[1] Bagal, M., Kumbhar, G., Shukla, S., Tiwari, A., Gajbhiye, D., Mohod, A. (2022). Degradation of dye in a continuous zig-zag flow pattern photocatalytic reactor using a Doehlert matrix. Chemical engineering research and design, 188, 315–329. https://doi.org/10.1016/j.cherd.2022.09.019
[2] Chauhan, P. S., Kumar, K., Singh, K., Bhattacharya, S. (2022). Fast decolorization of rhodamine-B dye using novel V2O5-rGO photocatalyst under solar irradiation. Synthetic metals, 283(September 2021), 116981. https://doi.org/10.1016/j.synthmet.2021.116981
[3] Song, Y. L., Li, J. T., Chen, H. (2009). Degradation of C.I. acid red 88 aqueous solution by combination of fenton’s reagent and ultrasound irradiation. Journal of Chemical Technology and Biotechnology, 84(4), 578–583. https://doi.org/10.1002/jctb.2083
[4] Kusic, H., Koprivanac, N., Srsan, L. (2006). Azo dye degradation using Fenton type processes assisted by UV irradiation: A kinetic study. Journal of Photochemistry and Photobiology A: Chemistry, 181(2–3), 195–202.
https://doi.org/10.1016/j.jphotochem.2005.11.024
[5] Banerjee, B. S., Khode, A. V, Patil, A. P., Mohod, A. V, Gogate, P. R. (2013). Sonochemical decolorization of wastewaters containing Rhodamine 6G using ultrasonic bath at an operating capacity of 2 L, Desalination and Water Treatment, 52(7–9), 1378–1387. https://doi.org/10.1080/19443994.2013.786656
[6] Papić, S., Vujević, D., Koprivanac, N., Šinko, D. (2009). Decolourization and mineralization of commercial reactive dyes by using homogeneous and heterogeneous Fenton and UV/Fenton processes. Journal of hazardous materials, 164(2–3), 1137–1145.
https://doi.org/10.1016/j.jhazmat.2008.09.008
[7] Mohod, A. V, Subudhi, A. S., Gogate, P. R. (2017). Ultrasonics Sonochemistry Intensification of esterification of non- edible oil as sustainable feedstock using cavitational reactors. Ultrasonics sonochemistry, 36, 309–318. https://doi.org/10.1016/j.ultsonch.2016.11.040
[8] Mohod, A. V., Gogate, P. R., Viel, G., Firmino, P., Giudici, R. (2017). Intensification of biodiesel production using hydrodynamic cavitation based on high-speed homogenizer. Chemical engineering journal, 316.
https://doi.org/10.1016/j.cej.2017.02.011
[9] Hinge, S. P., Orpe, M. S., Sathe, K. V., Tikhe, G. D., Pandey, N. S., Bawankar, K. N., Mohod, A.V., Gogate, P. R. (2016). Combined removal of Rhodamine B and Rhodamine 6G from wastewater using novel treatment approaches based on ultrasonic and ultraviolet irradiations. Desalination and water treatment, 57(50), 23927–23939. https://doi.org/10.1080/19443994.2016.1143404
[10] Doltade, S., Ladole, M., Jadhav, N., Dastane, G. G., Desai, K. S., Pinjari, D. V., Pandit, A. B. (2017). Rankala Lake clean-up using Make in India technology–An initiative towards Swachh Bharat mission. Chemical weekly, 199-204.
