[1] Palmieri, G., Cennamo, G.Sannia, G. (2005). Remazol Brilliant Blue R decolourisation by the fungus Pleurotus ostreatus and its oxidative enzymatic system. Enzyme and microbial technology, 36(1), 17-24.
https://doi.org/10.1016/j.enzmictec.2004.03.026
[2] Hashemi, S. H., Kaykhaii, M. (2022). Azo dyes: sources, occurrence, toxicity, sampling, analysis, and their removal methods. In Emerging freshwater pollutants (pp. 267-287). Elsevier.
https://doi.org/10.1016/B978-0-12-822850-0.00013-2
[3] Al-Degs, Y., Khraisheh, M.A.M., Allen, S.J.Ahmad, M.N. (2000). Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent. Water research, 34(3), 927-935.
https://doi.org/10.1016/S0043-1354(99)00200-6
[4] Singh, R.L., Singh, P.K.Singh, R.P. (2015). Enzymatic decolorization and degradation of azo dyes – A review. International biodeterioration and biodegradation, 104, 21-31.
https://doi.org/10.1016/j.ibiod.2015.04.027
[5] Golka, K., Kopps, S.Myslak, Z.W. (2004). Carcinogenicity of azo colorants: influence of solubility and bioavailability. Toxicology letters, 151(1), 203-210.
https://doi.org/10.1016/j.toxlet.2003.11.016
[6] Meerbergen, K., Crauwels, S., Willems, K.A., Dewil, R., Van Impe, J., Appels, L.Lievens, B. (2017). Decolorization of reactive azo dyes using a sequential chemical and activated sludge treatment. Journal of bioscience and bioengineering, 124(6), 668-673.
https://doi.org/10.1016/j.jbiosc.2017.07.005
[7] Hao, O.J., Kim, H.Chiang, P.-C. (2000). Decolorization of Wastewater. Critical reviews in environmental science and technology, 30(4), 449-505.
https://doi.org/10.1080/10643380091184237
[8] Malik, S.N., Ghosh, P.C., Vaidya, A.N.Mudliar, S.N. (2020). Hybrid ozonation process for industrial wastewater treatment: Principles and applications: A review. Journal of water process engineering, 35, 101193.
https://doi.org/10.1016/j.jwpe.2020.101193
[9] Khamparia, S.Jaspal, D.K. (2017). Adsorption in combination with ozonation for the treatment of textile waste water: a critical review. Frontiers of environmental science and engineering, 11(1), 8.
https://doi.org/10.1007/s11783-017-0899-5
[10] Ramos, M.D.N., Santana, C.S., Velloso, C.C.V., da Silva, A.H.M., Magalhães, F.Aguiar, A. (2021). A review on the treatment of textile industry effluents through Fenton processes. Process safety and environmental protection, 155, 366-386.
https://doi.org/10.1016/j.psep.2021.09.029
[11] Ahmad, I.Basu, D. (2022). Effect of mass transport limitation and pyrite particulate on the continuous electro-Fenton process treatment of textile industrial dyek. Advances in environmental technology, 8(4), 279-292.
https://doi.org/10.22104/aet.2022.5547.1502
[12] Rodríguez-Narváez, O.M., Picos, A.R., Bravo-Yumi, N., Pacheco-Alvarez, M., Martínez-Huitle, C.A.Peralta-Hernández, J.M. (2021). Electrochemical oxidation technology to treat textile wastewaters. Current opinion in electrochemistry, 29, 100806.
https://doi.org/10.1016/j.coelec.2021.100806
[13] Rafiq, A., Ikram, M., Ali, S., Niaz, F., Khan, M., Khan, Q.Maqbool, M. (2021). Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. Journal of industrial and engineering chemistry, 97, 111-128.
https://doi.org/10.1016/j.jiec.2021.02.017
[14] Vishani, D. B., Shrivastav, A. (2022). Enzymatic decolorization and degradation of azo dyes. Development in Wastewater treatment research and processes, 419-432.
https://doi.org/10.1016/B978-0-323-85657-7.00020-1
[15] Saratale, R.G., Saratale, G.D., Chang, J.S.Govindwar, S.P. (2011). Bacterial decolorization and degradation of azo dyes: A review. Journal of the Taiwan institute of chemical engineers, 42(1), 138-157.
https://doi.org/10.1016/j.jtice.2010.06.006
[16] Yousefi, V., Mohebbi-Kalhori, D.Samimi, A. (2017). Ceramic-based microbial fuel cells (MFCs): A review. International journal of hydrogen energy, 42(3), 1672-1690.
