References
[1] AL-Mashhadani, M.K.H., Wilkinson, S.J., Zimmerman, W.B. (2015). Airlift bioreactor for biological applications with microbubble mediated transport processes. Chem Eng Sci., 137, 243–253.
https://doi.org/10.1016/j.ces.2015.06.032
[2] Karim, K., Hoffmann, R., Klasson, K. T., & Al-Dahhan, M. H. (2005). Anaerobic digestion of animal waste: Effect of mode of mixing. Water research, 39(15), 3597-3606.
https://doi.org/10.1016/j.watres.2005.06.019
[3] Karim, K., Klasson, K. T., Hoffmann, R., Drescher, S. R., DePaoli, D. W., & Al-Dahhan, M. H. (2005). Anaerobic digestion of animal waste: Effect of mixing. Bioresource technology, 96(14), 1607-1612.
https://doi.org/10.1016/j.biortech.2004.12.021
[4] Chisti, M. Y., Halard, B., & Moo-Young, M. (1988). Liquid circulation in airlift reactors. Chemical Engineering Science, 43(3), 451-457.
https://doi.org/10.1016/0009-2509(88)87005-2
[5] Mudde, R. F., Van Den Akker, H. E. (2001). 2D and 3D simulations of an internal airlift loop reactor on the basis of a two-fluid model. Chemical Engineering Science, 56(21-22), 6351-6358.
https://doi.org/10.1016/S0009-2509(01)00222-6
[6] Fan, L. S., Muroyama, K., Chern, S. H. (1982). Hydrodynamic characteristics of inverse fluidization in liquid—solid and gas—liquid—solid systems. The Chemical Engineering Journal, 24(2), 143-150.
https://doi.org/10.1016/0300-9467(82)80029-4
[7] Delnoij, E., Lammers, F. A., Kuipers, J. A. M., van Swaaij, W. P. M. (1997). Dynamic simulation of dispersed gas-liquid two-phase flow using a discrete bubble model. Chemical engineering science, 52(9), 1429-1458.
https://doi.org/10.1016/S0009-2509(96)00515-5
[8] Zhu, J. X., Karamanev, D. G., Bassi, A. S., Zheng, Y. (2000). (Gas‐) liquid‐solid circulating fluidized beds and their potential applications to bioreactor engineering. The Canadian Journal of Chemical Engineering, 78(1), 82-94.
https://doi.org/10.1002/cjce.5450780113
[9] Razzak, S. A., Barghi, S., Zhu, J. X. (2010). Axial hydrodynamic studies in a gas–liquid–solid circulating fluidized bed riser. Powder technology, 199(1), 77-86. https://doi.org/10.1016/j.powtec.2009.05.014
[10] Zhou, X., Ma, Y., Liu, M., Zhang, Y. (2020). CFD-PBM simulations on hydrodynamics and gas-liquid mass transfer in a gas-liquid-solid circulating fluidized bed. Powder Technol., 362, 57–74. https://doi.org/10.1016/j.powtec.2019.11.060
[11] Fan, L. T., Neogi, D., Yashima, M., Nassar, R. (1990). Stochastic analysis of a three‐phase fluidized bed: Fractal approach. AIChE Journal, 36(10), 1529-1535.
https://doi.org/10.1002/aic.690361008
[12] Roy, S., Dhotre, M.T., Joshi, J.B. (2006). CFD simulation of flow and axial dispersion in external loop airlift reactor. Chemical Engineering Research and Design, 84, 677–690. https://doi.org/10.1205/cherd.05178
[13] Ghadge, R.S., Ekambara, K., Joshi, J.B. (2005). Role of hydrodynamic flow parameters in lipase deactivation in bubble column reactor. Chem Eng Sci., 60, 6320–6335.
https://doi.org/ 10.1016/j.ces. 2005.04.045
[14] Freitas, C., Fialová, M., Zahradnik, J., Teixeira, J.A. (2000). Hydrodynamics of a three-phase external-loop airlift bioreactor. Chem Eng Sci., 55, 4961–4972.
https://doi.org/10.1016/S0009- 2509(00)00130-5
[15] Douek, R.S., Livingston, A.G., Johansson, A.C., Hewitt, G.F. (1994) Hydrodynamics of an external-loop three-phase airlift (TPAL) reactor. Chem Eng Sci., 49, 3719–3737. https://doi.org/10.1016/0009-2509(94)00176-6
[16] Freitas, C., Teixeira, J.A. (1998). Hydrodynamic studies in an airlift reactor with an enlarged degassing zone. Bioprocess Engineering, 18, 267–279.