[11] Yao, K., Liu, Y., Yang, H., Yuan, J., Shan, S. (2020). Polyaniline-modified 3D-spongy SnS composites for the enhanced visible-light photocatalytic degradation of methyl orange. Colloids and surfaces A: Physicochemical and engineering aspects, 603(June), 125240. https://doi.org/10.1016/j.colsurfa.2020.125240
[12] Mohod, A. V., Hinge, S. P., Raut, R. S., Bagal, M. V., Pinjari, D. (2018). Process intensified removal of methyl violet 2B using modified cavity-bubbles oxidation reactor. Journal of environmental chemical engineering, 6(1). https://doi.org/10.1016/j.jece.2017.12.053
[13] Mahale, D. D., Patil, N. N., Zodge, D. S., Gaikwad, P. D., Banerjee, B. S., Bawankar, K. N., Mohod, A.V., Gogate, P. R. (2016). Removal of patent blue V dye using air bubble-induced oxidation based on small glass balls: intensification studies. Desalination and water treatment, 57(34).
https://doi.org/10.1080/19443994.2015.1075426
[14] Das, S., Bhat, A. P., Gogate, P. R. (2021). Degradation of dyes using hydrodynamic cavitation: Process overview and cost estimation. Journal of Water Process Engineering, 42(January), 102126. https://doi.org/10.1016/j.jwpe.2021.102126
[15] Hanafi, M. F., Sapawe, N. (2020). Nickel as recyclable catalyst for effective photocatalytic degradation of methyl orange. Materials today: proceedings, 31, 321–323.
https://doi.org/10.1016/j.matpr.2020.06.071
[16] Zhao, H., Zhang, G., Zhang, Q. (2014). MnO2/CeO2 for catalytic ultrasonic degradation of methyl orange. Ultrasonics sonochemistry, 21(3), 991–996.
https://doi.org/10.1016/j.ultsonch.2013.12.002
[17] Li, P., Song, Y., Wang, S., Tao, Z., Yu, S., Liu, Y. (2015). Enhanced decolorization of methyl orange using zero-valent copper nanoparticles under assistance of hydrodynamic cavitation. Ultrasonics sonochemistry, 22, 132–138. https://doi.org/10.1016/j.ultsonch.2014.05.025
[18] Bagal, M. V., Suryawanshi, M. A., Shinde, S. N., Pinjari, D. V., Mohod, A. V. (2023). Degradation of magenta dye using cavitation-based transducers to glass marble: Lab to semi-pilot scale operations. Water environment research, 95(1).
https://doi.org/10.1002/wer.10828
[19] Chen, M., Zhuang, K., Sui, J., Sun, C., Song, Y., Jin, N. (2023). Hydrodynamic cavitation-enhanced photocatalytic activity of P-doped TiO2 for degradation of ciprofloxacin: Synergetic effect and mechanism. Ultrasonics sonochemistry, 92.
https://doi.org/10.1016/j.ultsonch.2022.106265
[20] Gogate, P. R., Pandit, A. B. (2005). A review and assessment of hydrodynamic cavitation as a technology for the future. Ultrasonics sonochemistry, 12(1–2), 21–7.
https://doi.org/10.1016/j.ultsonch.2004.03.007
[21] Innocenzi, V., Prisciandaro, M., Tortora, F., Vegliò, F. (2018). Optimization of hydrodynamic cavitation process of azo dye reduction in the presence of metal ions. Journal of environmental chemical engineering, 6(6), 6787–6796. https://doi.org/10.1016/j.jece.2018.10.046
[22] Patil, P. N., Gogate, P. R. (2012). Degradation of methyl parathion using hydrodynamic cavitation: Effect of operating parameters and intensification using additives. Separation and purification technology, 95, 172–179. https://doi.org/10.1016/j.seppur.2012.04.019
[23] Saharan, V. K., Rizwani, M. A, Malani, A. A, Pandit, A. B. (2013). Effect of geometry of hydrodynamically cavitating device on degradation of orange-G. Ultrasonics sonochemistry, 20(1), 345–53.
https://doi.org/10.1016/j.ultsonch.2012.08.011
[24] Yang, S., Jin, R., He, Z., Qiao, Y., Liu, X. (2017). Degradation of methyl orange using hydrodynamic cavitation technology combined with chlorine dioxide oxidation: Optimization using Box-Behnken design (BBD). Chemical Engineering Transactions, 59(2013), 1063–1068.
