[2] You, L., Huang, C., Lu, F., Wang, A., Liu, X., Zhang, Q.(2018).
Facile synthesis of high performance porous magnetic chitosan-polyethylenimine polymer composite for Congo red removal.
International Journal of Biological Macromolecule,107, 1620-1628.
https://doi.org/10.1016/j.powtec.2016.08.044
[9] Vaghela, S. S., Jethva, A. D., Mehta, B. B., Dave, S. P. (2005).Adimurthy, S., Ramachandraiah, G.,
Laboratory studies of electrochemical treatment of industrial azo dye effluent.
Environmental Science andTechnology, 39(8), 2848-2855.
[11] Bhat, S. A., Zafar, F., Mondal, A. H., Mirza, A. U., Haq, Q. M. R., Nishat, N.(2020).
Efficient removal of Congo red dye from aqueous solution by adsorbent films of polyvinyl alcohol/melamine-formaldehyde composite and bactericidal effects.
Journal of Cleaner Production, 255, 120062.
[12] Gupta, V. K., Agarwal, S., Ahmad, R., Mirza, A., Mittal, J.(2020).
Sequestration of toxic Congo red dye from aqueous solution using ecofriendly guar gum/activated carbon nanocomposite.
International Journal of Biological Macromolecules, 158, 1310-1318. https://doi.org/10.1016/j.ijbiomac.2020.05.025
[13] Dai, H., Huang, Y., Zhang, H., Ma, L., Huang, H., Wu, J., Zhang, Y.(2020).
Direct fabrication of hierarchically processed pineapple peel hydrogels for efficient Congo red adsorption.
Carbohydrate Polymers, 230, 115599.
https://doi.org/10.1016/j.carbpol.2019.115599
[17] Lei, C., Zhu, X., Zhu, B., Yu, J., Ho, W.(2016).
Hierarchical NiO–SiO2 composite hollow microspheres with enhanced adsorption affinity towards Congo red in water.
Journal of colloid and interface science, 466, 238-246.
[18] Chen, R., Wang, W., Zhao, X., Zhang, Y., Wu, S., Li, F. (2014). Rapid hydrothermal synthesis of magnetic CoxNi1− xFe2O4 nanoparticles and their application on removal of Congo red. Chemical Engineering Journal, 242, 226-233.
https://doi.org/10.1016/j.jenvman.2020.110380
[20] Bensalah, H., Younssi, S. A., Ouammou, M., Gurlo, A., Bekheet, M. F.(2020).
Azo dye adsorption on an industrial waste-transformed hydroxyapatite adsorbent: Kinetics, isotherms, mechanism and regeneration studies.
Journal of Environmental Chemical Engineering, 8(3), 103807.
[22] Al-Zoubi, H., Zubair, M., Manzar, M. S., Manda, A. A., Blaisi, N. I., Qureshi, A., Matani, A.(2020).
Comparative adsorption of anionic dyes (Eriochrome black T and Congo red) onto jojoba residues: isotherm, kinetics and thermodynamic studies.
Arabian Journal for Science and Engineering, 45(9), 7275-7287.
[23] Said, A. E. A. A., Aly, A. A., Goda, M. N., Abd El-Aal, M., Abdelazim, M. (2020). Adsorptive remediation of Congo Red Dye in aqueous solutions using acid pretreated sugarcane bagasse. Journal of Polymers and the Environment, 28, 1129-1137.
https://doi.org/10.1007/s10924-020-01665-3
[24] Li, Z., Hanafy, H., Zhang, L., Sellaoui, L., Netto, M.S., Oliveira, M.L., Seliem, M.K., Dotto, G.L., Bonilla-Petriciolet, A. and Li, Q.(2020).
Adsorption of Congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: Experiments, characterization and physical interpretations.
Chemical Engineering Journal, 388, 124263.
https://doi.org/10.3390/nano12213831
[25] Dbik, A., Bentahar, S., El Khomri, M., El Messaoudi, N., Lacherai, A.(2020).
Adsorption of Congo red dye from aqueous solutions using tunics of the corm of the saffron.
Materials Today: Proceedings, 22, 134-139.
https://doi.org/10.1016/j.matpr.2019.08.148
https://doi.org/10.1080/01496395.2019.1670208
https://doi.org/10.1016/j.microc.2019.104281
https://doi.org/10.1016/j.molstruc.2018.08.068
https://doi.org/10.1016/j.psep.2015.09.015
https://doi.org/10.1016/j.jhazmat.2007.01.112
[34] Thinakaran, N., Baskaralingam, P., Pulikesi, M., Panneerselvam, P., Sivanesan, S.(2008).
Removal of Acid Violet 17 from aqueous solutions by adsorption onto activated carbon prepared from sunflower seed hull.
Journal of hazardous materials, 151(2-3), 316-322.
https://doi.org/10.1016/j.jhazmat.2007.05.076.
[37] Saikumari, N., Preethi, T., Abarna, B., Rajarajeswari, G. R. (2019). Ecofriendly, green tea extract directed sol–gel synthesis of nano titania for photocatalytic application. Journal of Materials Science: Materials in Electronics, 30, 6820-6831.
https://doi.org/10.1007/s10854-019-00994-x
[38] Arunlertaree, C., Kaewsomboon, W., Kumsopa, A., Pokethitiyook, P., Panyawathanakit, P. (2007).
Removal of lead from battery manufacturing wastewater by egg shell.
Songklanakarin Journal of Science and Technology, 29(3), 857-868.
[39] Han, R., Zhang, L., Song, C., Zhang, M., Zhu, H., Zhang, L.(2010).
Characterization of modified wheat straw, kinetic and equilibrium study about copper ion and methylene blue adsorption in batch mode.
Carbohydrate Polymers, 79(4), 1140-1149.
https://doi.org/10.1016/j.carbpol.2009.10.054
[40] Saikumari, N., Monish Dev, S., Avinaash Dev, S. (2020). Environmental sustainability of an ecosystem by biotemplated nano Titania.Advances in Environmental Technology,6(2), 91-98.
https://doi.org/10.22104/AET.2021.4477.1.248
[41] Ronda, A., Martín-Lara, M. A., Calero, M.,(2013). Blázquez, G.,
Analysis of the kinetics of lead biosorption using native and chemically treated olive tree pruning.
Ecological Engineering, 58, 278-285.
https://doi.org/10.1016/j.ecoleng.2013.07.013
https://doi.org/10.1016/j.jhazmat.2005.05.039
https://doi.org/10.1007/s13201-015-0375-y
[45] Foroughi-Dahr, M., Abolghasemi, H., Esmaili, M., Shojamoradi, A., Fatoorehchi, H.(2015).
Adsorption characteristics of Congo red from aqueous solution onto tea waste.
Chemical Engineering Communications, 202(2), 181-193.
https://doi.org/10.1080/00986445.2013.836633
[46] Devi, V. S., Sudhakar, B., Prasad, K., Sunadh, P. J., Krishna, M.(2020).
Adsorption of Congo red from aqueous solution onto Antigononleptopus leaf powder: equilibrium and kinetic modeling.
Materials Today: Proceedings, 26, 3197-3206.
https://doi.org/10.1016/j.matpr.2020.02.715
https://doi.org/10.4314/bcse.v32i2.3
https://doi.org 10.1038/s41598-019-53046-z