[1] Connor, R., Faurès, J. M., Kuylenstierna, J., Margat, J., Steduto, P., Vallée, D. Hoe, W. V. D. , 2009. Chapter 7: Evolution of water use., in The United Nations World Water Development Report 3–Water in a Changing World, E.K. (WWAP), Editor. London, UNESCO: London.
[2] Matsuo, Y., A. Yanagisawa, and Y. Yamashita, (2013). A global energy outlook to 2035 with strategic considerations for Asia and Middle East energy supply and demand interdependencies. Energy strategy reviews, 2(1), 79-91.
https://doi.org/10.1016/j.esr.2013.04.002
[3] Connor, R., et al., (2017). The United Nations World Water Development Report 2017. Wastewater: The Untapped Resource, Facts and Figures in "WWAP (United Nations World Water Assessment Programme). : Paris, UNESCO.
[4] UNWWAP, W., (2017). The United Nations World Water Development Report 2017-Wastewater: The untapped resource, UNESCO, Paris.
[5] Jones, E.R., et al., (2021). Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth Syst. Sci. Data, 13(2), 237-254.
https://doi.org/10.5194/essd-13-237-2021
[6] Abedi, S., et al., (2019). Decoupling a novel Trichormus variabilis-Synechocystis sp. interaction to boost phycoremediation. Scientific reports, 9(1), 2511.
https://doi.org/10.1038/s41598-019-38997-7
[7] Tyagi, V. K., Lo, S. L. (2013). Sludge: a waste or renewable source for energy and resources recovery? Renewable and sustainable energy reviews, 25, 708-728.
https://doi.org/10.1016/j.rser.2013.05.029
[8] Hajinezhad, A., et al., (2015). Biodiesel production from Norouzak (Salvia lerifolia) seeds as an indigenous source of bio fuel in Iran using ultrasound. Energy conversion and management, 99, 132-140.
https://doi.org/10.1016/j.enconman.2015.04.034
[9] Abedi, S., A. Nozarpour, and O. Tavakoli, (2023). Evaluation of Biogas Production Rate and Leachate Treatment in Landfill Through a Water-Energy Nexus Framework for Integrated Waste Management. Energy nexus, 11, 100218.
https://doi.org/10.1016/j.nexus.2023.100218
[10] Abedi, S., M. Khaleghi, and A. Naemi, (2021). Bioenergy Production Potential Using Anaerobic Digestion of Wastewater Sludge (Case study: Sabzevar Wastewater Treatment Plant) in 5th International Conference on Applied Researches in Science and Engineering, University of Amsterdam.
[11] Khanh Nguyen, V., et al., (2021). Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel, 285, 119105.
https://doi.org/10.1016/j.fuel.2020.119105
[12] Verbeeck, K., et al., (2018). Upgrading the value of anaerobic digestion via chemical production from grid injected biomethane. Energy and environmental science, 11(7), 1788-1802.
http://doi.org/10.1039/C8EE01059E
[13] Kaparaju, P., Rintala, J. (2013). Generation of heat and power from biogas for stationary applications: boilers, gas engines and turbines, combined heat and power (CHP) plants and fuel cells. In The biogas handbook (pp. 404-427). Woodhead Publishing.
[14] Uddin, M.M. and M.M. Wright, (2022). Anaerobic digestion fundamentals, challenges, and technological advances. Physical Sciences Reviews.
https://doi.org/10.1515/psr-2021-0068
[15] Aryal, N., et al., (2018). An overview of microbial biogas enrichment. Bioresource Technology, 264, 359-369.
https://doi.org/10.1016/j.biortech.2018.06.013
[16] Nguyen, V.K., et al., (2021). Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel, 285, 119105.
https://doi.org/10.1016/j.fuel.2020.119105
[17] Mahmudul, H.M., et al., (2017). Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review. Renewable and Sustainable energy reviews, 72, 497-509.
http://doi.org/10.1016/j.rser.2017.01.001
[18] Patinvoh, R.J. and M.J. Taherzadeh, (2019). Challenges of biogas implementation in developing countries. Current opinion in environmental science and health, 12, 30-37.
https://doi.org/10.1016/j.coesh.2019.09.006.
