[1] Sharafinia, S., Farrokhnia, A. and Lemraski, E.G., (2022). The adsorption of cationic dye onto ACPMG@ZIF-8 core-shell, optimization using central composite response surface methodology (CCRSM). Colloids and surfaces A: physicochemical and engineering aspects, 634, 128039.
https://doi.org/10.1016/j.colsurfa.2021.128039
[2] Salman, N. S., Alshamsi, H. A. (2022). Synthesis of sulfonated polystyrene-based porous activated carbon for organic dyes removal from aqueous solutions. Journal of polymers and the environment, 30(12), 5100-5118.
https://doi.org/10.1007/s10924-022-02584-1
[3] Asefa, M. T., Lelisa, W., Feyisa, G. B. (2022). Comparative study on removal efficiency of methylene blue from wastewater by using nano-scaled sugarcane bagasse ash and jema silica sand. International of journal of water wastewater treat, 8(1).
https://doi.org/10.16966/2381-5299.181
[4] Xia, K., Liu, X., Chen, Z., Fang, L., Du, H. and Zhang, X. (2020). Efficient and sustainable treatment of anionic dye wastewaters using porous cationic diatomite. Journal of the Taiwan Institute of Chemical Engineers, 113, 8-15.
DOI: 10.1016/j.jtice.2020.07.020
[5] Derakhshan, Z., Baghapour, M., A., Ranjbar, M., Faramarzian, M. (2013). Adsorption of methylene blue dye from aqueous solutions by modified pumice stone: Kinetics and equilibrium studies, Health scope. 2, 136–144.
https://doi.org/10.17795/jhealthscope-12492
[6] Salman, N.S. and Alshamsi, H.A. (2022). Synthesis of sulfonated polystyrene-based porous activated carbon for organic dyes removal from aqueous solutions. Journal of polymers and the environment, 30, 5100-5118.
DOI:10.21203/rs.3.rs-1754062/v1
[7] Joshua, O. I., Adewale G. A., Omodele A. A. E., Lois T. A. (2021). Competitive adsorption of Pb(II), Cu(II), Fe(II) and Zn(II) from aqueous media using biochar from oil palm (Elaeis guineensis) fibers: a kinetic and equilibrium study, Indian chemical engineer, 63(5), 501-511.
DOI: 10.1080/00194506.2020.1787870.
[8] Ahmadian, M., Yosefi, N., Toolabi, A., Khanjani, N., Rahimi, S., Fatehizadeh, A. (2012). Adsorption of direct yellow 9 and acid orange 7 from aqueous solutions by modified pumice. Asian journal of chemistry, 24(7), 3094.
http://irdoi.ir/320-725-667-161.
[9] Samarghandi, M. R., Zarrabi, M., Sepehr, M. N., Amrane, A., Safari, G. H., Bashiri, S. (2012). Application of acidic treated pumice as an adsorbent for the removal of azo dye from aqueous solutions: kinetic, equilibrium and thermodynamic studies. Iranian journal of environmental health science and engineering, 9, 1-10.
https://doi.org/10.1186/1735-2746-9-9.
[10] Veliev, E. V., Öztürk, T., Veli, S., Fatullayev, A. G. (2006). Application of diffusion model for adsorption of azo reactive dye on pumice. Polish Journal of environmental studies, 15(2)., 347–353.
[11] Gürses, A., Güneş, K., Şahin, E. and Açıkyıldız, M. (2023). Investigation of the removal kinetics, thermodynamics and adsorption mechanism of anionic textile dye, Remazol Red RB, with powder pumice, a sustainable adsorbent from waste water. Frontiers in chemistry, 11, 1156577.
https://doi.org/10.3389/fchem.2023.1156577.
[12] Çifçi, D. İ., Meric, S. (2016). Optimization of methylene blue adsorption by pumice powder. Advances in environmental research, 5(1), 37-50.
https://doi.org/10.12989/AER.2016.5.1.037.
[13] Alabbad, E. A. (2021). Efficacy assessment of natural zeolite containing wastewater on the adsorption behaviour of Direct Yellow 50 from; equilibrium, kinetics and thermodynamic studies. Arabian journal of chemistry, 14(4), 103041.
https://doi.org/10.1016/j.arabjc.2021.103041
[14] Abukhadra, M. R., Mohamed, A. S. (2019). Adsorption removal of safranin dye Contaminants from Water using Various types of natural zeolite, Silicon. 11, 1635–1647.
https://doi.org/10.1007/s12633-018-9980-3.
[15] Radoor, S., Karayil, J., Jayakumar, A., Parameswaranpillai, J., Siengchin, S. (2021). Removal of methylene blue dye from aqueous solution using PDADMAC modified ZSM-5 zeolite as a novel adsorbent. Journal of polymers and the environment, 29, 3185-3198.
