Electro-Fenton method for dye removal of agro-industrial wastewater from flower production

Document Type : Research Paper


1 Limnology and Water Resources Research Group, Universidad Católica de Oriente, Colombia

2 Digital Innovation and Social Development Group (INDDES), Institución Universitaria Digital de Antioquia (IUDigital), Colombia


Removal of recalcitrant dyes from agroindustrial wastewater produced in flower processes represents a significant environmental challenge for flower industries worldwide. Advanced oxidation processes (AOPs) emerge as a clean and effective costly alternative for removing dye contaminants in wastewater. This study used an electro-Fenton technique as an alternative for the treatment of colored wastewater from flower-producing crops in Colombia. Initially, the physicochemical characterization of the wastewater was carried out by Chemical Oxygen Demand (COD), color, pH, conductivity, temperature, and oxidation-reduction potential. Subsequently, an electrochemical process was carried out through a power source and six iron electrodes. Variables, such as hydrogen peroxide concentration (500 and 700 mg/l H2O2), amperage (1 and 2 A), and treatment time (60 and 90 minutes), were controlled. Based on a desirability function for multiple response analysis, the electro-Fenton process allowed a maximum COD removal of 80.9% and 88.5% for color (desirability criterion of 86%). Residence time in the reactor, voltage, current density, and concentration of hydrogen peroxide were the most significant variables. Finally, the role of other physicochemical variables involved during the dye degradation process was explained. 

Graphical Abstract

Electro-Fenton method for dye removal of agro-industrial wastewater from flower production