https://doi.org/10.3303/CET1759178
[25] Li, X., Pang, R., Li, J., Sun, X., Shen, J., Han, W., Wang, L. (2013). In situ formation of Ag nanoparticles in PVDF ultrafiltration membrane to mitigate organic and bacterial fouling. Desalination, 324, 48–56.
https://doi.org/10.1016/j.desal.2013.05.021
[26] Zyoud, A., Zu’bi, A., Helal, M. H. S., Park, D. H., Campet, G., Hilal, H. S. (2015). Optimizing photo-mineralization of aqueous methyl orange by nano-ZnO catalyst under simulated natural conditions. Journal of environmental health science and engineering, 13(1), 1–10. https://doi.org/10.1186/s40201-015-0204-0
[27] Saharan, V. K., Badve, M. P., Pandit, A. B. (2011). Degradation of Reactive Red 120 dye using hydrodynamic cavitation. Chemical engineering journal, 178, 100–107.
https://doi.org/10.1016/j.cej.2011.10.018
[28] Mishra, K. P., Gogate, P. R. (2010). Intensification of degradation of Rhodamine B using hydrodynamic cavitation in the presence of additives. Separation and Purification technology, 75(3), 385–391.
https://doi.org/10.1016/j.seppur.2010.09.008
[29] Dhanke, P. B., Wagh, S. M. (2020). Intensification of the degradation of Acid RED-18 using hydrodynamic cavitation. Emerging contaminants, 6, 20–32.
https://doi.org/10.1016/j.emcon.2019.12.001
[30] Saharan, V. K., Pandit, A. B., Satish Kumar, P. S., Anandan, S. (2012). Hydrodynamic Cavitation as an Advanced Oxidation Technique for the Degradation of Acid Red 88 Dye. Industrial and engineering chemistry research, 51(4), 1981–1989.
https://doi.org/10.1021/ie200249k
[31] Doltade, S., Ladole, M., Jadhav, N., Dastane, G. G., Desai, K. S., Pinjari, D. V., Pandit, A. B. (2017). Rankala Lake clean-up using Make in India technology–An initiative towards Swachh Bharat mission. Chemical weekly, 199-204. https://doi.org/10.1016/j.jece.2023.109773
[32] Teo, S. H., Ng, C. H., Islam, A., Abdulkareem-Alsultan, G., Joseph, C. G., Janaun, J., Awual, M. R. (2022). Sustainable toxic dyes removal with advanced materials for clean water production: a comprehensive review. Journal of cleaner production, 332, 130039.
https://doi.org/10.1016/j.jclepro.2021.130039
[33] Sun, J. H., Sun, S. P., Sun, J. Y., Sun, R. X., Qiao, L. P., Guo, H. Q., Fan, M. H. (2007). Degradation of azo dye Acid black 1 using low concentration iron of Fenton process facilitated by ultrasonic irradiation. Ultrasonics sonochemistry, 14(6), 761–766.
https://doi.org/10.1016/j.ultsonch.2006.12.010
[34] Zupanc, M., Kosjek, T., Petkovšek, M., Dular, M., Kompare, B., Širok, B., Heath, E. (2013). Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment. Ultrasonics sonochemistry, 20(4), 1104–1112.
https://doi.org/10.1016/j.ultsonch.2012.12.003
[35] Gogate, P. R., Bhosale, G. S. (2013). Comparison of effectiveness of acoustic and hydrodynamic cavitation in combined treatment schemes for degradation of dye wastewaters. Chemical engineering and processing: Process intensification, 71, 59–69. https://doi.org/10.1016/j.cep.2013.03.001
[36] Fedorov, K., Dinesh, K., Sun, X., Darvishi, R., Soltani, C., Wang, Z., Boczkaj, G. (2022). Synergistic effects of hybrid advanced oxidation processes (AOPs) based on hydrodynamic cavitation phenomenon – A review. Chemical engineering journal, 432, 134191.
