[1]Mashkoor, F., Nasar, A. (2020). Magsorbents: Potential candidates in wastewater treatment technology–A review on the removal of methylene blue dye. Journal of magnetism and magnetic materials, 500, 166408.
https://doi.org/10.1016/j.jmmm.2020.166408
[2]El-Kousy, S. M., El-Shorbagy, H. G., Abd El-Ghaffar, M. A. (2020). Chitosan/montmorillonite composites for fast removal of methylene blue from aqueous solutions. Materials chemistry and physics, 254, 123236. https://doi.org/10.1016/j.matchemphys.2020.123236
[3]Santoso, E., Ediati, R., Kusumawati, Y., Bahruji, H., Sulistiono, D. O., Prasetyoko, D. (2020). Review on recent advances of carbon-based adsorbent for methylene blue removal from waste water. Materials today chemistry, 16, 100233.
https://doi.org/10.1016/j.mtchem.2019.100233
[4]Rahman, M. M., Rimu, S. H. (2022). Recent development in cellulose nanocrystal-based hydrogel for decolouration of methylene blue from aqueous solution: a review. International journal of environmental analytical chemistry, 102(18), 6766-6783.
[5]Bayomie, O. S., Kandeel, H., Shoeib, T., Yang, H., Youssef, N., El-Sayed, M. M. (2020). Novel approach for effective removal of methylene blue dye from water using fava bean peel waste. Scientific reports, 10(1), 7824.
https://doi.org/10.1038/s41598-020-64727-5
[6]Begum, R., Najeeb, J., Sattar, A., Naseem, K., Irfan, A., Al-Sehemi, A. G., Farooqi, Z. H. (2020). Chemical reduction of methylene blue in the presence of nanocatalysts: a critical review. Reviews in chemical engineering, 36(6), 749-770.
https://doi.org/10.1515/revce-2018-0047
[7]Moradihamedani, P. (2022). Recent advances in dye removal from wastewater by membrane technology: A review. Polymer Bulletin, 79(4), 2603-2631.
[8]Ghosh, I., Kar, S., Chatterjee, T., Bar, N., Das, S. K. (2021). Removal of methylene blue from aqueous solution using Lathyrus sativus husk: adsorption study, MPR and ANN modelling. Process safety and environmental protection, 149, 345-361.
https://doi.org/10.1016/j.psep.2020.11.003
[9]Meili, L., Lins, P. V. S., Costa, M. T., Almeida, R. L., Abud, A. K. S., Soletti, J. I., Erto, A. (2019). Adsorption of methylene blue on agroindustrial wastes: experimental investigation and phenomenological modelling. Progress in biophysics and molecular biology, 141, 60-71.
https://doi.org/10.1016/j.pbiomolbio.2018.07.011
[10]Liu, T., Li, Y., Du, Q., Sun, J., Jiao, Y., Yang, G., Wu, D. (2012). Adsorption of methylene blue from aqueous solution by graphene. Colloids and surfaces B: Biointerfaces, 90, 197-203. https://doi.org/10.1016/j.colsurfb.2011.10.019
[11]Setiabudi, H. D., Jusoh, R., Suhaimi, S. F. R. M., Masrur, S. F. (2016). Adsorption of methylene blue onto oil palm (Elaeisguineensis) leaves: Process optimization, isotherm, kinetics and thermodynamic studies. Journal of the Taiwan institute of chemical engineers, 63, 363-370.
https://doi.org/10.1016/j.jtice.2016.03.035
[12]Dhananasekaran, S., Palanivel, R., Pappu, S. (2016). Adsorption of methylene blue, bromophenol blue, and coomassie brilliant blue by α-chitin nanoparticles. Journal of advanced research, 7(1), 113-124.
https://doi.org/10.1016/j.jare.2015.03.003
[13]Chang, J., Ma, J., Ma, Q., Zhang, D., Qiao, N., Hu, M., Ma, H. (2016). Adsorption of methylene blue onto Fe3O4/activated montmorillonite nanocomposite. Applied clay science, 119, 132-140.
https://doi.org/10.1016/j.clay.2015.06.038
[14]Jawad, A. H., Rashid, R. A., Ishak, M. A. M., Wilson, L. D. (2016). Adsorption of methylene blue onto activated carbon developed from biomass waste by H2SO4 activation: kinetic, equilibrium and thermodynamic studies. Desalination and water treatment, 57(52), 25194-25206.
