[1] Koukal, B., Dominik, J., Vignati, D., Arpagaus, P., Santiago, S., Ouddane, B., Benaabidate, L. (2004). Assessment of water quality and toxicity of polluted Rivers Fez and Sebou in the region of Fez (Morocco). Environmental pollution, 131(1), 163-172.
https://doi.org/10.1016/j.envpol.2004.01.014.
[2] Derwich, E., Benziane, Z., Benaabidate, L. (2011). Diagnostic of physicochemical and bacteriological quality of fez wastewaters rejected in Sebou River: Morocco. Environmental earth sciences, 63, 839-846.
https://doi.org/10.1007/s12665-010-0754-5.
[3] Mimad, A., El Ouali Lalami, A., Merzouki, M. (2010). Pollution des eaux de surface de la ville de Moulay Yacoub au centre du Maroc. L'Eau, l'industrie, les nuisances, (335),95–104.
[4] Hassimi, H., Taleb, A., Bouezmarni, M., Karzazi, O., Taleb, M., Kherbeche, A., Debbaut, V. (2019). The effect of the physicochemical conditions variations on the behavior of heavy metals trapped in polluted fluvial system sediments: the case of Oued Sebou, Morocco. Applied water science, 9, 1-8. https://doi.org/10.1007/s13201-019-0891-2.
[5] Belhassan, H., Merzouki, M., Amakdouf, H., Lamrani, O., Haily, E. M., Massaoudi, Y., Benlemlih, M. (2023). High efficiency removal of heavy metals and organic pollutants from brassware using raw coal: Kinetic adsorption and optimized process. Results in chemistry, 5, 100855.
https://doi.org/10.1016/j.rechem.2023.100855.
[6] Omar, L., Mohammed, M., El Karrach Karima, B. M. (2015). Brassware wastewater treatment optimization in the city of Fez with sequencing batch reactor using activated sludge. Journal of materials and environmental science, 6(6), 1562-1569.
[7] Hayzoun, H., Garnier, C., Durrieu, G., Lenoble, V., Le Poupon, C., Angeletti, B., Mounier, S. (2015). Organic carbon, and major and trace element dynamic and fate in a large river subjected to poorly-regulated urban and industrial pressures (Sebou River, Morocco). Science of the total environment, 502, 296-308.
https://doi.org/10.1016/j.scitotenv.2014.09.014.
[8] Fu, F., Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of environmental management, 92(3), 407-418.
https://doi.org/10.1016/j.jenvman.2010.11.011.
[9] Doabi, S. A., Karami, M., Afyuni, M., Yeganeh, M. (2018). Pollution and health risk assessment of heavy metals in agricultural soil, atmospheric dust and major food crops in Kermanshah province, Iran. Ecotoxicology and environmental safety, 163, 153-164.
https://doi.org/10.1016/j.ecoenv.2018.07.057.
[10] Danouche, M., El Ghachtouli, N., Aasfar, A., Bennis, I., El Arroussi, H. (2022). Pb (II)-phycoremediation mechanism using Scenedesmus obliquus: cells physicochemical properties and metabolomic profiling. Heliyon, 8(2).
https://doi.org/10.1016/j.heliyon.2022.e08967.
[11] Church, J., Hwang, J. H., Kim, K. T., McLean, R., Oh, Y. K., Nam, B, Lee, W. H. (2017). Effect of salt type and concentration on the growth and lipid content of Chlorella vulgaris in synthetic saline wastewater for biofuel production. Bioresource technology, 243, 147-153.
https://doi.org/10.1016/j.biortech.2017.06.081.
[12] Kharazi, A., Leili, M., Khazaei, M., Alikhani, M. Y., Shokoohi, R. (2021). Human health risk assessment of heavy metals in agricultural soil and food crops in Hamadan, Iran. Journal of food composition and analysis, 100, 103890.
https://doi.org/10.1016/j.jfca.2021.103890.
[13] Anyachor, C. P., Dooka, D. B., Orish, C. N., Amadi, C. N., Bocca, B., Ruggieri, F., Orisakwe, O. E. (2022). Mechanistic considerations and biomarkers level in nickel-induced neurodegenerative diseases: An updated systematic review. IBRO Neuroscience reports, 13, 136-146.
https://doi.org/10.1016/j.ibneur.2022.07.005.
[14] Manjula, M., Mohanraj, R., Devi, M. P. (2015). Biomonitoring of heavy metals in feathers of eleven common bird species in urban and rural environments of Tiruchirappalli, India. Environmental monitoring and assessment, 187, 1-10.
https://doi.org/10.1007/s10661-015-4502-x.
[15] Ma, J., Singhirunnusorn, W. (2012). Distribution and health risk assessment of heavy metals in surface dusts of Maha Sarakham municipality. Procedia-social and behavioral sciences, 50, 280-293.
https://doi.org/10.1016/j.sbspro.2012.08.034.
[16] Ngah, W. W., Hanafiah, M. M. (2008). Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresource technology, 99(10), 3935-3948.
https://doi.org/10.1016/j.biortech.2007.06.011.