https://doi.org/10.1016/j.cej.2021.134191
[37] Rayaroth, M. P., Aravindakumar, C. T., Shah, N. S., Boczkaj, G. (2022). Advanced oxidation processes (AOPs) based wastewater treatment-unexpected nitration side reactions-a serious environmental issue: A review. Chemical engineering journal, 430, 133002.
https://doi.org/10.1016/j.cej.2021.133002
[38] Rayaroth, M. P., Aravindakumar, C. T., Shah, N. S., Boczkaj, G. (2022). Advanced oxidation processes (AOPs) based wastewater treatment-unexpected nitration side reactions-a serious environmental issue: A review. Chemical engineering journal, 430, 133002.
https://doi.org/10.1016/j.cej.2021.133002
[39] Bagal, M., Ramos, B., Mahajan, S., Sonawane, A., Palharim, P., Mohod, A. (2023). Parametric optimization of a hybrid cavitation-based fenton process for the degradation of methyl violet 2B in a packed bed reactor. Chemical engineering research and design, 189, 440–451.
https://doi.org/10.1016/j.cherd.2022.11.034
[40] Gawande, G. D., Pinjari, D. V., Chavan, P. V. (2022). Degradation of tartrazine using hydrodynamic cavitation‐based hybrid techniques and Fenton chemistry. Chemical engineering and technology, 45(6), 1148-1157.
https://doi.org/10.1002/ceat.202100419
[41] Zhou, P., Dai, Z., Lu, T., Ru, X., Ofori, M. A., Yang, W., Jin, H. (2022). Degradation of Rhodamine B in wastewater by Iron-Loaded attapulgite particle heterogeneous Fenton catalyst. Catalysts, 12(6), 669.
https://doi.org/10.3390/catal12060669
[42] Landge, V. K., Hakke, V. S., Korpe, S. A., Rao, P. V., Sonawane, S. H., Sonawane, S. S., Boczkaj, G. (2022). Hybrid systems using hydrodynamic cavitation/ultrasound/Fenton processes for effective treatment of wastewater. In novel approaches towards wastewater treatment and resource recovery technologies (pp. 391-416). Elsevier.
[43] Chakinala, A. G., Gogate, P. R., Burgess, A. E., Bremner, D. H. (2008). Treatment of industrial wastewater effluents using hydrodynamic cavitation and the advanced Fenton process. Ultrasonics sonochemistry, 15(1), 49–54.
https://doi.org/10.1016/j.ultsonch.2007.01.003
[44] You, J., Zhang, X., Chen, J. (2021). Study on Fenton-like degradation of bisphenol A by α-MnO2 and α-MnO2 /AC (1:1, w/w), Research Square, 1–21. https://doi.org/10.21203/rs.3.rs-528294/v1
[45] Roy, K., Moholkar, V. S. (2021). p–nitrophenol degradation by hybrid advanced oxidation process of heterogeneous Fenton assisted hydrodynamic cavitation: Discernment of synergistic interactions and chemical mechanism. Chemosphere, 283, 131114.
https://doi.org/10.1016/j.chemosphere.2021.131114
[46] Bagal, M. V., Gogate, P. R. (2013). Comparison of Efficacy of Different Configurations of Ultrasonic Reactors for Degradation of 2, 4-Dinitrophenol Using Hybrid Treatment Schemes. Industrial and engineering chemistry research, 52(25), 8386-8391.
