[1] Ministry of Agriculture and Rural Development. (2020 Feb). Chain of Flowers. Foliage and Ornamentals. Bogotá.
[2] Barbosa, A. D., da Silva, L. F., de Paula, H. M., Romualdo, L. L., Sadoyama, G., Andrade, L. S. (2018). Combined use of coagulation (M. oleifera) and electrochemical techniques in the treatment of industrial paint wastewater for reuse and/or disposal. Water research, 145, 153-161.
[3] da Silva, L. F., Barbosa, A. D., de Paula, H. M., Romualdo, L. L., Andrade, L. S. (2016). Treatment of paint manufacturing wastewater by coagulation/electrochemical methods: proposals for disposal and/or reuse of treated water. Water research, 101, 467-475.
[4] Jaramillo, A. C., Echavarría, A. M., Hormaza, A. (2013). Box-Behnken design for the optimization of acid blue dye adsorption on flower waste. (Diseño Box-Behnken para la optimización de la adsorción del colorante azul ácido sobre residuos de flores). Ingeniería y ciencia, 9(18), 75-91.
[5] Cuesta Berrio, H. (2019). Advanced oxidation processes applied to the treatment of wastewater from the Petrochemical Industry: Fenton and photo-Fenton. (Procesos avanzados de oxidación aplicados al tratamiento de las aguas residuales de la Industria Petroquímica: Fenton y foto-fenton). Monograph, Open and Distance National University UNAD. UNAD Institutional Repository". https://repository.unad.edu.co/handle/10596/28100
[6] Kothai, A., Sathishkumar, C., Muthupriya, R., Dharchana, R. (2021). Experimental investigation of textile dyeing wastewater treatment using aluminium in electro coagulation process and Fenton’s reagent in advanced oxidation process. Materials today: proceedings, 45, 1411-1416.
[7] Basturk, I., Varank, G., Murat-Hocaoglu, S., Yazici-Guvenc, S., Can-Güven, E., Oktem-Olgun, E. E., Canli, O. (2021). Simultaneous degradation of cephalexin, ciprofloxacin, and clarithromycin from medical laboratory wastewater by electro-Fenton process. Journal of environmental chemical engineering, 9(1), 104666.
[8] I Litter, M., Quici, N. (2010). Photochemical advanced oxidation processes for water and wastewater treatment. Recent patents on engineering, 4(3), 217-241.
[9] Domènech, X., Jardim, W. F., Litter, M. I. (2001). Advanced oxidation processes for the elimination of contaminants. Removal of contaminants by heterogeneous photocatalysis, 2016, 3-26.
[10] Brillas, E., Sirés, I., & Oturan, M. A. (2009). Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chemical reviews, 109(12), 6570-6631.
https:// doi:10.1021/cr900136g.
[11] Sanz, J., Lombraña, J. I., De Luis, A. (2013). "State of the art in advanced oxidation to industrial effluents: new developments and future trends". Afinidad, 70(561).
[12] Louhichi, B., Gaied, F., Mansouri, K., Jeday, M. R. (2022). Treatment of textile industry effluents by Electro-Coagulation and Electro-Fenton processes using solar energy: A comparative study. Chemical engineering journal, 427, 131735.
https://doi.org/10.1016/j.cej.2021.131735
[13] Beyazıt, N., Atmaca, K. (2021). COD and color removal from landfill leachate by photo-electro-Fenton process. International journal of electrochemical science, 16(5), 210539.
[14] Sarria, V., Pulgarín, C. (2004). Development of coupled photochemical and biological processes as a natural alternative for water treatment. International Seminar on Natural Methods for Wastewater Treatment, (2004), 108, 115.
[15] Diaz, J. J. F., Aguado, A. E. E., Martinez, J. A. (2014). Treatment of chemical wastewater through electrocoagulation. Advances in Engineering Research, 11(1), 65-69.
https://doi.org/10.18041/1794-4953/avances.1.332
[16] Barrera-Díaz, C., Frontana-Uribe, B., Bilyeu, B. (2014). Removal of organic pollutants in industrial wastewater with an integrated system of copper electrocoagulation and electrogenerated H2O2. Chemosphere, 105, 160-164.
https://doi.org/10.1016/j.chemosphere.2014.01.026
[17] Darío, E., Luz, A., Sierra, M., White, C., Catalina, L., Amézquita, O. (2008). Application of electrochemistry in wastewater treatment. (Aplicación de la electroquímica en el tratamiento de aguas residuales). Universidad EAFIT, Documento, 85.
[18] Blanco Jurado, J. (2009). Degradation of a real textile effluent through Fenton and Photo-Fenton processes (Degradación de un efluente textil real mediante procesos Fenton y Foto-Fenton) Master's thesis, Universitat Politècnica de Catalunya.
[19] MINAMBIENTE. (2015). Resolution No. 0631 - Maximum permissible values in discharges to bodies of water. Colombia (Resolución N◦ 0631 - Valores máximos permisibles en vertimientos a cuerpos de aguas. Colombia): https://www.minambiente.gov.co/wp-content/uploads/2021/11/resolucion-631-de-2015.pdf. Accesed March 2024. pp. 1–62.
[20] Trujillo, A. F. O., Cajigas, M. E. M. (2018). Validation of a method for the analysis of true color in water (Validación de un método para el análisis de color real en agua). Revista de la Facultad de Ciencias, 7(1), 143-155.
https://doi.org/10.15446/rev.fac.cienc.v7n1.68086.