https://doi.org/10.1007/ s00449005 0441
[17] Han, S. J., Tan, R. B. H., & Loh, K. C. (2000). Hydrodynamic behaviour in a new gas-liquid-solid inverse fluidization airlift bioreactor. Food and bioproducts processing, 78(4), 207-215.
https://doi.org/10.1205/09603080051065313
[18] Lin, J., Han, M., Wang, T., et al. (2004). Experimental study on the local hydrodynamic behavior of a three-phase external-loop airlift reactor. Ind Eng Chem Res., 43, 5432–5437. https://doi.org/10.1021/ie0304614
[19] Siegel, M.H., Robinson, C.W. (1992). Application of airlift gas-liquid-solid reactors in biotechnology. Chem Eng Sci., 47, 3215–3229.
https://doi.org/10.1016/0009-2509(92) 85030-F
[20] Liu, M., Zhang, T., Wang, T., et al. (2008). Experimental study and modeling on liquid dispersion in external-loop airlift slurry reactors. Chemical Engineering Journal , 139, 523–531. https://doi.org/10.1016/j.cej.2007.08.027
[21] Lele, S.S., Joshi, J.B. (1992). Modelling of air-lift fluidized bed: optimization of mass transfer. Chemical Engineering J., 49, 89–105.
https://doi.org/10.1016/0300-9467(92) 80043-A
[22] Verlaan, P., Vos, J. C., Van T Riet, K. (1989). Hydrodynamics of the flow transition from a bubble column to an airlift‐loop reactor. Journal of Chemical Technology & Biotechnology, 45(2), 109-121.
https://doi.org/10.1002/jctb.280450204
[23] Hamood-Ur-Rehman, M. (2012). Mixing Characteristics of External Loop Airlift Bioreactor using Electrical Resistance Tomography. presented to Ryerson University in partial fulfillment of the requirements for the degree of Master of Applied Science in the program of Chemical Engineering Toronto, Ontario, Canada, 2012.
https://pdfs.semanticscholar.org/2110/90573f15e049caec747e5231ef8cd4fa1b41.pdf
[24] Joshi, J.B. (2001). Computational flow modelling and design of bubble column reactors. Chem Eng Sci., 56, 5893–5933.
https://doi.org/10.1016/S0009-2509(01)00273-1
[25] Joshi, J. B., Ranade, V. V., Gharat, S.D. and Lele S.S. (1990). Sparged Loop Reactors. Canadian Journal of Chemical Engineering, 68,705–741.
https://doi.org/10.1002/cjce.5450680501
[26] Bendjaballah N., Dhaouadi H., Poncin S., et al. (1999). Hydrodynamics and flow regimes in external loop airlift reactors. Chem Eng Sci., 54, 5211–5221.
https://doi.org/10.1016/S0009-2509(99)00242-0
[27] Lu, X., Long, B,, Ding, Y,, Deng, F. (2019). Experimental Study and CFD-PBM Simulation of the Unsteady Gas-Liquid Flow in an Airlift External Loop Reactor. Flow Turbul Combust., 102, 1053–1073.
https://doi.org/10.1007/s10494-018-9992-5
[28] Silva, M,K,, d’Ávila, M.A., Mori, M.(2011). CFD modelling of a bubble column with an external loop in the heterogeneous regime. Canadian Journal of Chemical Engineering, 89, 671–681.
https://doi.org/10.1002/cjce.20417
[29] Zhang, S., Lv, Z.Y., Muller, D., Wozny, G. (2017). PBM-CFD Investigation of the Gas Holdup and Mass Transfer in a Lab-Scale Internal Loop Airlift Reactor. IEEE Access, 5, 2711–2719. https://doi.org/10.1109/ACCESS.2017.2666542
[30] Law, D., Battaglia, F. (2013). Numerical Simulations for Hydrodynamics of Air-Water External Loop Airlift Reactor Flows with Bubble Break-Up and Coalescence Effects. J Fluids Eng., 135, 081302.
https://doi.org/10.1115/1.4024396
[31] Sevugamoorthy, D., & Rangarajan, S. (2023). Comparative analysis of biodegradation and characterization study on algal-assisted wastewater treatment in a bubble column photobioreactor. Environmental Challenges, 10, 100659.