[16] Osouleddini N., Moradi, M., Khosravi, T., Khamotian, R., Sharafj, H. (2018). The iron modification effect on performance of natural adsorbent scoria for malachite green dye removal from aquatic environments: modeling, optimization, isotherms, and kinetic evaluation, Desalination water treat. 123, 348–357.
https://doi.org/10.5004/dwt.2018.22658
[17] Sharafi, K., Dargahi, A., Azizi, N., Amini, J., Ghayebzadeh, M., Rezai, Z., Moradi, M. (2018). Investigating the effect of Nitric acid (with different normalities) on the efficiency of scoria in Malachite removal from aquatic environments: determination of model, isotherms and reaction kinetics, Journal of. Environmental. Science and. Technol. 20, 45–62.
https://doi.org/10.22034/jest.2018.13255
[18] Dugasa A., Eba K., Endale H., (2018). Adsorptive removal of direct black 22 dye using pumice and scoria from aqueous solution and wastewater, Institute of health sciences,
https://repository.ju.edu.et/handle/123456789/2240.
[19] Parida, S. K., Dash, S., Patel, S., Mishra, B. K. (2006). Adsorption of organic molecules on silica surface. Advances in colloid and interface science, 121(1-3), 77-110.
https://doi.org/10.1016/j.cis.2006.05.028.
[20] Beagan, A.M. (2021). Investigating methylene blue removal from aqueous solution by cysteine-functionalized mesoporous silica. Journal of chemistry, 1-12.
https://doi.org/10.1155/2021/8839864.
[21] Rigopoulos, I., Török, Á., Kyratsi, T., Delimitis, A., Ioannou, I. (2018). Sustainable exploitation of mafic rock quarry waste for carbon sequestration following ball milling. Resources Policy, 59, 24-32.
[22] Hoo, C.M., Starostin, N., West, P. and Mecartney, M.L. (2008). A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. Journal of nanoparticle research, 10, 89-96.
[23] Ambroz, F., Macdonald, T.J., Martis, V. and Parkin, I.P. (2018). Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs. Small methods, 2, 1800173. https://doi.org/10.1002/smtd.201800173
[24] Perez-Calderon, J., Marin-Silva, D.A., Zaritzky, N. and Pinotti, A. (2023). Eco-friendly PVA-chitosan adsorbent films for the removal of azo dye Acid Orange 7: Physical cross-linking, adsorption process, and reuse of the material. Advanced industrial and engineering polymer research, 6, 239-254.
https://doi.org/10.1016/j.aiepr.2022.12.001
[25] Paredes-Laverde, M., Salamanca, M., Diaz-Corrales, J.D., Flórez, E., Silva-Agredo, J. and Torres-Palma, R.A. (2021). Understanding the removal of an anionic dye in textile wastewater by adsorption on ZnCl2 activated carbons from rice and coffee husk wastes: A combined experimental and theoretical study. Journal of environmental chemical engineering, 9, 105685. https://doi.org/10.1016/j.jece.2021.105685
[26] Prasanna, K. (2022). A novel adsorption process for the removal of salt and dye from saline textile industrial wastewater using a three-stage reactor with surface modified adsorbents. Journal of environmental chemical engineering, 10, 108729.
https://doi.org/10.1016/j.jece.2022.108729
[27] Ssouni, S., Miyah, Y., Benjelloun, M., Mejbar, F., El-Habacha, M., Iaich, S., Addi, A.A. and Lahrichi, A. (2023). High-performance of muscovite clay for toxic dyes’ removal: Adsorption mechanism, response surface approach, regeneration, and phytotoxicity assessment. Case studies in chemical and environmental engineering, 8, 100456.
https://doi.org/10.1016/j.cscee.2023.100456
[28] Özacar, M., Şengil, İ. A., Türkmenler, H. (2008). Equilibrium and kinetic data, and adsorption mechanism for adsorption of lead onto valonia tannin resin. Chemical engineering journal, 143(1-3), 32-42.
https://doi.org/10.1016/j.cej.2007.12.005.
[29] Shakir, I. K. (2010). Kinetic and isotherm modeling of adsorption of dyes onto sawdust. Iraqi journal of chemical and petroleum engineering, 11(2), 15-27.
https://doi.org/10.31699/IJCPE.
[30] Duran, C., Ozdes, D., Gundogdu, A., Senturk, H. B. (2011). Kinetics and isotherm analysis of basic dyes adsorption onto almond shell (Prunus dulcis) as a low-cost adsorbent. Journal of chemical and engineering data, 56(5), 2136-2147.
https://doi.org/10.1021/je101204j.