[21] American Public Health Association. (1926). Standard methods for the examination of water and wastewater (Vol. 6). American Public Health Association.
[22] Jaafarzadeh, N., Ghanbari, F., Ahmadi, M., Omidinasab, M. (2017). Efficient integrated processes for pulp and paper wastewater treatment and phytotoxicity reduction: permanganate, electro-Fenton and Co3O4/UV/peroxymonosulfate. Chemical engineering journal, 308, 142-150.
https://doi.org/10.1016/j.cej.2016.09.015.
[23] Can-Güven, E. (2021). Advanced treatment of dye manufacturing wastewater by electrocoagulation and electro-Fenton processes: Effect on COD fractions, energy consumption, and sludge analysis. Journal of environmental management, 300, 113784.
https://doi.org/10.1016/j.jenvman.2021.113784
[24] Montgomery, D. C. (2017). Design and analysis of experiments. John wiley and sons.
[25] Walpole, R. E., Myers, R. H., Myers, S. L. (1999). Probability and Statistics for Engineers. Pearson educación.
[26] Davarnejad, R., Azizi, J. (2016). Alcoholic wastewater treatment using electro-Fenton technique modified by Fe2O3 nanoparticles. Journal of environmental chemical engineering, 4(2), 2342-2349.
https://doi.org/10.1016/j.jece.2016.04.009
[27] Nidheesh, P. V., Gandhimathi, R. (2012). Trends in electro-Fenton process for water and wastewater treatment: an overview. Desalination, 299, 1-15.
[28] Daneshvar, N., Khataee, A. R., Ghadim, A. A., Rasoulifard, M. H. (2007). Decolorization of CI Acid Yellow 23 solution by electrocoagulation process: Investigation of operational parameters and evaluation of specific electrical energy consumption (SEEC). Journal of hazardous materials, 148(3), 566-572.
[29] Aoudj, S., Khelifa, A., Drouiche, N., Hecini, M., Hamitouche, H. (2010). Electrocoagulation process applied to wastewater containing dyes from textile industry. Chemical engineering and processing: Process intensification, 49(11), 1176-1182.
https://doi.org/10.1016/j.cep.2010.08.019.
[30] Guvenc, S. Y., Dincer, K., Varank, G. (2019). Performance of electrocoagulation and electro-Fenton processes for treatment of nanofiltration concentrate of biologically stabilized landfill leachate. Journal of water process engineering, 31, 100863.
https://doi.org/10.1016/j.jwpe.2019.100863
[31] David, C., Arivazhagan, M., Tuvakara, F. (2015). Decolorization of distillery spent wash effluent by electro oxidation (EC and EF) and Fenton processes: a comparative study. Ecotoxicology and environmental safety, 121, 142-148.
https://doi.org/10.1016/j.ecoenv.2015.04.038
[32] Guvenc, S. Y., Erkan, H. S., Varank, G., Bilgili, M. S., Engin, G. O. (2017). Optimization of paper mill industry wastewater treatment by electrocoagulation and electro-Fenton processes using response surface methodology. Water science and technology, 76(8), 2015-2031.
https://doi.org/10.2166/wst.2017.327
[33] Mohajeri, S., Hamidi, A. A., Isa, M. H., Zahed, M. A. (2019). Landfill leachate treatment through electro-Fenton oxidation. Pollution, 5(1), 199-209.
https://doi.org/10.22059/POLL.2018.249210.364
[34] Espinoza-Quiñones, F. R., Dall’Oglio, I. C., de Pauli, A. R., Romani, M., Módenes, A. N., Trigueros, D. E. G. (2021). Insights into brewery wastewater treatment by the electro-Fenton hybrid process: How to get a significant decrease in organic matter and toxicity. Chemosphere, 263, 128367.
[35] Davarnejad, R., Mohammadi, M., Ismail, A. F. (2014). Petrochemical wastewater treatment by electro-Fenton process using aluminum and iron electrodes: Statistical comparison. Journal of water process engineering, 3, 18-25.
[36] Bhatnagar, R., Joshi, H., Mall, I. D., Srivastava, V. C. (2014). Electrochemical oxidation of textile industry wastewater by graphite electrodes. Journal of environmental science and health, Part A, 49(8), 955-966.
https://doi.org/10.1080/10934529.2014.894320
[37] Wan, J., Liu, B., Jin, C., Li, J., Wei, X., Dong, H., Zhao, Y. (2019). Electrochemical oxidation of Acid Black 2 dye wastewater using boron-doped diamond anodes: multiresponse optimization and degradation mechanisms. Environmental engineering science, 36(9), 1049-1060.
[38] Hiwarkar, A. D., Singh, S., Srivastava, V. C., Mall, I. D. (2017). Mineralization of pyrrole, a recalcitrant heterocyclic compound, by electrochemical method: multi-response optimization and degradation mechanism. Journal of environmental management, 198, 144-152.
https://doi.org/10.1016/j.jenvman.2017.04.051
[39] Asaithambi, P., Yesuf, M. B., Govindarajan, R., Periyasamy, S., Niju, S., Pandiyarajan, T., Alemayehu, E. (2023). Sono-alternating current-electro-Fenton process for the removal of color, COD and determination of power consumption from distillery industrial wastewater. Separation and purification technology, 319, 124031.
https://doi.org/10.1002/celc.2023