[17] Ahmad, K., Wajid, K., Khan, Z. I., Ugulu, I., Memoona, H., Sana, M., Sher, M. (2019). Evaluation of potential toxic metals accumulation in wheat irrigated with wastewater. Bulletin of environmental contamination and toxicology, 102, 822-828.
https://doi.org/10.1007/s00128-019-02605-1.
[18] Le Donne, A., Trifiletti, V., Binetti, S. (2019). New earth-abundant thin film solar cells based on chalcogenides. Frontiers in chemistry, 7, 297.
https://doi.org/10.3389/fchem.2019.00297.
[19] Lazareva, O., Pichler, T. (2010). Long-term performance of a constructed wetland/filter basin system treating wastewater, Central Florida. Chemical geology, 269(1-2), 137-152.
https://doi.org/10.1016/j.chemgeo.2009.06.006.
[20] Schaumlöffel, D. (2012). Nickel species: analysis and toxic effects. Journal of trace elements in medicine and biology, 26(1), 1-6.
https://doi.org/10.1016/j.jtemb.2012.01.002.
[21] Ugulu, I., Unver, M. C., Dogan, Y. (2016). Determination and comparison of heavy metal accumulation level of Ficus carica bark and leaf samples in Artvin, Turkey. Oxid commun, 39(1), 765-775.
[22] Poonkothai, M. V. B. S., Vijayavathi, B. S. (2012). Nickel as an essential element and a toxicant. International journal of environmental sciences, 1(4), 285-288.
[23] Antero, A. Michael, D. Kenneth, P. (2012). arsenic, metals, fibres, and dusts. A review of human carcinogens. Part C: Arsenic, metals, fibres, and dusts/ IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2009: Lyon, France). Volume 100 C, 1-527.
[24] Pourkhabbaz, A., Mansouri, B., Sinkakarimi, M. H., Rajaei, G., Vajdi, R. (2016). Acute toxicity bioassay of the mercury chloride and copper Sulphate in Rutilus caspicus and Rutilus kutum. International journal of aquatic biology, 4(1), 25-30.
[25] Tavares-Dias, M. (2021). Toxic, physiological, histomorphological, growth performance and antiparasitic effects of copper sulphate in fish aquaculture. Aquaculture, 535, 736350.
[26] Lesmana, S. O., Febriana, N., Soetaredjo, F. E., Sunarso, J., Ismadji, S. (2009). Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochemical engineering journal, 44(1), 19-41.
https://doi.org/10.1016/j.bej.2008.12.009.
[27] El Ouadrhiri, F., Elyemni, M., Adachi, A., Hmamou, A., Bendaoud, A., Chaouch, M., Lahkimi, A. (2022). Investigation of the physico-chemical quality of the wastewater in fez city (morocco) using a multivariate statistical method. Ecological engineering and environmental technology, 23, 15–25.
https://doi.org/10.12912/27197050/152142.
[28] Rodier J., (2009), «Water analysis – natural water, waste water, sea water», 9th Edition, Paris, Dunod, 1475. Sci.1.
[29] Poirel, A., Gailhard, J., Capra, H. (2010). Influence des barrages-réservoirs sur la température de l’eau: exemple d’application au bassin versant de l’Ain. La Houille Blanche, (4), 72-79.
https://doi.org/10.1051/lhb/2010044.
[30] State Secretariat for Water and Environment. (2013). Moroccan Laws Relating to the Environment, Official bulletin N◦ 6199 Du 22 Hija 1434, Department of the Environment.
[31] Albina, P., Durban, N., Bertron, A., Albrecht, A., Robinet, J. C., Erable, B. (2019). Influence of hydrogen electron donor, alkaline pH, and high nitrate concentrations on microbial denitrification: a review. International journal of molecular sciences, 20(20), 5163.
https://doi.org/10.3390/ijms20205163.
[32] Sarkar, M., Rahman, A. K. M. L., Bhoumik, N. C. (2017). Remediation of chromium and copper on water hyacinth (E. crassipes) shoot powder. Water resources and industry, 17, 1-6.
https://doi.org/10.1016/j.wri.2016.12.003.
[33] Aboulhassan, M. A., Souabi, S., Yaacoubi, A., Zaim, N., Bouthir, F. Z. (2008). Tannery effluents characterization and impact on the marine environment. Water Sciences Review /Journal of water science, 21(4), 463-473.
https://doi.org/10.7202/019168ar.
[34] Elkarrach, K., Merzouki, M., Laidi, O., Omor, A., Benlemlih, M. (2018). Treatment of tannery effluents of Fez city by the sequential batch reactor. European journal of scientific research, 150, 334-348.
[35] Loukanov, A., El Allaoui, N., Omor, A., Elmadani, F. Z., Bouayad, K., Nakabayashi, S. (2020). Large-scale removal of colloidal contaminants from artisanal wastewater by bipolar electrocoagulation with aluminum sacrificial electrodes. Results in Chemistry, 2, 100038. https://doi.org/10.1016/j.rechem.2020.100038.