[31] Meroufel, B., Benali, O., Benyahia, M., Benmoussa, Y., Zenasni, M. A. (2013). Adsorptive removal of anionic dye from aqueous solutions by Algerian kaolin: Characteristics, isotherm, kinetic and thermodynamic studies. Journal of materials and environmental science, 4(3), 482-491.
[32] Putro, J. N., Santoso, S. P., Soetaredjo, F. E., Ismadji, S., Ju, Y. H. (2019). Nanocrystalline cellulose from waste paper: adsorbent for azo dyes removal. Environmental nanotechnology, monitoring and management, 12, 100260.
https://doi.org/10.1016/j.enmm.2019.100260.
[33] Guler, U. A., Sarioglu, M. (2014). Removal of tetracycline from wastewater using pumice stone: equilibrium, kinetic and thermodynamic studies. Journal of environmental health science and engineering, 12, 1-11.
https://doi.org/10.1186/2052-336X-12-79.
[34] Zhang, S., Lu, Y., Lin, X., Su, X., Zhang, Y. (2014). Removal of fluoride from groundwater by adsorption onto La (III)-Al (III) loaded scoria adsorbent. Applied srface science, 303, 1-5.
https://doi.org/10.1016/j.apsusc.2014.01.169.
[35] Ofomaja, A. E., Naidoo, E. B., Pholosi, A. (2020). Intraparticle diffusion of Cr (VI) through biomass and magnetite coated biomass: A comparative kinetic and diffusion study. South African journal of chemical engineering, 32(1), 39-55.
https://doi.org/10.1016/j.sajce.2020.01.005.
[36] Inyang, H.I. Onwawoma, A., Bae, S. (2016). The Elovich equation as a predictor of lead and cadmium sorption rates on contaminant barrier minerals, Soil Tillage research., 155, 124–132.
https://doi.org/10.1016/j.still.2015.07.013.
[37] Wu, F. C., Tseng, R. L., Juang, R. S. (2009). Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chemical engineering journal, 150(2-3), 366-373.
https://doi.org/10.1016/j.cej.2009.01.014
[38] Zhang, W., Zhang, J., Jiang, Q., Xia, W. (2012). Physicochemical and structural characteristics of chitosan nanopowders prepared by ultrafine milling, Carbohydrate. polymers. 87, 309–313.
https://doi.org/10.1016/j.carbpol.2011.07.057
[39] Jeong, K., Tatami, J., Iijima, M., Takahashi, T. (2016). Pulverization of Y2O3 nanoparticles by using nanocomposite particles prepared by mechanical treatment. Journal of Asian ceramic societies, 4(3), 351-356.
https://doi.org/10.1016/j.jascer.2016.06.005
[40] Hashaikeh, R. (2018). Insight into ball milling for size reduction and nanoparticles production of HY zeolite. Materials chemistry and physics, 220, 322-330.
https://doi.org/10.1016/j.matchemphys.2018.08.080
[41] Ambroz, F., Macdonald, T. J., Martis, V., Parkin, I. P. (2018). Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs, Small methods, 2, 1800173.
https://doi.org/10.1002/smtd.201800173
[42] Zemnukhova, L. A., Panasenko, A. E., Artem’yanov, A. P., Tsoy, E. A. (2015). Dependence of Porosity of Amorphous Silicon Dioxide Prepared from Rice Straw on Plant Variety, BioResources, 10(2), 3713–3723.
https://doi.org/10.15376/biores.10.2.3713-3723
[43] Samadi-Maybodi, A., Atashbozorg, E. (2006). Quantitative and qualitative studies of silica in different rice samples grown in north of Iran using UV–vis, XRD and IR spectroscopy techniques, Talanta. 70, 756–760.
https://doi.org/10.1016/j.talanta.2006.02.004
[44] Mansouri, N., Rikhtegar, N., Panahi, H. A., Atabi, F., Shahraki, B. K. (2013). Porosity, characterization and structural properties of natural zeolite-clinoptilolite-as a sorbent. Environment protection engineering, 39(1), 139-152.
https://doi.org/10.5277/EPE130111
[45] Castaldi, P., Santona, L., Enzo, S., Melis, P. (2008). Sorption processes and XRD analysis of a natural zeolite exchanged with Pb2+, Cd2+ and Zn2+ cations. Journal of hazardous materials, 156(1-3), 428-434.
https://doi.org/10.1016/j.jhazmat.2007.12.040
[46] Wahyuni, E., Alharrisa, E., Lestari, N., Suherman, S. (2022). Modified waste polystyrene as a novel adsorbent for removal of methylene blue from aqueous media. Advances in environmental technology, 8(2), 83-92.
https://doi.org/10.22104/aet.2022.5420.1465
[47] Safari, G. H., Zarrabi, M., Hoseini, M., Kamani, H., Jaafari, J., Mahvi, A. H. (2015). Trends of natural and acid-engineered pumice onto phosphorus ions in aquatic environment: adsorbent preparation, characterization, and kinetic and equilibrium modeling, Desalination water treat., 54, 3031–3043.
https://doi.org/10.1080/19443994.2014.915385
[48] Depci, T., Efe, T., Tapan, M., Özvan, A., Aclan, M., Uner, T. (2012). Chemical characterization of Patnos Scoria (Ağrı, Turkey) and its usability for production of blended cement. Physicochem. problem. miner. process, 48(1), 303-315.
