[1] Gummeneni, S., Yusup, Y. B., Chavali, M., Samadi, S. Z. (2011). Source apportionment of particulate matter in the ambient air of Hyderabad city, India. Atmospheric Research, 101(3), 752-764.
http://doi.org/10.1016/j.atmosres.2011.05.002
[2] CPCB, 2010. In: C.P.C.B (Ed.), Air Quality Assessment, Emissions Inventory, and Source Apportionment Studies Bangalore, India. The Energy and Resources Institute, India.
[3] CPCB, 2010. In: C.P.C.B (Ed.), Air Quality Assessment, Emissions Inventory, and Source Apportionment Studies Delhi, India. National Environmental Engineering Research Institute, India.
[4] Assessment, A. Q. (2010). Emission Inventory and Source Apportionment Studies: Mumbai. National Environmental Engineering Research Institute, CPCB: New Delhi, India.
[5] Gupta, A. K., Karar, K., Srivastava, A. (2007). Chemical mass balance source apportionment of PM10 and TSP in residential and industrial sites of an urban region of Kolkata, India. Journal of Hazardous Materials,142(1-2), 279-287.
http://doi.org/10.1016/j.jhazmat.2006.08.013
[6] Agarwal, A., Satsangi, A., Lakhani, A., Kumari, K. M. (2020). Seasonal and spatial variability of secondary inorganic aerosols in PM2. 5 at Agra: Source apportionment through receptor models. Chemosphere, 242, 125132.
http://doi.org/10.1016/j.chemosphere.2019.125132
[7] Nihalani, S. A., Khambete, A. K., Jariwala, N. D. (2020). Receptor modelling for particulate matter: review of Indian scenario. Asian Journal of Water, Environment and Pollution,17(1), 105-112.
http://doi.org/10.3233/AJW200012
[8] Jain, S., Sharma, S. K., Choudhary, N., Masiwal, R., Saxena, M., Sharma, A., Sharma, C. (2017). Chemical characteristics and source apportionment of PM 2.5 using PCA/APCS, UNMIX, and PMF at an urban site of Delhi, India. Environmental Science and Pollution Research, 24, 14637-14656.
http://doi.org/10.1007/s11356-017-8925-5
[9] Banerjee, T., Murari, V., Kumar, M., & Raju, M. P. (2015). Source apportionment of airborne particulates through receptor modeling: Indian scenario. Atmospheric Research, 164, 167-187.
https://doi.org/10.1016/j.atmosres.2015.04.017
[10] Hopke, P. K., Ito, K., Mar, T., Christensen, W. F., Eatough, D. J., Henry, R. C., Thurston, G. D. (2006). PM source apportionment and health effects: 1. Intercomparison of source apportionment results. Journal of Exposure Science and Environmental Epidemiology, 16(3), 275-286.
https://doi.org/10.1038/sj.jea.7500458
[11] Pant, P., Harrison, R. M. (2012). Critical review of receptor modelling for particulate matter: a case study of India. Atmospheric Environment, 49, 1-12.
[12] GoG (2022), Performance Audit of Air Pollution Control, Comptroller and Auditor General of India, Government of Gujarat.
[13] GoG (2017) State of Environment, industrial report, Government of Gujarat.
[14] Chelani, A. B., Gajghate, D. G., Devotta, S. (2008). Source apportionment of PM10 in Mumbai, India using the CMB model. Bulletin of Environmental Contamination and Toxicology, 81(2), 190-195.
https://doi.org/10.1007/s00128-008-9453-2
[15] Police, S., Sahu, S. K., Pandit, G. G. (2016). Chemical characterization of atmospheric particulate matter and their source apportionment at an emerging industrial coastal city, Visakhapatnam, India. Atmospheric Pollution Research, 7(4), 725-733.
https://doi.org/10.1016/j.apr.2016.03.007
[16] Parthasarathy, K., Sahu, S. K., Pandit, G. G. (2016). Comparison of two receptor model techniques for the size-fractionated particulate matter source apportionment. Aerosol and Air Quality Research, 16(6), 1497-1508.
https://doi.org/10.4209/aaqr.2015.06.0416
[17] Guttikunda, S. K., Kopakka, R. V., Dasari, P., Gertler, A. W. (2013). Receptor model-based source apportionment of particulate pollution in Hyderabad, India. Environmental Monitoring and Assessment, 185(7), 5585-5593.
https://doi.org/10.1007/s10661-012-2969-2
[18] Keerthi, R., Selvaraju, N., Alen Varghese, L., Anu, N. (2018). Source apportionment studies for particulates (PM10) in Kozhikode, South Western India using a combined receptor model. Chemistry and Ecology, 34(9), 797-817.
https://doi.org/10.1080/02757540.2018.1508460
[19] Pipalatkar, P., Khaparde, V. V., Gajghate, D. G., Bawase, M. A. (2014). Source apportionment of PM2. 5 using a CMB model for a centrally located Indian city. Aerosol and Air Quality Research, 14, 1089–1099.