[19] Van, D.P., et al., (2020). A review of anaerobic digestion systems for biodegradable waste: Configurations, operating parameters, and current trends. Environmental engineering research, 25(1), 1-17.
https://doi.org/10.4491/eer.2018.334
[20] Liu, C.-f., et al., (2008). Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste. Bioresource technology, 99(4), 882-888.
https://doi.org/10.1016/j.biortech.2007.01.013
[21] Latif, A., C. Mehta, and D. Batstone, (2017). Influence of low pH on continuous anaerobic digestion of waste activated sludge. Water research, 113.
https://doi.org/10.1016/j.watres.2017.02.002
[22] Liu, J., et al., (2020). Enhanced anaerobic digestion of sewage sludge by thermal or alkaline-thermal pretreatments: Influence of hydraulic retention time reduction. International journal of hydrogen energy, 45(4), 2655-2667.
https://doi.org/10.1016/j.ijhydene.2019.11.198
[23] Hallaji, S.M., M. Kuroshkarim, and S.P. Moussavi, (2019). Enhancing methane production using anaerobic co-digestion of waste activated sludge with combined fruit waste and cheese whey. BMC Biotechnology, 19(1), 19.
https://doi.org/10.1186/s12896-019-0513-y
[24] Hassanpourmoghadam, L., et al., (2023). Effect of Fe3O4 nanoparticles on anaerobic digestion of municipal wastewater sludge. Biomass and Bioenergy, 169, 106692.
https://doi.org/10.1016/j.biombioe.2022.106692
[25] Laiq Ur Rehman, M., et al., (2019). Anaerobic digestion. Water environment research, 91(10), 1253-1271.
https://doi.org/10.1002/wer.1219
[26] Oladejo, J., et al. (2019). A Review of Sludge-to-Energy Recovery Methods. Energies, 12.
https://doi.org/10.3390/en12010060
[27] Heidari, A., Taheri, A., Rezaei, M., Jahanbakhshi, A. (2023). Biogas production and electrical power potential, challenges and barriers from municipal solid waste (MSW) for developing countries: A review study in Iran, Journal of agriculture and food research, 13, 100668.
https://doi.org/10.1016/j.jafr.2023.100668
[28] De Mes, T. Z. D., Stams, A. J. M., Reith, J. H., Zeeman, G. (2003). Methane production by anaerobic digestion of wastewater and solid wastes. Bio-methane and Bio-hydrogen, 2003, 58-102.
[29] Chow, W.L., et al., (2020). Anaerobic Co-Digestion of Wastewater Sludge: A Review of Potential Co-Substrates and Operating Factors for Improved Methane Yield. Processes, 8(1), 39.
https://doi.org/10.3390/pr8010039
[30] Nwokolo, N., et al., (2020). Waste to Energy: A Focus on the Impact of Substrate Type in Biogas Production. Processes, 8(10), 1224.
[31] Gebreeyessus, G.D. and P. Jenicek, (2016). Thermophilic versus mesophilic anaerobic digestion of sewage sludge: A comparative review. Bioengineering (Basel), 3(2).
https://doi.org/10.3390/bioengineering3020015
[32] Odirile, P.T., et al. (2021). Anaerobic digestion for biogas production from municipal sewage sludge: A comparative study between fine mesh sieved primary sludge and sedimented primary sludge. Water, 13.
https://doi.org/10.3390/w13243532
[33] Odirile, P.T., et al., (2021). Anaerobic digestion for biogas production from municipal sewage sludge: A comparative study between fine mesh sieved primary sludge and sedimented primary sludge. Water, 13(24), 3532.
https://doi.org/10.3390/w13243532
[34] An, D., et al., (2017). Effects of total solids content on performance of sludge mesophilic anaerobic digestion and dewaterability of digested sludge. Waste management, 62, 188-193.
https://doi.org/10.1016/j.wasman.2017.01.042
[35] Sebola, M., E. Muzenda, and H. Tesfagiorgis, (2015). Effect of particle size on anaerobic digestion of different feedstocks. South African journal of chemical engineering, 20(3), 11-26.