[36] Doumbi, R. T., Noumi, G. B., Ngobtchok, B. (2022). Tannery wastewater treatment by electro-Fenton and electro-persulfate processes using graphite from used batteries as free-cost electrode materials. Case studies in chemical and environmental engineering, 5, 100190.
https://doi.org/10.1016/J.CSCEE.2022.100190.
[37] de Sousa, D. N. R., Mozeto, A. A., Carneiro, R. L., Fadini, P. S. (2014). Electrical conductivity and emerging contaminant as markers of surface freshwater contamination by wastewater. Science of the total environment, 484, 19-26.
https://doi.org/10.1016/j.scitotenv.2014.02.135.
[38] Hashem, M. A., Momen, M. A., Hasan, M., Nur-A-Tomal, M. S., Sheikh, M. H. (2019). Chromium removal from tannery wastewater using Syzygium cumini bark adsorbent. International journal of environmental science and technology, 16, 1395-1404.
https://doi.org/10.1007/s13762-018-1714-y.
[39] Merimi I, Oudda H, Y EO, F EH, Hammouti. (2017). Characterization of the Quality of the Polluting Load of an Industrial Zone. Journal of chemical and pharmaceutical research, 9(4),165-170
[40] Ba, C. N. (2020). Thermal water: minerality and other components.(pp.14–9).
https://doi.org/10.1016/S0151-9638(20)30031-4.
[41] Shaibur, M. R., Tanzia, F. S., Nishi, S., Nahar, N., Parvin, S., Adjadeh, T. A. (2022). Removal of Cr (VI) and Cu (II) from tannery effluent with water hyacinth and arum shoot powders: A study from Jashore, Bangladesh. Journal of hazardous materials advances, 7, 100102.
https://doi.org/10.1016/j.hazadv.2022.100102.
[42] Amanial, H. R. (2016). Physico chemical characterization of tannery effluent and its impact on the nearby river. Open access library journal, 3(3), 1-8.
https://doi.org/10.4236/oalib.1102427.
[43] Aregu, M. B., Asfaw, S. L., Khan, M. M. (2021). Developing horizontal subsurface flow constructed wetland using pumice and Chrysopogon zizanioides for tannery wastewater treatment. Environmental systems research, 10, 1-13.
https://doi.org/10.1186/s40068-021-00238-0.
[44] Tran, T. K., Leu, H. J., Vu, T. Q., Nguyen, M. T., Pham, T. A., Kiefer, R. (2020). Hydrogen production from the tannery wastewater treatment by using agriculture supports membrane/adsorbents electrochemical system. International journal of hydrogen energy, 45(6), 3699-3711.
https://doi.org/10.1016/j.ijhydene.2019.05.040.
[45] Pal, M., Malhotra, M., Mandal, M. K., Paine, T. K., Pal, P. (2020). Recycling of wastewater from tannery industry through membrane-integrated hybrid treatment using a novel graphene oxide nanocomposite. Journal of water process engineering, 36, 101324.
https://doi.org/10.1016/j.jwpe.2020.101324.
[46] Jeganathan, S., Kandasamy, K., Velusamy, S., Sankaran, P. (2020). Comparative studies on ultrasound assisted treatment of tannery effluent using multiple oxy-catalysts using response surface methodology. Arabian journal of chemistry, 13(9), 7066-7077.
https://doi.org/10.1016/j.arabjc.2020.07.012.
[47] Rassam, A., Chaouch, A., Bourkhiss, B., Ouhssine, M., Lakhlifi, T., Bourkhiss, M., El Watik, L. (2012). Physico-Chemical Characteristics of Raw Wastewater from the City of Oujda (Morocco). Laboratory technologies, 7(28).
[48] Chaouki, I., Mouhir, L., Souabi, S., Fekhaoui, M., El Abidi, A. (2013). Study of the performance of the STEP of the filling center of the company Salam Gaz–Skhirat, Morocco. Afrique science: international journal of science and technology, 9(3), 91-102.
[49] Sarker, S. S., Akter, T., Parveen, S., Uddin, M. T., Mondal, A. K., Sujan, S. A. (2023). Microalgae-based green approach for effective chromium removal from tannery effluent: A review. Arabian journal of chemistry, 105085.
https://doi.org/10.1016/j.arabjc.2023.105085.
[50] Kim, D. W., Suhaimi, M. A., Kim, B. M., Cho, M. H., Frank Chen, F. (2013). Rough cut machining for impellers with 3-axis and 5-axis NC machines. In advances in sustainable and competitive manufacturing systems: 23rd international conference on flexible automation and intelligent manufacturing (pp. 609-616). Springer international publishing.
https://doi.org/10.1007/978-3-319-00557-7_50.
[51] Rene, E. R., Kim, S. J., Park, H. S. (2008). Effect of COD/N ratio and salinity on the performance of sequencing batch reactors. Bioresourcetechnology, 99(4), 839-846.
https://doi.org/10.1016/j.biortech.2007.01.037.
[52] Mohammed, D., Hicham, E. A., Naima, E. G. (2023). Biodegradation of environmental pollutants by marine yeasts. In marine organisms: A solution to environmental pollution? uses in bioremediation and in biorefinery (pp. 79-91). Cham: Springer international publishing.