https://doi.org/10.1016/j.ijhydene.2016.06.054
[17] Zhuo, R.Fan, F. (2021). A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants. Science of the total environment, 778, 146132.
https://doi.org/10.1016/j.scitotenv.2021.146132
[18] Kijpornyongpan, T., Schwartz, A., Yaguchi, A.Salvachúa, D. (2022). Systems biology-guided understanding of white-rot fungi for biotechnological applications: A review. iScience, 25(7), 104640.
https://doi.org/10.1016/j.isci.2022.104640
[19] Chen, L., Zhang, X., Zhang, M., Zhu, Y.Zhuo, R. (2022). Removal of heavy-metal pollutants by white rot fungi: Mechanisms, achievements, and perspectives. Journal of cleaner production, 354, 131681. https://doi.org/10.1016/j.jclepro.2022.131681
[20] Kathiravan, A.Joel Gnanadoss, J. (2021). White-rot fungi-mediated bioremediation as a sustainable method for xenobiotic degradation. Environmental and experimental biology, 19(3), 103–119.
https://doi.org/10.22364/eeb.19.11
[21] Yousefi, V.Kariminia, H.-R. (2010). Statistical analysis for enzymatic decolorization of acid orange 7 by Coprinus cinereus peroxidase. International biodeterioration and biodegradation, 64(3), 245-252.
https://doi.org/10.1016/j.ibiod.2010.02.003
[22] Kariminia, H. R., Yousefi, V. (2011). Statistical optimization of reactive blue 221 decolorization by fungal peroxidise. Water production and wastewater treatment, NOVA publisher, 215-224.
https://dorl.net/dor/20.1001.1.17358779.1390.5.1.2.7
[23] Mansouri, M.Kariminia, H. (2011). Investigation of decolorization of reactive black 5 by enzymatic method. Journal of color science and technology, 5(1), 11-20.
[24] Mansouri Majoumerd, M.Kariminia, H.R. (2013). Bisubstrate kinetic model for enzymatic decolorization of reactive black 5 by Coprinus cinereus Peroxidase. Iranian journal of chemistry and chemical engineering (IJCCE), 32(2), 125-134.
https://doi.org/10.30492/ijcce.2013.5897
[25] Box, G. E., Wilson, K. B. (1992). On the experimental attainment of optimum conditions. In Breakthroughs in statistics: methodology and distribution (pp. 270-310). New York, NY: Springer New York.
[26] Fernandes, C.D., Nascimento, V.R.S., Meneses, D.B., Vilar, D.S., Torres, N.H., Leite, M.S., Vega Baudrit, J.R., Bilal, M., Iqbal, H.M.N., Bharagava, R.N., Egues, S.M.Romanholo Ferreira, L.F. (2020). Fungal biosynthesis of lignin-modifying enzymes from pulp wash and Luffa cylindrica for azo dye RB5 biodecolorization using modeling by response surface methodology and artificial neural network. Journal of hazardous materials, 399, 123094.
https://doi.org/10.1016/j.jhazmat.2020.123094
[27] Cordova-Villegas, L.G., Cordova-Villegas, A.Y., Taylor, K.E.Biswas, N. (2019). Response Surface Methodology for Optimization of Enzyme-Catalyzed Azo Dye Decolorization. Journal of environmental engineering, 145(5), 04019013.
https://doi.org/10.1061/(ASCE)EE.1943-7870.0001513
[28] Uppala, R.Muthukumaran, A. (2021). Optimization of Media Components and Process Parameters for Microbial Mediated Remediation of Azo Dyes: A Review. Journal of microbiology, biotechnology and food sciences, 11(3), e3549-e3549.
https://doi.org/10.15414/jmbfs.3549
[29] Ivanec-Goranina, R. (2024). Kinetic Study of Coprinus cinereus Peroxidase-Catalyzed Oxidation of 2,2′-Dihydroxyazobenzene. International journal of molecular sciences, 25(2), 828.
https://doi.org/10.3390/ijms25020828
[30] Sakurai, A., Toyoda, S.Sakakibara, M. (2001). Removal of bisphenol A by polymerization and precipitation method using Coprinus cinereus peroxidase. Biotechnology letters, 23, 995-998.
https://doi.org/10.1023/A:1010551230692
[31] Zhumabekova, A., Noma, S.A.A., Tümay Özer, E.Osman, B. (2024). Decolorization of Congo Red and Reactive Black 5 Dyes with Horseradish Peroxidase-Immobilized Cross-Linked Polymeric Microbeads. Arabian journal for science and engineering.