[15]Albadarin, A. B., Collins, M. N., Naushad, M., Shirazian, S., Walker, G., Mangwandi, C. (2017). Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chemical engineering journal, 307, 264-272.
https://doi.org/10.1016/j.cej.2016.08.089
[16]Jodeh, S., Hamed, O., Melhem, A., Salghi, R., Jodeh, D., Azzaoui, K., Murtada, K. (2018). Magnetic nanocellulose from olive industry solid waste for the effective removal of methylene blue from wastewater. Environmental science and pollution research, 25, 22060-22074.
https://doi.org/10.1007/s11356-018-2107-y
[17]Kuang, Y., Zhang, X., Zhou, S. (2020). Adsorption of methylene blue in water onto activated carbon by surfactant modification. Water, 12(2), 587.
https://doi.org/10.3390/w12020587
[18]Wang, K., Peng, N., Sun, J., Lu, G., Chen, M., Deng, F., Zhong, Y. (2020). Synthesis of silica-composited biochars from alkali-fused fly ash and agricultural wastes for enhanced adsorption of methylene blue. Science of the total environment, 729, 139055.
https://doi.org/10.1016/j.scitotenv.2020.139055
[19]Shubber, M. D., Kebria, D. Y. (2023). Thermal recycling of bentonite waste as a novel and a low-cost adsorbent for heavy metals removal. Journal of ecological engineering, 24(5), 288-305.
https://doi.org/10.12911/22998993/161805
[20]I. Samaka, (2018). Investigate the efficiency of magnetized nanocomposite for sequestration of lead, copper and zinc ions from aqueous solutions. Thesis, Baghdad, Iraq.
[21]Tsai, W. C., de Luna, M. D. G., Bermillo-Arriesgado, H. L. P., Futalan, C. M., Colades, J. I., Wan, M. W. (2016). Competitive fixed-bed adsorption of Pb (II), Cu (II), and Ni (II) from aqueous solution using chitosan-coated bentonite. International journal of polymer science, 2016.
https://doi.org/10.1155/2016/1608939
[22] Belhadri, M., Mokhtar, A., Meziani, S., Belkhadem, F., Sassi, M., Bengueddach, A. (2019). Novel low-cost adsorbent based on economically modified bentonite for lead (II) removal from aqueous solutions. Arabianjournal of geosciences, 12, 1-13.
https://doi.org/10.1007/s12517-019-4232-4
[23]Gobi, K., Mashitah, M. D., Vadivelu, V. M. (2011). Adsorptive removal of methylene blue using novel adsorbent from palm oil mill effluent waste activated sludge: equilibrium, thermodynamics and kinetic studies. Chemical engineering journal, 171(3), 1246-1252.
https://doi.org/10.1016/j.cej.2011.05.036
[24]Agbovi, H. K., Wilson, L. D. (2021). Adsorption processes in biopolymer systems: fundamentals to practical applications. In Natural polymers-based green adsorbents for water treatment,(pp. 1-51). Elsevier.
https://doi.org/10.1016/B978-0-12-820541-9.00011-9
[25]Sahoo, T. R., Prelot, B. (2020). Adsorption processes for the removal of contaminants from wastewater: the perspective role of nanomaterials and nanotechnology. In Nanomaterials for the detection and removal of wastewater pollutants, (pp. 161-222). Elsevier.
https://doi.org/10.1016/B978-0-12-818489-9.00007-4
[26]Rezakazemi, M., Zhang, Z. (2018). 2.29 Desulfurization Materials. Comprehensive energy systems, 2(5), 944-979.
https://doi.org/10.1016/B978-0-12-809597-3.00263-7
[27]Singh, A. K. (2016). Nanoparticle ecotoxicology. Engineered nanoparticles, 343-450.
https://doi.org/ 10.1016/B978-0-12-801406-6.00008-X
[28]Zang, T., Cheng, Z., Lu, L., Jin, Y., Xu, X., Ding, W., Qu, J. (2017). Removal of Cr (VI) by modified and immobilized Auricularia auricula spent substrate in a fixed-bed column. Ecological engineering, 99, 358-365.
https://doi.org/10.1016/j.ecoleng.2016.11.070
[29]Al Dwairi, R., Omar, W., Al-Harahsheh, S. (2015). Kinetic modelling for heavy metal adsorption using Jordanian low-cost natural zeolite (fixed bed column study). Journal of water reuse and desalination, 5(2), 231-238. https://doi.org/10.2166/wrd.2014.063
[30]Igberase, E., Osifo, P., Ofomaja, A. (2018). Mathematical modelling of Pb2+, Cu2+, Ni2+, Zn2+, Cr+6 and Cd+2 ions adsorption from a synthetic acid mine drainage onto chitosan derivative in a packed bed column.Environmental technology,39(34),3203-3220.
https://doi.org/10.1080/09593330.2017.1375027.
[31]Sharma, S., Hasan, A., Kumar, N., & Pandey, L. M. (2018). Removal of methylene blue dye from aqueous solution using immobilized Agrobacterium fabrum biomass along with iron oxide nanoparticles as biosorbent. Environmental science and pollution research, 25, 21605-21615.
https://doi.org/10.1007/s11356-018-2280-z
[32]Pandey, L. M. (2019). Enhanced adsorption capacity of designed bentonite and alginate beads for the effective removal of methylene blue. Applied clay science, 169, 102-111. https://doi.org/10.1016/j.clay.2018.12.019
[33]Nuengmatcha, P., Mahachai, R., Chanthai, S. (2014). Thermodynamic and kinetic study of the intrinsic adsorption capacity of graphene oxide for malachite green removal from aqueous solution. Orientaljournal of chemistry, 30(4), 1463.