https://doi.org/10.1016/j.envc. 2022.100659
[32] Kuś, T., & Madejski, P. (2024). Analysis of the Multiphase Flow With Condensation in the Two-Phase Ejector Condenser Using Computational Fluid Dynamics Modeling. Journal of Energy Resources Technology, 146(3), 1-12. https://doi.org/10.1115/1.4064195
[33] Yang, S., Ren, B., Yang, L., Chen, C., Lu, Q., & Wei, Z. (2024). Investigation of the impact of near-wall mesh size on the transition from microscopic wall boiling mechanism to macroscopic multiphase-CFD models. Applied Thermal Engineering, 244, 122678. https://doi.org/10.1016/j.applthermaleng.2024.122678
[34] Majhool, A. K., Sukkar, K. A., & Alsaffar, M. A. (2023). Combining α-Al2O3 packing material and a ZnO nanocatalyst in an ozonized bubble column reactor to increase the phenol degradation from wastewater. Processes, 11(8), 2416.
https://doi.org/10.3390/pr11082416
[35] Kulkarni, S. J. (2024). Multifaceted and Diverse Applications of Nanocomposites. In R. Garg & A. Anjum (Eds.), Smart and Sustainable Applications of Nanocomposites (pp. 67-101). IGI Global.
https://doi.org/10.4018/979-8-3693-1094-6.ch003
[36] Kulkarni, S. J. (2023). Combinations of Biotechnology and Nanotechnology in Industrial Wastewater Treatment. In B. Mishra (Ed.), Sustainable Science and Intelligent Technologies for Societal Development (pp. 96-106). IGI Global.
https://doi.org/10.4018/979-8-3693-1186-8.ch006
[37] El Aissaoui El Meliani, M. E. A., Sun, M., Amen, T. W., Choubane, H., Iddou, A., Liu, B., & Terashima, M. (2022). Optimization of an activated sludge process equipped with a diffused aeration system: Investigating the diffuser density sensitivity. Advances in Environmental Technology, 8(4), 255-270.
https://doi.org/10.22104/aet.2022.5455.1479
[38] Sharma, M., Mohapatra, T., & Ghosh, P. (2021). Hydrodynamics, mass and heat transfer study for emerging heterogeneous Fenton process in multiphase fluidized-bed reactor system for wastewater treatment—A review. Chemical Engineering Research and Design, 171, 48-62.
http://dx.doi.org/10.1016/j.cherd.2021.04.019
[39] Yang, Y. C., Zeng, S. S., Ouyang, Y., Sang, L., Yang, S. Y., Zhang, X. Q, Huang, Y.,Y., Ye.,J.,Xiao, M.T. Zhang, N. (2021). An intensified ozonation system in a tank reactor with foam block stirrer: Synthetic textile wastewater treatment and mass transfer modeling. Separation and Purification Technology, 257, 117909. https://doi.org/10.1016/j.seppur.2020.117909
[40] Kandasamy, S., Venkatachalam, S. (2021). Prediction of bed voidage in multi-phase fluidized bed using Air/Newtonian and non-Newtonian liquid systems. Desalination and Water Treatment, 211, 92-98.
[41] Oates, A. J. (2021). Coupling Hydrodynamic and Biokinetic Growth Models in Aerated Wastewater Treatment Processes (Doctoral dissertation, University of Leeds). https://etheses.whiterose.ac.uk/29963/
[42] Sampaio, E. F., Rodrigues, C. S., Lima, V. N., & Madeira, L. M. (2021). Industrial wastewater treatment using a bubble photo-Fenton reactor with continuous gas supply. Environmental Science and Pollution Research, 28(6), 6437-6449.
https://doi.org/10.1007/s11356-020-10741-z
[43] Desireddy, S., & Sabumon, P. C. (2021). Development of aerobic granulation system for simultaneous removal of C, N, and P in sequencing batch airlift reactor. Journal of Environmental chemical engineering, 9(5), 106100.
https://doi.org/10.1016/j.jece.2021. 106100
[44] Silva, R. M., Fernandes, A. M., Fiume, F., Castro, A. R., Machado, R., & Pereira, M. A. (2021). Sequencing batch airlift reactors (SBAR): a suitable technology for treatment and valorization of mineral oil wastewaters towards lipids production. Journal of Hazardous Materials, 409, 124492. https://doi.org/10.1016/j.jhazmat.2020.124492
[45] Praveenkumar, T. R., Alahmadi, T. A., Salmen, S. H., Verma, T. N., Gupta, K. K., Gavurová, B., & Sekar, M. (2024). Impact of sludge density and viscosity on continuous stirred tank reactor performance in wastewater treatment by numerical modelling. Journal of the Taiwan Institute of Chemical Engineers, 105368.