[49] Li, K. M., Jiang, J. G., Tian, S. C., Chen, X. J., Yan, F. (2014). Influence of silica types on synthesis and performance of amine–silica hybrid materials used for CO2 capture. The journal of physical chemistry C,118(5), 2454-2462.
https://doi.org/10.1021/jp408354r
[50] Gharbani, P., nojavan, A. (2017). Response surface methodology for optimizing adsorption process parameters of reactive blue 21 onto modified kaolin. Advances in environmental technology, 3(2), 89-98.
https://doi.org/10.22104/aet.2017.505
[51] Datta, S., Mahapatra, N., Halder, M. (2013). pH-insensitive electrostatic interaction of carmoisine with two serum proteins: A possible caution on its uses in food and pharmaceutical industry. Journal of photochemistry and photobiology B: Biology, 124, 50-62.
https://doi.org/10.1016/j.jphotobiol.2013.04.004
[52] Nazar, M. F., Murtaza, S., Ijaz, B., Asfaq, M., Mohsin, M. A. (2015). Photophysical investigations of carmoisine interacting with conventional cationic surfactants under different pH conditions. Journal of dispersion science and technology, 36(1), 18-27.
https://doi.org/10.1080/01932691.2014.884465
[53] Sadeghi, A., Ehrampoush, M. H., Ghaneian, M. T., Najafpoor, A. A., Fallahzadeh, H., Bonyadi, Z. (2019). The effect of diazinon on the removal of carmoisine by Saccharomyces cerevisiae, Desalination water treat., 137, 273–278.
https://doi.org/10.5004/dwt.2019.23189
[54] Behrens, S. H., Grier, D. G. (2001). The charge of glass and silica surfaces. The Journal of chemical physics, 115(14), 6716-6721.
https://doi.org/10.1063/1.1404988
[55] Dove, P. M., Craven, C. M. (2005). Surface charge density on silica in alkali and alkaline earth chloride electrolyte solutions. Geochimica et cosmochimica acta, 69(21), 4963-4970.
https://doi.org/10.1016/j.gca.2005.05.006
[56] Goyne, K. W., Zimmerman, A. R., Newalkar, B. L., Komarneni, S., Brantley, S. L., Chorover, J. (2002). Surface charge of variable porosity Al2O3 (s) and SiO2 (s) adsorbents. Journal of porous materials, 9, 243-256.
https://doi.org/10.1023/A:1021631827398.
[57] Scott, R. P. (1980). The silica-gel surface and its interactions with solvent and solute in liquid chromatography. In faraday symposia of the chemical society (Vol. 15, pp. 49-68). Royal society of chemistry.
https://doi.org/10.1039/fs9801500049
[58] Rawat, A. P., Singh, D. P. (2018). Decolourization of malachite green dye by mentha plant biochar (MPB): a combined action of adsorption and electrochemical reduction processes. Water science and technology, 77(6), 1734-1743.
https://doi.org/10.2166/wst.2018.059
[59] Song, J., Kim, M. W. (2010). Second harmonic generation study of malachite green adsorption at the interface between air and an electrolyte solution: observing the effect of excess electrical charge density at the interface. The journal of physical chemistry B, 114(9), 3236-3241.
https://doi.org/10.1021/jp9104882
[60] Özacar, M., Şengil, İ. A. (2005). Adsorption of metal complex dyes from aqueous solutions by pine sawdust. Bioresource technology, 96(7), 791-795.
https://doi.org/10.1016/j.biortech.2004.07.011
[61] Bhattacharyya, K. G., Sharma, A. (2004). Adsorption of Pb (II) from aqueous solution by Azadirachta indica (Neem) leaf powder. Journal of hazardous materials, 113(1-3), 97-109.
https://doi.org/10.1016/j.jhazmat.2004.05.034
[62] Özacar, M. (2003). Adsorption of phosphate from aqueous solution onto alunite, Chemosphere. 51, 321–327.
https://doi.org/10.1016/S0045-6535 (02)00847-0
[63] Özacar, M., Şengil, İ. A. (2003). Adsorption of reactive dyes on calcined alunite from aqueous solutions. Journal of hazardous materials, 98(1-3), 211-224.
https://doi.org/10.1016/S0304-3894 (02)00358-8