https://doi.org/10.4209/aaqr.2013.04.0130
[20] Belis C. A., Karagulian, F., Larsen, B. R., Hopke, P. K. (2013). Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmospheric Environment, 69, 94-108.
https://doi.org/10.1016/j.atmosenv.2012.11.009
[21] Srimuruganandam, B., Nagendra, S. S. (2012). Application of positive matrix factorization in characterization of PM10 and PM2.5 emission sources at the urban roadside. Chemosphere, 88(1), 120-130.
https://doi.org/10.1016/j.chemosphere.2012.02.083
[22] Selvaraju, N., Pushpavanam, S., Anu, N. (2013). A holistic approach combining factor analysis, positive matrix factorization, and chemical mass balance applied to receptor modeling. Environmental Monitoring and Assessment,185, 10115-10129
https://doi.org/10.1007/s10661-013-3317-x
[23] Rai, P., Furger, M., El Haddad, I., Kumar, V., Wang, L., Singh, A., Prévôt, A. S. (2020). Real-time measurement and source apportionment of elements in Delhi's atmosphere. Science of the Total Environment, 742, 140332.
[24] Gupta, I., Salunkhe, A., Kumar, R. (2012). Source apportionment of PM 10 by positive matrix factorization in urban area of Mumbai, India. The Scientific World Journal, 585791.
https://doi.org/10.1100/2012/585791
[25] Jain, S., Sharma, S.K., Srivastava, M.K., Chaterjee, A., Singh, R.K., Saxena, M., and Mandal, T.K., (2019). Source apportionment of PM10 over three tropical urban atmospheres at indo-gangetic plain of India: an approach using different receptor models. Archives of Environmental Contamination and Toxicology, 76(1), pp.114-128.
https://doi.org/10.1007/s00244-018-0572-4
[26] Jain, S., Sharma, S. K., Vijayan, N., Mandal, T. K. (2020). Seasonal characteristics of aerosols (PM2. 5 and PM10) and their source apportionment using PMF: A four-year study over Delhi, India. Environmental Pollution, 262, 114337.
https://doi.org/10.1016/j.envpol.2020.114337
[27] Sharma, S. K., Sharma, A., Saxena, M., Choudhary, N., Masiwal, R., Mandal, T. K., & Sharma, C. (2016). Chemical characterization and source apportionment of aerosol at an urban area of Central Delhi, India. Atmospheric Pollution Research, 7(1), 110-121.
http://dx.doi.org/10.1016/j.apr. 2015.08.002
[28] Raman, R. S., Ramachandran, S., & Rastogi, N. (2010). Source identification of ambient aerosols over an urban region in western India. Journal of Environmental Monitoring, 12(6), 1330-1340.
https://doi.org/10.1039/b925511g
[29] Saggu, G. S., Mittal, S. K. (2020). Source apportionment of PM10 by positive matrix factorization model at a source region of biomass burning. Journal of Environmental Management,266, 110545.
https://doi.org/10.1016/j.jenvman.2020.110545
[30] Sharma, S.K., Mandal, T.K., Jain, S., Sharma, A., and Saxena, M., (2016). Source apportionment of PM 2.5 in Delhi, India using PMF model Bulletin of Environmental Contamination and Toxicology, 97(2), pp.286-293.
[31] Soni, A., Kumar, U., Prabhu, V., Shridhar, V. (2020). Characterization, source apportionment, and carcinogenic risk assessment of atmospheric particulate matter at Dehradun, situated in the Foothills of the Himalayas. Journal of Atmospheric and Solar-Terrestrial Physics, 199, 105205.
[32] Sharma, S. K., Mandal, T. K., Saxena, M., Sharma, A., Gautam, R. (2014). Source apportionment of PM10 by using positive matrix factorization at an urban site in Delhi, India. Urban climate, 10, 656-670.
[33] Sharma, S. K., Mandal, T. K. (2017). Chemical composition of fine mode particulate matter (PM2.5) in an urban area of Delhi, India and its source apportionment. Urban Climate, 21, 106-122.
[34] TERI (2021), Source Apportionment Study and Preparation of Air Quality Action Plan for Surat City, The Energy and Resources Institute (TERI), New Delhi.
[35] CPCB (2009), National Ambient Air Quality Standards, Central Pollution Control Board.
[36] Srivastava, A., Jain, V. K. (2007). Seasonal trends in coarse and fine particle sources in Delhi by the chemical mass balance receptor model. Journal of Hazardous Materials, 144(1-2), 283-291.
[37] Sudheer, A. K., Rengarajan, R. (2012). Atmospheric mineral dust and trace metals over urban environment in western India during winter. Aerosol and Air Quality Research,12(5), 923-933.
[38] Tiwari, S., Pervez, S., Cinzia, P., Bisht, D. S., Kumar, A., Chate, D. M. (2013). Chemical characterization of atmospheric particulate matter in Delhi, India, Part II: Source apportionment studies using PMF 3.0.
[39] Singhai, A., Habib, G., Raman, R.S., and Gupta, T., (2017). Chemical characterization of PM 1.0 aerosol in Delhi and source apportionment using positive matrix factorization. Environmental Science and Pollution Research, 24(1), pp.445-462.