[36] Thorin, E., et al., (2018). Co-digestion of sewage sludge and microalgae – Biogas production investigations. Applied energy, 227, 64-72.
https://doi.org/10.1016/j.apenergy.2017.08.085
[37] Lage, S., A. Toffolo, and F.G. Gentili, (2021). Microalgal growth, nitrogen uptake and storage, and dissolved oxygen production in a polyculture based-open pond fed with municipal wastewater in Northern Sweden. Chemosphere, 276, 130122.
https://doi.org/10.1016/j.chemosphere.2021.130122
[38] Ugurlu, A. and E. Kendir, (2018). A comprehensive review on pretreatment of microalgae for biogas production. International journal of energy research, 42.
https://doi.org/10.1002/er.4100
[39] Yu, Y., et al., (2013). Development of Synechocystis sp. PCC 6803 as a Phototrophic Cell Factory. Marine drugs, 11(8), 2894-2916.
https://doi.org/10.3390/md11082894
[40] Ometto, F., et al., (2014). Impacts of microalgae pre-treatments for improved anaerobic digestion: Thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. Water research, 65, 350-361.
https://doi.org/10.1016/j.watres.2014.07.040
[41] Mendez, L., et al., (2013). Enhancing methane production of Chlorella vulgaris via thermochemical pretreatments. Bioresour technol, 149, 136-41.
https://doi.org/10.1016/j.biortech.2013.08.136.
[42] Abedi, S., et al., (2019). Bioenergy production using Trichormus variabilis–a review. Biofuels, Bioproducts and biorefining, 13, 1365-1382.
https://doi.org/10.1002/bbb.2023
[43] Abedi, S., et al., (2017). Evaluation of Biomass Production and Wastewater Nutrient Removal Using Microalgae: Sustainable Strategy to CO2 Bio-Fixation and Bioenergy Production Approach. Journal of renewable energy and environment, 4(4), 39-48.
https://doi.org/10.30501/jree.2017.88374
[44] Kannah, R.Y., et al., (2021). A Mini Review of Biochemical Conversion of Algal Biorefinery. Energy and fuels, 35(21), 16995-17007.
https://doi.org/10.1021/acs.energyfuels.1c02294
[45] Siami, S., et al., (2020). Process optimization and effect of thermal, alkaline, H2O2 oxidation and combination pretreatment of sewage sludge on solubilization and anaerobic digestion. BMC Biotechnology, 20(1), 21.
https://doi.org/10.1186/s12896-020-00614-1
[46] Gahlot, P., et al., (2022). Principles and potential of thermal hydrolysis of sewage sludge to enhance anaerobic digestion. Environmental research, 214, 113856.
https://doi.org/10.1016/j.envres.2022.113856
[47] Mitraka, G.-C., et al., (2022). A Comprehensive Review on Pretreatment Methods for Enhanced Biogas Production from Sewage Sludge. Energies, 15(18), 6536.
https://doi.org/10.3390/en15186536.
[48] Karouach, F., et al., (2020). Effect of combined mechanical–ultrasonic pretreatment on mesophilic anaerobic digestion of household organic waste fraction in Morocco. Energy reports, 6, 310-314.
https://doi.org/10.1016/j.egyr.2019.11.081
[49] Pilli, S., et al., (2011). Ultrasonic pretreatment of sludge: A review. Ultrasonics sonochemistry, 18(1), 1-18.
https://doi.org/10.1016/j.ultsonch.2010.02.014
[50] Bhatia, S.K., et al., (2020). Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges. Bioresource technology, 300, 122724.
https://doi.org/10.1016/j.biortech.2019.122724
[51] Du, X., et al., (2019). Synergistic methane production from the anaerobic co-digestion of Spirulina platensis with food waste and sewage sludge at high solid concentrations. Renewable energy, 142, 55-61.
https://doi.org/10.1016/j.renene.2019.04.062
[52] Gonçalves, R.F., et al., (2020). Co-digestion of municipal wastewater and microalgae biomass in an upflow anaerobic sludge blanket reactor. Algal research, 52, 102117.
https://doi.org/10.1016/j.algal.2020.102117
[53] Wang, X., et al., (2022). Synergetic utilization of sewage sludge and microalgae: A review and proposal. Bioresource technology reports, 19, 101146.
https://doi.org/10.1016/j.biteb.2022.101146
[54] Safieddin Ardebili, S., (2020). Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran. Renewable energy, 154.
https://doi.org/10.1016/j.renene.2020.02.102
[55] Staley, J.T., (2006). The bacterial species dilemma and the genomic-phylogenetic species concept. Philos Trans R Soc Lond B Biol Sci, 361(1475), 1899-909.
https://doi.org/10.1098/rstb.2006.1914
[56] Selvankumar, T., et al., (2017). Process optimization of biogas energy production from cow dung with alkali pre-treated coffee pulp. 3 Biotech, 7(4), 254.