[34]Ghadim, E. E., Manouchehri, F., Soleimani, G., Hosseini, H., Kimiagar, S., Nafisi, S. (2013). Adsorption properties of tetracycline onto graphene oxide: equilibrium, kinetic and thermodynamic studies. Public Library of Science, 8(11), e79254.
https://doi.org/10.1371/journal.pone.0079254
[35]Li, Y., Wang, M., Sun, D., Li, Y., Wu, T. (2018). Effective removal of emulsified oil from oily wastewater using surfactant-modified sepiolite. Applied clay science, 157, 227-236. https://doi.org/10.1016/j.clay.2018.02.014
[36]De Castro, M. L. F. A., Abad, M. L. B., Sumalinog, D. A. G., Abarca, R. R. M., Paoprasert, P., de Luna, M. D. G. (2018). Adsorption of methylene blue dye and Cu (II) ions on EDTA-modified bentonite: isotherm, kinetic and thermodynamic studies. SustainableEnvironment research, 28(5), 197-205.
https://doi.org/10.1016/j.serj.2018.04.001
[37]Güzel, F., Sayğılı, H., Sayğılı, G. A., Koyuncu, F. (2015). New low-cost nanoporous carbonaceous adsorbent developed from carob (Ceratonia siliqua) processing industry waste for the adsorption of anionic textile dye: Characterization, equilibrium and kinetic modeling. Journal of molecular liquids, 206, 244-255. https://doi.org/10.1016/j.molliq.2015.02.037
[38]Singh, K. P., Gupta, S., Singh, A. K., Sinha, S. (2011). Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach. Journal of hazardous materials, 186(2-3), 1462-1473. https://doi.org/10.1016/j.jhazmat.2010.12.032
[39]Nassar, N. N. (2010). Rapid removal and recovery of Pb (II) from wastewater by magnetic nanoadsorbents. Journal of hazardous materials, 184(1-3), 538-546.
https://doi.org/10.1016/j.jhazmat.2010.08.069
[40]Kim, Y. S., Kim, J. H. (2019). Isotherm, kinetic and thermodynamic studies on the adsorption of paclitaxel onto Sylopute. The Journal of chemical thermodynamics, 130, 104-113.
https://doi.org/10.1016/j.jct.2018.10.005
[41]Liu, L., Zhang, B., Zhang, Y., He, Y., Huang, L., Tan, S., Cai, X. (2015). Simultaneous removal of cationic and anionic dyes from environmental water using montmorillonite-pillared graphene oxide. Journal of Chemical and Engineering Data, 60(5), 1270-1278.
https://doi.org/10.1021/je5009312
[42]Shiferaw, Y., Yassin, J. M., Tedla, A. (2019). Removal of organic dye and toxic hexavalent chromium ions by natural clay adsorption. Desalination and watertreatment, 165, 222-231.
https://doi.org/10.5004/dwt.2019.24585
[43]Moussout, H., Ahlafi, H., Aazza, M., Maghat, H. (2018). Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models. KarbalaInternational journal of modern science, 4(2), 244-254.
https://doi.org/10.1016/j.kijoms.2018.04.001
[44]Bulut, Y., Karaer, H. (2015). Adsorption of methylene blue from aqueous solution by crosslinked chitosan/bentonite composite. Journal of dispersion science and technology, 36(1), 61-67.
https://doi.org/10.1080/01932691.2014.888004
[45]Batool, F., Akbar, J., Iqbal, S., Noreen, S., Bukhari, S. N. A. (2018). Study of isothermal, kinetic, and thermodynamic parameters for adsorption of cadmium: an overview of linear and nonlinear approach and error analysis. Bioinorganic chemistry and applications, 2018.
https://doi.org/10.1155/2018/3463724
[46]Biswas, S., Sharma, S., Mukherjee, S., Meikap, B. C., Sen, T. K. (2020). Process modelling and optimization of a novel Semifluidized bed adsorption column operation for aqueous phase divalent heavy metal ions removal. Journal of water process engineering, 37, 101406.
https://doi.org/10.1016/j.jwpe.2020.101406
[47]Ghribi, A., Chlendi, M. (2011). Modeling of fixed bed adsorption: application to the adsorption of an organic dye. Asian journal of textile, 1(4), 161-171.
[48]Futalan, C. M., Wan, M. W. (2022). Fixed-bed adsorption of lead from aqueous solution using chitosan-coated bentonite. International Journal of environmental research and public health, 19(5), 2597.
https://doi.org/10.3390/ijerph19052597
[49]Kundu, S., Gupta, A. K. (2007). As (III) removal from aqueous medium in fixed bed using iron oxide-coated cement (IOCC): experimental and modeling studies. Chemical engineering journal, 129(1-3), 123-131.
https://doi.org/10.1016/j.cej.2006.10.014