.1007/s10661-023-11704-w
[42] Sedigheh, A. (2023). Magnetic photocatalysts based on graphene oxide: synthesis, characterization, application in advanced oxidation processes and response surface analysis. Applied Water Science, 13, 128.
https://doi.org/10.1007/s13201-023-01931-4
[43] Sedigheh, A. (2020). Adsorption of Dye Organic Pollutant Using Magnetic ZnO Embedded on the Surface of Graphene Oxide. Journal of Inorganic and Organometallic Polymers and Materials, 30, 1924-1934.
https://doi.org/10.1007/s10904-019-01336-4
[44] Sedigheh, A. (2019). Photocatalytic activity study of coated anatase-rutile titania nanoparticles with nanocrystalline tin dioxide based on the statistical analysis. Environ Monit Assess., 191, 206.
https://doi.org/10.1007/s10661-019-7352-0
[45] Sedigheh, A., Mehri-Saddat, E. K. (2019). The influence of ZnO nanoparticles amount on the optimisation of photo degradation of methyl orange using decorated MWCNTs. Progress in Industrial Ecology – An International Journal, 13 (1), 3-15.
https://doi.org/10.1504/PIE.2019.098760
[46] Phetladda, P., Apisit, S., Weerapat, F., Pinit, K., Weekit, S. (2018). Homogeneous distribution of nanosized ZnO in montmorillonite clay sheets for the photocatalytic enhancement in degradation of Rhodamine B. Research on Chemical Intermediates, 44, 6861–6875.
https://doi.org/10.1007/s11164-018-3526-6
[47] Biyang, T., Shengqing, W., Haichun, X., Jianli, W., Yuying, M. (2024). Optimization of preparation conditions of Bi-doped TiO2/montmorillonite composites and its photodegradation of Rhodamine B. Desalination and Water Treatment, 100328.
https://doi.org/10.1016/j.dwt.2024.100328
[48] Is, F., Rico, N., Imam, S., Ganjar, F., Bambang, H. N., Azlan, K., Oki, M. (2020). Sonocatalytic degradation of rhodamine B using tin oxide/ montmorillonite. Journal of Water Process Engineering, 37 (2020) 101418.
https://doi.org/10.1016/j.jwpe.2020.101418
[49] Suguna, A., Sridevi, C., Parthibavarman, M., Manikandababu, C. S., Ramachandran, K., BoopathiRaja, R. (2024). Design and fabrication of Zeolite Socony Mobil-5 incorporated ZnO composite for enhanced visible light photocatalytic performance. Chemical Physics Impact, 8, 100621.
https://doi.org/10.1016/j.chphi.2024.100621
[50] Yongxin, X., Tiwei, C. (2023). Development of nanostructured based ZnO@WO3 photocatalyst and its photocatalytic and electrochemical properties: Degradation of Rhodamine B. International Journal of Electrochemical Science, 18 (4), 100055.
https://doi.org/10.1016/j.ijoes.2023.100055
[51] Loan, T. T. N., Dai-Viet, N. V., Lan, T. H. N., Anh, T. T. D., Hai, Q. N., Nhuong, M. C., Duyen, T. C. N., Thuan, V. C. (2022). Synthesis, characterization, and application of ZnFe2O4@ZnO nanoparticles for photocatalytic degradation of Rhodamine B under visible-light illumination. Environmental Technology & Innovation, 25, 102130.
https://doi.org/10.1016/j.eti.2021.102130
[52] Manmohan, L., Praveen, S., Lakhvinder, S., Chhotu, R. (2023) Photocatalytic degradation of hazardous Rhodamine B dye using sol-gel mediated ultrasonic hydrothermal synthesized of ZnO nanoparticles. Results in Engineering, 17, 100890.
https://doi.org/10.1016/j.rineng.2023.100890
[53] Abdulla, S. M., Amran, M. H. S., Ishtiaque, M. S., Mahabub, A. B. (2024) Effective adsorption and visible light driven enhanced photocatalytic degradation of rhodamine B using ZnO nanoparticles immobilized on graphene oxide nanosheets. Results in Physics, 58, 107471.
https://doi.org/10.1016/j.rinp.2024.107471
[54] Alireza, K., Murat, K., Semra, K., Samira, A. O. (2016). Preparation and characterization of ZnO/MMT nanocomposite for photocatalytic ozonation of a disperse dye. Turkish Journal of Chemistry, 40, 546 – 564.
https://doi.org/10.3906/kim-1507-77
[55] Melike, K., Murat, K., Semra, K., Alireza, K., Atefeh, K. (2016). Sonocatalytic removal of naproxen by synthesized zinc oxide nanoparticles on montmorillonite. Ultrasonics Sonochemistry, 31, 250–256.
http://dx.doi.org/10.1016/j.ultsonch.2016.01.009
[56] Chunhui, Z., Dongshen, T., Weihua, Y. (2019). 7 - Smectite Nanomaterials: Preparation, Properties, and Functional Applications. Nanomaterials from Clay Minerals - A New Approach to Green Functional Materials Micro and Nano Technologies, 335-364.
https://doi.org/10.1016/B978-0-12-814533-3.00007-7
[57] Marina, M., Giuseppe, C., Giuseppe, L., Serena, R. (2020). 13 - Covalently modified nanoclays: synthesis, properties and applications. Clay Nanoparticles-Properties and Applications Micro and Nano Technologies, 305-333.
https://doi.org/10.1016/B978-0-12-816783-0.00013-X
[58] Yating, Q., Tongjiang, P., Hongjuan, S., Li, Z., Yao, L., Can, Z. (2021). Effect Of Montmorillonite Layer Charge On The Thermal Stability Of Bentonite. Clays and Clay Minerals, 69, 328–338.
https://doi.org/10.1007/s42860-021-00117-w
[59] Mohammad, H. H., Maryam, M. (2015). Effect of annealing temperature on optical properties of binary zinc tin oxide nano-composite prepared by sol–gel route using simple precursors: Structural and optical studies by DRS, FT-IR, XRD, FESEM investigations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 267-270.
https://doi.org/10.1016/j.saa.2014.08.031
[60] Sharmaa, G., Dionysiou, D., Sharm, S., Kumar, A., Al-Muhtaseb, A., Naushad, M., Stadler, F. (2019). Highly efficient Sr/Ce/activated carbon bimetallic nanocomposite for photoinduced degradation of rhodamine B. Catal. Today, 335, 437–451.
https://doi.org/10.1016/J.CATTOD.2019.03.063
[61] Hegazey, R., Abdelrahman, E., Kotp, Y. (2020). Facile fabrication of hematite nanoparticles from Egyptian insecticide cans for efficient photocatalytic degradation of rhodamine B dye. J. Mater. Res. Techno., 9, 1652–1661.
https://doi.org/10.1016/j.jmrt.2019.11.090
[62] Changren, X., Zijun, T., Cong, W., Xiaoqing, Y., Guoqing, Z., Huageng, P. (2018). Fabrication of In2O3/TiO2 nanotube arrays hybrids with homogeneously developed nanostructure for photocatalytic degradation of Rhodamine B. Materials Research Bulletin, 106, 197-203.
https://doi.org/10.1016/j.materresbull.2018.05.022
[63] Ali, A. I., Amir, P., Moslem, F., Sahand, J., Babak, K. (2018). Photocatalytic degradation of Rhodamine B and Real Textile Wastewater using Fe-Doped TiO2 anchored on Reduced Graphene Oxide (Fe-TiO2/rGO): Characterization and feasibility, mechanism and pathway studies. Applied Surface Science, 462, 549-564.
https://doi.org/10.1016/j.apsusc.2018.08.133