https://doi.org/10.1016/j.jtice.2024.105368
[46] Sekar, M., Raja, G. G., Salmen, S. H., Chinnathambi, A., Gavurova, B., & Praveenkumar, T. R. (2024). Hydrodynamic cavitation phenomena and flow instabilities in wastewater treatment: A multiphase VOF study with a venturi cavitator. Journal of the Taiwan Institute of Chemical Engineers, 105355. https://doi.org/10.1016/j.jtice.2024.105355
[47] Ni, S., Zhao, T., Sun, Z., Wang, W., & Su, K. (2024). CFD simulation for comparative of hydrodynamic effects in biochemical reactors using population balance model with varied inlet gas distribution profiles. International Journal of Chemical Reactor Engineering, (0). https://doi.org/10.1515/ijcre-2023-0167
[48] Elaissaoui Elmeliani, M. E. A., Aguedal, H., Iddou, A., Alaoui, C., Benaissa, B., Belhadj, M. E. A., N Guyen, T., Sun, M. & Terashima, M. (2024). Optimizing the Disinfection Inactivation Efficiency in Wastewater Treatment: A Computational Fluid Dynamics Investigation of a Full‐Scale Ozonation Contactor. Chemical Engineering & Technology, 47(1), 46-55. https://doi.org/10.1002/ceat.202300232
[49] Arshad, M. Y., Ahmad, A. S., Mularski, J., Modzelewska, A., Jackowski, M., Pawlak-Kruczek, H., & Niedzwiecki, L. (2024). Pioneering the Future: A Trailblazing Review of the Fusion of Computational Fluid Dynamics and Machine Learning Revolutionizing Plasma Catalysis and Non-Thermal Plasma Reactor Design. Catalysts, 14(1), 40.
https://doi.org/10.3390/catal14010040
[50] Le Nepvou De Carfort, J., Pinto, T., & Krühne, U. (2024). An Automatic Method for Generation of CFD-Based 3D Compartment Models: Towards Real-Time Mixing Simulations. Bioengineering, 11(2), 169.
https://doi.org/10.3390/bioengineering11020169
[51] Wang, Z., Zeng, Y., Pan, Z., Shen, L., Zeng, B., Teng, J., & Lin, H. Improving Dye Biodegradability in Wastewater Using Optimized Water Distribution and Hydrolysis Acidification. Available at SSRN 4690270. https://dx.doi.org/10.2139/ssrn.4690270
[52] Gao, Y., Saedi, Z., Shi, H., Zeng, B., Zhang, B., & Zhang, X. (2024). Machine Learning-Assisted Optimization of Microbubble-Enhanced Cold Plasma Activation for Water Treatment. ACS ES&T Water, 4(2), 735–750.
https://doi.org/10.1021/acsestwater.3c00783
[53] Seyed Sharifi, M., Taheriyoun, M., & Qandari, H. (2024). Analyzing the effects of different patterns of diffuser layouts on air distribution and mixing quality in an aeration tank using CFD. Process Safety and Environmental Protection, 181, 182-194.
https://doi.org/10.1016/j.psep.2023.11.026
[54] Sandoval, M. A., & Domínguez-Jaimes, L. P. (2024). Fluoride removal from drinking water by electrocoagulation process: recent studies, modeling, and simulation through computational fluid dynamics approach. In Advances in Drinking Water Purification (pp. 163-179). Elsevier.
https://doi.org/10.1016/j.enconman.2023.117832
[55] Teli, S., & Kulkarni, S. (2023). Stirred tank reactor with dual impeller Rushton turbine for application of wastewater treatment-Process optimization and CFD simulation. Advances in Environmental Technology, 9(3), 174-193.
https://doi.org/10.22104/aet.2023.6207.1710
[56] Zhang, W., Yang, Y., Qian, W., Ma, L., Chen, L., Liu, N., Liu, Y. & Chen, Y. (2023). Numerical research on biomass wastewater treatment using double-partition vessel with off-centered impellers. International Journal of Agricultural and Biological Engineering, 16(2), 232-240.
http://dx.doi.org/10.25165/j.ijabe.20231602.7637
[57] Sadino-Riquelme, M. C., Donoso-Bravo, A., Zorrilla, F., Valdebenito-Rolack, E., Gómez, D., & Hansen, F. (2023). Computational fluid dynamics (CFD) modeling applied to biological wastewater treatment systems: An overview of strategies for the kinetics integration. Chemical Engineering Journal, 466, 143180-14318.