https://doi.org/10.1007/s13369-024-08748-6
[32] Ikehata, K., Buchanan, I.D., Pickard, M.A.Smith, D.W. (2005). Purification, characterization and evaluation of extracellular peroxidase from two Coprinus species for aqueous phenol treatment. Bioresource technology, 96(16), 1758-1770. https://doi.org/10.1016/j.biortech.2005.01.019
[33] Yu, G., Wen, X., Li, R.Qian, Y. (2006). In vitro degradation of a reactive azo dye by crude ligninolytic enzymes from nonimmersed liquid culture of Phanerochaete chrysosporium. Process biochemistry, 41(9), 1987-1993.
https://doi.org/10.1016/j.procbio.2006.04.008
[34] Moreira, M., Palma, C., Mielgo, I., Feijoo, G.Lema, J. (2001). In vitro degradation of a polymeric dye (Poly R‐478) by manganese peroxidase. Biotechnology and bioengineering, 75(3), 362-368.
https://doi.org/10.1002/bit.10052
[35] Palma, C., Moreira, M., Feijoo, G.Lema, J. (1997). Enhanced catalytic properties of MnP by exogenous addition of manganese and hydrogen peroxide. Biotechnology letters, 19, 263-268.
https://doi.org/10.1023/A:1018313825723
[36] Alam, M.Z., Mansor, M.F.Jalal, K. (2009). Optimization of decolorization of methylene blue by lignin peroxidase enzyme produced from sewage sludge with Phanerocheate chrysosporium. Journal of hazardous materials, 162(2-3), 708-715.
https://doi.org/10.1016/j.jhazmat.2008.05.085
[37] Young, L.Yu, J. (1997). Ligninase-catalysed decolorization of synthetic dyes. Water research, 31(5), 1187-1193.
https://doi.org/10.1016/S0043-1354(96)00380-6
[38] Hadibarata, T., Adnan, L.A., Yusoff, A.R.M., Yuniarto, A., Rubiyatno, Zubir, M.M.F.A., Khudhair, A.B., Teh, Z.C.Naser, M.A. (2013). Microbial decolorization of an Azo dye reactive black 5 using white-rot fungus Pleurotus eryngii F032. Water, air, soil pollution, 224(6), 1595.
https://doi.org/10.1007/s11270-013-1595-0
[39] Lei, Z., Wei, Z., Jin-Tao, F., Bing-Xue, D., Lin-Na, H., Qian-Qian, W.U., Yu-Ke, Y.A., Jian-Feng, Z., Ge-Ge, Z.Lu, Z. (2017). Directed evolution of Coprinus cinereus peroxidase to improve the decolorization of textile wastewaters. Microbiology China, 44(4), 774-782.
https://doi.org/10.13344/j.microbiol.china.160347
[40] Rai, R.Vijayakumar, B.S. (2023). Myco-Remediation of Textile Dyes Via Biosorption by Aspergillus tamarii Isolated from Domestic Wastewater. Water, air, soil pollution, 234(8), 542.
https://doi.org/10.1007/s11270-023-06535-x
[41] Alkas, T.R., Ediati, R., Ersam, T.Purnomo, A.S. (2022). Reactive Black 5 decolorization using immobilized Brown-rot fungus Gloeophyllum trabeum. Materials today: Proceedings, 65, 2934-2939.
https://doi.org/10.1016/j.matpr.2022.02.521
[42] Wielewski, L.P., Zuccolotto, T., Soares, M., Prola, L.D.T.Liz, M.V.d. (2020). Degradation of the Textile Dye Reactive Black 5 by Basidiomycetes. Revista Ambiente and Água, 15.
https://doi.org/10.4136/ambi-agua.2464
[43] Alaguprathana, M., Poonkothai, M., Ameen, F., Ahmad Bhat, S., Mythili, R.Sudhakar, C. (2022). Sodium hydroxide pre-treated Aspergillus flavus biomass for the removal of reactive black 5 and its toxicity evaluation. Environmental research, 214, 113859. https://doi.org/10.1016/j.envres.2022.113859
[44] Sayahi, E.Ladhari, N. Decolorization of Reactive Black 5 by Laccase. In International Conference of Applied Research on Textile and Materials. 2020. Springer.
[45] Ben Ayed, A., Hadrich, B., Sciara, G., Lomascolo, A., Bertrand, E., Faulds, C.B., Zouari-Mechichi, H., Record, E.Mechichi, T. (2022). Optimization of the decolorization of the reactive black 5 by a laccase-like active cell-free supernatant from Coriolopsis gallica. Microorganisms, 10(6), 1137.
https://doi.org/10.3390/microorganisms10061137