https://doi.org/10.1007/s13205-017-0884-5
[57] Zeynali, R., M. Khojastehpour, and M. Ebrahimi-Nik, (2017). Effect of ultrasonic pre-treatment on biogas yield and specific energy in anaerobic digestion of fruit and vegetable wholesale market wastes. Sustainable environment research, 27.
https://doi.org/10.1016/j.serj.2017.07.001
[58] Yuan, X., et al., (2014). Enhancing the anaerobic digestion of lignocellulose of municipal solid waste using a microbial pretreatment method. Bioresour technol, 154, 1-9.
https://doi.org/10.1016/j.biortech.2013.11.090
[59] Mohammadi, S., et al., (2022). Optimization of a three-dimensional electrochemical process with granular activated carbon for diclofenac removal using response surface methodology. Environmental progress and sustainable energy, 41(1), e13715.
https://doi.org/10.1002/ep.13715
[60] Wang, M., et al., (2017). Thermal pretreatment of microalgae for biomethane production: experimental studies, kinetics and energy analysis. Journal of chemical technology and biotechnology, 92(2), 399-407.
https://doi.org/10.1002/jctb.5018
[61] Petrovič, A., et al., (2022). The advantages of co-digestion of vegetable oil industry by-products and sewage sludge: Biogas production potential, kinetic analysis and digestate valorisation. Journal of environmental management, 318, 115566.
https://doi.org/10.1016/j.jenvman.2022.115566
[62] Li, L., et al., (2021). Short-chain fatty acids resource recovery potential from algal sludge via anaerobic fermentation under various pH values. Chemosphere, 275, 129954.
https://doi.org/10.1016/j.chemosphere.2021.129954
[63] Córdova, A., et al. (2022). Recent advances in the application of enzyme processing assisted by ultrasound in Agri-Foods: A review. Catalysts, 12(1),107.
https://doi.org/10.3390/catal12010107
[64] Subhedar, P.B. and P.R. Gogate, (2014). Enhancing the activity of cellulase enzyme using ultrasonic irradiations. Journal of molecular catalysis B: Enzymatic, 101, 108-114.
https://doi.org/10.1016/j.molcatb.2014.01.002
[65] Mawson, R., et al., 2011. Ultrasound in enzyme activation and inactivation, in ultrasound technologies for food and bioprocessing, H. Feng, G. Barbosa-Canovas, and J. Weiss, Editors. Springer New York: New York, NY.369-404.
[66] Tian, X., W.J. Ng, and A.P. Trzcinski, (2018). Optimizing the synergistic effect of sodium hydroxide/ultrasound pre-treatment of sludge. Ultrasonics sonochemistry, 48, 432-440.
https://doi.org/10.1016/j.ultsonch.2018.07.005
[67] Lizama, A.C., et al., (2017). Effects of ultrasonic pretreatment on the solubilization and kinetic study of biogas production from anaerobic digestion of waste activated sludge. International biodeterioration and biodegradation, 123, 1-9.
https://doi.org/10.1016/j.ibiod.2017.05.020
[68] Kendir, E. and A. Ugurlu, (2018). A comprehensive review on pretreatment of microalgae for biogas production. International journal of energy research, 42(12), 3711-3731.
https://doi.org/10.1002/er.4100
[69] Volschan Junior, I., R. de Almeida, and M.C. Cammarota, (2021). A review of sludge pretreatment methods and co-digestion to boost biogas production and energy self-sufficiency in wastewater treatment plants. Journal of water process engineering, 40, 101857.
https://doi.org/10.1016/j.jwpe.2020.101857
[70] Passos, F., et al., (2014). Pretreatment of microalgae to improve biogas production: A review. Bioresource technology, 172, 403-412.
https://doi.org/10.1016/j.biortech.2014.08.114
[71] Das, T., Al-Waili, I., Balasubramanian, V., Appleby, G., Kaparaju, P., Parthasarathy, R., Eshtiaghi, N. (2024). Process modelling and techno-economic analysis of anaerobic digestion of sewage sludge integrated with wet oxidation using a gravity pressure vessel and thermal hydrolysis. Science of the total environment, 912, 169024.
https://doi.org/10.1016/j.scitotenv.2023.169024
[72] Wu, N., Moreira, C. M., Zhang, Y., Doan, N., Yang, S., Phlips, E. J., Pullammanappallil, P. C. (2019). Techno-economic analysis of biogas production from microalgae through anaerobic digestion. Anaerobic digestion, 113-117.
https://doi.org/10.5772/intechopen.86090