https://doi.org/10.1016/j.cej.2023.143180
[58] Hernández-Rodríguez, I. A., López-Ortega, J., González-Blanco, G., & Beristain-Cardoso, R. (2023). Performance of the UASB reactor during wastewater treatment and the effect of the biogas bubbles on its hydrodynamics. Environmental Technology, 44(16), 2386-2394.
https://doi.org/10.1080/09593330.2022.2028015
[59] Sutudehnezhad, N., Heydarinasab, A., Yegani, R., & Shariati, F. P. (2023). A CFD simulation and experimental study: The impact of aerator design on the bubble flow pattern, foulant removal and scouring capability of flat sheet membrane bioreactor (FSMBR). Journal of Water Process Engineering, 56, 104469.
[60] Dottei, A., Holtz, D., & Müller, K. (2023). Numerical investigation of sewage sludge combustion in a fluidized bed reactor: A comparison of 2D and 3D simulations. Powder Technology, 428, 118834.
https://doi.org/10.1016/j.powtec.2023.118834
[61] Teli, S. M., & Mathpati, C. (2021). Hydrodynamic studies in sectionalised external loop air lift reactors. Indian Chemical Engineer, 63(1), 34-49.
https://doi.org/10.1080/00194506.2019.1689185
[62] Sivasubramanian, V., & Prasad, B. N. (2009). Effects of superficial gas velocity and fluid property on the hydrodynamic performance of an airlift column with alcohol solution. International Journal of Engineering, Science and Technology, 1(1), 245-253. https://doi.org/10.4314/ijest.v1i1.58083
[63] Atenas, M., Clark, M., Lazarova, V. (1999). Holdup and liquid circulation velocity in a rectangular air-lift bioreactor. Industrial & engineering chemistry research, 38(3), 944-949.
https://doi.org/10.1021/ie980052l
[64] Jiang, X., Yang, N., & Yang, B. (2016). Computational fluid dynamics simulation of hydrodynamics in the riser of an external loop airlift reactor. Particuology, 27, 95-101. https://doi.org/10.1016/j.partic.2015.05.011
[65] Sato, Y., Sadatomi, M., Sekoguchi, K. (1981). Momentum and heat transfer in two-phase bubble flow—I. Theory. International Journal of Multiphase Flow, 7(2), 167-177.
https://doi.org/10.1016/0301-9322(81)90003-3
[66] Tabib, M. V., Roy, S. A., Joshi, J. B. (2008). CFD simulation of bubble column—an analysis of interphase forces and turbulence models. Chemical Engineering Journal, 139(3), 589-614.
https://doi.org/10.1016/j.cej.2007.09.015
[67] Chen, Z., Jiang, Z., Zhang, X., & Zhang, J. (2016). Numerical and experimental study on the CO2 gas–liquid mass transfer in flat-plate airlift photobioreactor with different baffles. Biochemical engineering journal, 106, 129-138.
https://doi.org/10.1016/j.bej.2015. 11.011
[68] Lu, C., Qi, N., Zhang, K., Jin, J., & Zhang, H. (2009). Experiment and CFD simulation on gas holdup characteristics in an internal loop reactor with external liquid circulation. International Journal of Chemical Reactor Engineering, 7(1).
https://doi.org/10.2202/1542-6580.1518
[69] Clift, R., Grace, J. R., & Weber, M. E. (1978). Bubbles, drops and particles. Mineola, New., Reprint Courier coporation, 2005.
[70] Teli, S. M., & Mathpati, C. S. (2021). Experimental and numerical study of gas-liquid flow in a sectionalized external-loop airlift reactor. Chinese Journal of Chemical Engineering, 32, 39-60. https://doi.org/10.1016/j.cjche.2020.10.023
[71] Tomiyama, A., Celata, G. P., Hosokawa, S., & Yoshida, S. (2002). Terminal velocity of single bubbles in surface tension force dominant regime. International journal of multiphase flow, 28(9), 1497-1519.
https://doi.org/10.1016/S0301-9322(02)00032-0
[72] Bothe, D., Schmidtke, M., & Warnecke, H. J. (2006). VOF‐simulation of the lift force for single bubbles in a simple shear flow. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 29(9), 1048-1053.
https://doi.org/10.1002/ceat.200600168
[73] Drew, D. A., Lahey Jr, R. T. (1987). The virtual mass and lift force on a sphere in rotating and straining inviscid flow. International Journal of Multiphase Flow, 13(1), 113-121.
https://doi.org/10.1016/0301-9322(87)90011-5
[74] Milne-Thomson, L.M. (1968) Theoretical Hydrodynamics, 5th Edition, Dover Publications, New York.