[47] Mahendran, V., Gogate, P. R. (2021). Degradation of Acid Scarlet 3R dye using oxidation strategies involving photocatalysis based on Fe doped TiO2 photocatalyst, ultrasound and hydrogen peroxide. Separation and Purification Technology, 274.
https://doi.org/10.1016/j.seppur.2021.119011
[48] Joshi, R. K., Gogate, P. R. (2012). Degradation of dichlorvos using hydrodynamic cavitation-based treatment strategies. Ultrasonics sonochemistry, 19(3), 532–539.
https://doi.org/10.1016/j.ultsonch.2011.11.005
[49] Bagal, M. V., Lele, B. J., Gogate, P. R. (2013). Removal of 2,4-dinitrophenol using hybrid methods based on ultrasound at an operating capacity of 7 L. Ultrasonics sonochemistry, 20(5), 1217–1225.
https://doi.org/10.1016/j.ultsonch.2013.01.015
[50] Zheng, W., Maurin, M., Tarr, M. A. (2005). Enhancement of sonochemical degradation of phenol using hydrogen atom scavengers. Ultrasonics sonochemistry, 12(4), 313–317.
https://doi.org/10.1016/j.ultsonch.2003.12.007
[51] Gomathi Devi, L., Girish Kumar, S., Mohan Reddy, K., Munikrishnappa, C. (2009). Photo degradation of Methyl Orange an azo dye by Advanced Fenton Process using zero valent metallic iron: Influence of various reaction parameters and its degradation mechanism. Journal of hazardous materials, 164(2–3), 459–467.
https://doi.org/10.1016/j.jhazmat.2008.08.017
[52] Raut-Jadhav, S., Saini, D., Sonawane, S., Pandit, A. (2015). Effect of process intensifying parameters on the hydrodynamic cavitation-based degradation of commercial pesticide (methomyl) in the aqueous solution. Ultrasonics sonochemistry, 28, 283–293.
https://doi.org/10.1016/j.ultsonch.2015.08.004
[53] Ayala, J. A., Castillo, C. O., Ruiz, R. S. (2017). Ultrasonic, ultraviolet, and hybrid catalytic processes for the degradation of rhodamine B dye: Decolorization kinetics. Revista Mexicana de Ingeniera Quimica, 16(2), 521–529.
[54] Shirsath, S. R., Pinjari, D. V, Gogate, P. R., Sonawane, S. H., Pandit, A B. (2013). Ultrasound assisted synthesis of doped TiO2 nano-particles: characterization and comparison of effectiveness for photocatalytic oxidation of dyestuff effluent. Ultrasonics sonochemistry, 20(1), 277–86.
https://doi.org/10.1016/j.ultsonch.2012.05.015
[55] Kaur, S., Singh, V. (2007). Visible light induced sonophotocatalytic degradation of Reactive Red dye 198 using dye sensitized TiO2. Ultrasonics sonochemistry, 14(5), 531–7.
https://doi.org/10.1016/j.ultsonch.2006.09.015
[56] He, Y., Grieser, F., Ashokkumar, M. (2011). The mechanism of sonophotocatalytic degradation of methyl orange and its products in aqueous solutions. Ultrasonics sonochemistry, 18(5), 974–980.
https://doi.org/10.1016/j.ultsonch.2011.03.017
[57] Haji, S., Benstaali, B., Al-Bastaki, N. (2011). Degradation of methyl orange by UV/H2O2 advanced oxidation process. Chemical engineering journal, 168(1), 134–139.
https://doi.org/10.1016/j.cej.2010.12.050
[58] Augugliaro, V., Baiocchi, C., Prevot, A. B., Garcı́a-López, E., Loddo, V., Malato, S., Pramauro, E. (2002). Azo-dyes photocatalytic degradation in aqueous suspension of TiO2 under solar irradiation. Chemosphere, 49(10), 1223-1230.
[59] Confortin, D., Neevel, H., Brustolon, M., Franco, L., Kettelarij, A. J., Williams, R. M., van Bommel, M. R. (2010, June). Crystal violet: study of the photo-fading of an early synthetic dye in aqueous solution and on paper with HPLC-PDA, LC-MS and FORS. In journal of physics: Conference series (Vol. 231, No. 1, p. 012011). IOP Publishing.
https://doi.org/10.1088/1742-596/231/1/012011