Main Subjects

[1]  Ministry of Agriculture and Rural Development. (2020 Feb). Chain of Flowers. Foliage and Ornamentals. Bogotá.
[2]  Barbosa, A. D., da Silva, L. F., de Paula, H. M., Romualdo, L. L., Sadoyama, G., Andrade, L. S. (2018). Combined use of coagulation (M. oleifera) and electrochemical techniques in the treatment of industrial paint wastewater for reuse and/or disposal. Water research, 145, 153-161.
[3] da Silva, L. F., Barbosa, A. D., de Paula, H. M., Romualdo, L. L., Andrade, L. S. (2016). Treatment of paint manufacturing wastewater by coagulation/electrochemical methods: proposals for disposal and/or reuse of treated water. Water research, 101, 467-475.
[4] Jaramillo, A. C., Echavarría, A. M., Hormaza, A. (2013). Box-Behnken design for the optimization of acid blue dye adsorption on flower waste. (Diseño Box-Behnken para la optimización de la adsorción del colorante azul ácido sobre residuos de flores). Ingeniería y ciencia, 9(18), 75-91.
[5] Cuesta Berrio, H. (2019). Advanced oxidation processes applied to the treatment of wastewater from the Petrochemical Industry: Fenton and photo-Fenton. (Procesos avanzados de oxidación aplicados al tratamiento de las aguas residuales de la Industria Petroquímica: Fenton y foto-fenton). Monograph, Open and Distance National University UNAD. UNAD Institutional Repository". https://repository.unad.edu.co/handle/10596/28100
[6] Kothai, A., Sathishkumar, C., Muthupriya, R., Dharchana, R. (2021). Experimental investigation of textile dyeing wastewater treatment using aluminium in electro coagulation process and Fenton’s reagent in advanced oxidation process. Materials today: proceedings, 45, 1411-1416.
[7] Basturk, I., Varank, G., Murat-Hocaoglu, S., Yazici-Guvenc, S., Can-Güven, E., Oktem-Olgun, E. E., Canli, O. (2021). Simultaneous degradation of cephalexin, ciprofloxacin, and clarithromycin from medical laboratory wastewater by electro-Fenton process. Journal of environmental chemical engineering, 9(1), 104666.
[8] I Litter, M., Quici, N. (2010). Photochemical advanced oxidation processes for water and wastewater treatment. Recent patents on engineering, 4(3), 217-241.
[9] Domènech, X., Jardim, W. F., Litter, M. I. (2001). Advanced oxidation processes for the elimination of contaminants. Removal of contaminants by heterogeneous photocatalysis, 2016, 3-26.
[10] Brillas, E., Sirés, I., & Oturan, M. A. (2009). Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chemical reviews, 109(12), 6570-6631.
https:// doi:10.1021/cr900136g.
[11] Sanz, J., Lombraña, J. I., De Luis, A. (2013). "State of the art in advanced oxidation to industrial effluents: new developments and future trends". Afinidad, 70(561).
[12] Louhichi, B., Gaied, F., Mansouri, K., Jeday, M. R. (2022). Treatment of textile industry effluents by Electro-Coagulation and Electro-Fenton processes using solar energy: A comparative study. Chemical engineering journal, 427, 131735.
[13] Beyazıt, N., Atmaca, K. (2021). COD and color removal from landfill leachate by photo-electro-Fenton process. International journal of electrochemical science, 16(5), 210539.
[14] Sarria, V., Pulgarín, C. (2004). Development of coupled photochemical and biological processes as a natural alternative for water treatment. International Seminar on Natural Methods for Wastewater Treatment, (2004), 108, 115.
[15] Diaz, J. J. F., Aguado, A. E. E., Martinez, J. A. (2014). Treatment of chemical wastewater through electrocoagulation. Advances in Engineering Research, 11(1), 65-69.
[16] Barrera-Díaz, C., Frontana-Uribe, B., Bilyeu, B. (2014). Removal of organic pollutants in industrial wastewater with an integrated system of copper electrocoagulation and electrogenerated H2O2. Chemosphere, 105, 160-164.
[17] Darío, E., Luz, A., Sierra, M., White, C., Catalina, L., Amézquita, O. (2008). Application of electrochemistry in wastewater treatment. (Aplicación de la electroquímica en el tratamiento de aguas residuales). Universidad EAFIT, Documento, 85.
[18] Blanco Jurado, J. (2009). Degradation of a real textile effluent through Fenton and Photo-Fenton processes (Degradación de un efluente textil real mediante procesos Fenton y Foto-Fenton) Master's thesis, Universitat Politècnica de Catalunya.
[19] MINAMBIENTE. (2015). Resolution No. 0631 - Maximum permissible values in discharges to bodies of water. Colombia (Resolución N◦ 0631 - Valores máximos permisibles en vertimientos a cuerpos de aguas. Colombia): https://www.minambiente.gov.co/wp-content/uploads/2021/11/resolucion-631-de-2015.pdf. Accesed March 2024. pp. 1–62.
[20] Trujillo, A. F. O., Cajigas, M. E. M. (2018). Validation of a method for the analysis of true color in water (Validación de un método para el análisis de color real en agua). Revista de la Facultad de Ciencias, 7(1), 143-155.
[21] American Public Health Association. (1926). Standard methods for the examination of water and wastewater (Vol. 6). American Public Health Association.
[22] Jaafarzadeh, N., Ghanbari, F., Ahmadi, M., Omidinasab, M. (2017). Efficient integrated processes for pulp and paper wastewater treatment and phytotoxicity reduction: permanganate, electro-Fenton and Co3O4/UV/peroxymonosulfate. Chemical engineering journal, 308, 142-150.
[23] Can-Güven, E. (2021). Advanced treatment of dye manufacturing wastewater by electrocoagulation and electro-Fenton processes: Effect on COD fractions, energy consumption, and sludge analysis. Journal of environmental management, 300, 113784.
[24] Montgomery, D. C. (2017). Design and analysis of experiments. John wiley and sons.
[25] Walpole, R. E., Myers, R. H., Myers, S. L. (1999). Probability and Statistics for Engineers. Pearson educación.
[26] Davarnejad, R., Azizi, J. (2016). Alcoholic wastewater treatment using electro-Fenton technique modified by Fe2O3 nanoparticles. Journal of environmental chemical engineering, 4(2), 2342-2349.
[27] Nidheesh, P. V., Gandhimathi, R. (2012). Trends in electro-Fenton process for water and wastewater treatment: an overview. Desalination, 299, 1-15.
[28] Daneshvar, N., Khataee, A. R., Ghadim, A. A., Rasoulifard, M. H. (2007). Decolorization of CI Acid Yellow 23 solution by electrocoagulation process: Investigation of operational parameters and evaluation of specific electrical energy consumption (SEEC). Journal of hazardous materials, 148(3), 566-572.
[29]     Aoudj, S., Khelifa, A., Drouiche, N., Hecini, M., Hamitouche, H. (2010). Electrocoagulation process applied to wastewater containing dyes from textile industry. Chemical engineering and processing: Process intensification, 49(11), 1176-1182.
[30] Guvenc, S. Y., Dincer, K., Varank, G. (2019). Performance of electrocoagulation and electro-Fenton processes for treatment of nanofiltration concentrate of biologically stabilized landfill leachate. Journal of water process engineering, 31, 100863.
[31] David, C., Arivazhagan, M., Tuvakara, F. (2015). Decolorization of distillery spent wash effluent by electro oxidation (EC and EF) and Fenton processes: a comparative study. Ecotoxicology and environmental safety, 121, 142-148.
[32] Guvenc, S. Y., Erkan, H. S., Varank, G., Bilgili, M. S., Engin, G. O. (2017). Optimization of paper mill industry wastewater treatment by electrocoagulation and electro-Fenton processes using response surface methodology. Water science and technology, 76(8), 2015-2031.
[33] Mohajeri, S., Hamidi, A. A., Isa, M. H., Zahed, M. A. (2019). Landfill leachate treatment through electro-Fenton oxidation. Pollution, 5(1), 199-209.
[34] Espinoza-Quiñones, F. R., Dall’Oglio, I. C., de Pauli, A. R., Romani, M., Módenes, A. N., Trigueros, D. E. G. (2021). Insights into brewery wastewater treatment by the electro-Fenton hybrid process: How to get a significant decrease in organic matter and toxicity. Chemosphere, 263, 128367.
[35] Davarnejad, R., Mohammadi, M., Ismail, A. F. (2014). Petrochemical wastewater treatment by electro-Fenton process using aluminum and iron electrodes: Statistical comparison. Journal of water process engineering, 3, 18-25.
[36] Bhatnagar, R., Joshi, H., Mall, I. D., Srivastava, V. C. (2014). Electrochemical oxidation of textile industry wastewater by graphite electrodes. Journal of environmental science and health, Part A, 49(8), 955-966.
[37] Wan, J., Liu, B., Jin, C., Li, J., Wei, X., Dong, H., Zhao, Y. (2019). Electrochemical oxidation of Acid Black 2 dye wastewater using boron-doped diamond anodes: multiresponse optimization and degradation mechanisms. Environmental engineering science, 36(9), 1049-1060.
[38] Hiwarkar, A. D., Singh, S., Srivastava, V. C., Mall, I. D. (2017). Mineralization of pyrrole, a recalcitrant heterocyclic compound, by electrochemical method: multi-response optimization and degradation mechanism. Journal of environmental management, 198, 144-152.
[39] Asaithambi, P., Yesuf, M. B., Govindarajan, R., Periyasamy, S., Niju, S., Pandiyarajan, T., Alemayehu, E. (2023). Sono-alternating current-electro-Fenton process for the removal of color, COD and determination of power consumption from distillery industrial wastewater. Separation and purification technology, 319, 124031.