[75] Burns, A. D., Frank, T., Hamill, I., & Shi, J. M. (2004). The Favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows. In 5th international conference on multiphase flow, 4, 1-17. Japan: ICMF.
[76] Lopez De Bertodano, M., Lahey, R.T., Jones, O.C. (1994). Development of a k-ε model for bubbly two-phase flow. Journal of Fluids Engineering, Transactions of the ASME, 116, 128–134.
https://doi.org/10.1115/1.2910220
[77] Antal, S.P., Lahey, R.T., Flaherty, J.E. (1991). Analysis of phase distribution in fully developed laminar bubbly two-phase flow. International Journal of Multiphase Flow, 17, 635–652.
https://doi.org/10.1016/0301-9322(91)90029-3
[78] Krepper, E., Lucas, D., Prasser, H.M. (2005). On the modelling of bubbly flow in vertical pipes. Nuclear Engineering and Design, 235, 597–611.
https://doi.org/10.1016/j.nucengdes.2004.09.006
[79] Luo, H. S.H. (1996). Theoretical model for drop and bubble breakup in turbulent dispersions. AIChE Journal, 42(5), 1225–33.
https://doi.org/10.1002 /aic.690420505
[80] Miller Donald, N. (1974). Scale-up of agitated vessels gas-liquid mass transfer. AIChE Journal, 20, 445–453.
https://doi.org/10.1002/aic.690200303
[81] Ekambara, K., Joshi J.B. (2008). CFD Simulation of Residence Time Distribution and Mixing in Bubble Column Reactors. Can J Chem Eng., 81, 669–676.
https://doi.org/10. 1002/cjce.5450810345
[82] Swiderski, K., Narayanan, C., Lakehal, D. (2016). Application of N-phase algebraic slip model and direct quadrature method of moments to the simulation of air-water flow in vertical risers and bubble column reactor. Comput Chem Eng, 90, 151–160.
https://doi.org/10.1016/j.compchemeng.2016.04.023
[83] Wang, X., Sun, X. (2009). CFD simulation of phase distribution in adiabatic upward bubbly flows using interfacial area transport equation. Nucl Technol., 167, 71–82.
https://doi.org/ 10.13 182/N T09-A8852
[84] Cheung, S. C., Yeoh, G. H., Tu, J. Y. (2007). On the modelling of population balance in isothermal vertical bubbly flows—average bubble number density approach. Chemical Engineering and Processing: Process Intensification, 46(8), 742-756.
https://doi.org/10.1016/j.cep.2006.10.004
[85] Frank, T., Zwart, P.J., Krepper, E., et al .(2008). Validation of CFD models for mono- and polydisperse air-water two-phase flows in pipes. Nuclear Engineering and Design, 238, 647–659. https://doi.org/10.1016/j.nucengdes.2007.02.056
[86] Krepper, E., Lucas, D., Frank, T., et al. (2008). The inhomogeneous MUSIG model for the simulation of polydispersed flows. Nuclear Engineering and Design, 238,1690–1702.
https://doi.org/10.1016/j.nucengdes.2008.01.004
[87] Podila, K., Al Taweel, A.M., Koksal, M., et al (2007) CFD simulation of gas-liquid contacting in tubular reactors. Chem Eng Sci., 62, 7151–7162.
https://doi.org/10.1016/j.ces .2007.08.081
[88] Huh, B.G. (2006). Mechanistic study for the interfacial area transport phenomena in an air / water flow condition by using fine-size bubble group model. International Journal of Heat and Mass Transfer, 49, 4033–4042.
https://doi.org/10.1016/j.ijheatmasstransfer. 2005.11. 037
[89] Lo, S., Zhang, D. (2009). Modelling of break-up and coalescence in bubbly two-phase flows. Journal of Computational Multiphase Flows, 1, 23–38.
https://doi.org/10.1260/ 17574820 9787387106
[90] Zuber, N., Findlay, J.A. (1965). Average volumetric concentration in Two-Phase Flow Systems. J Heat Transfer, 87, 453–468.
https://doi.org/10.1115/1.3689137
[91] Elias, C.B., Joshi, J.B. (1998). Role of hydrodynamic shear on activity and structure of proteins. Adv Biochem Eng Biotechnol, 59, 47–71. https://doi.org/10.1007/BFb0102296