[1] Dinari, A., Mahmoudi, J. (2022). Response surface methodology analysis of the photodegradation of methyl orange dye using synthesized TiO
2/Bentonite/ZnO composites.
Advances in Environmental Technology, 1, 31-46. https://doi.org/
10.22104/AET.2022.5204.1409
[2] Ilbeigi Asl, M., Mehdipour Ghazi, M., Jahangiri, M. (2016). Synthesis, characterization and degradation activity of Methyl orange Azo dye using synthesized CuO/α-Fe2O3 nanocomposite. Advances in Environmental Technology, 3, 143-151.
[3] Pavel, M., Anastasescu, C., State, R.N., Vasile, A., Papa, F., Balint, I. (2023). Photocatalytic degradation of organic and inorganic pollutants to harmless end products: assessment of practical application potential for water and air cleaning. Catalysts, 13(2), 380.
[4] Ramalingam, G., Perumal, N., Priya, A.K., Rajendran, S. (2022). A review of graphene-based semiconductors for photocatalytic degradation of pollutants in wastewater. Chemosphere, 300, 134391.
[5] Kang, W., Chen, S., Yu, H., Xu, T., Wu, S., Wang, X., Lu, N., Quan, X., Liang, H. (2021). Photocatalytic ozonation of organic pollutants in wastewater using a flowing through reactor.
Journal of Hazardous Materials,
405, 124277.
https://doi.org/10.1016/j.jhazmat.2020.124277
[6] Preda, S., Umek, P., Zaharescu, M., Anastasescu, C., Petrescu, S.V., Gifu, C., Eftimie, D.-I., State, R., Papa, F., Balint, I. (2022). Iron modified titanate nanorods for oxidation of aqueous ammonia using combined treatment with ozone and solar light irradiation. Catalysts, 12, 666.
[7] Mirsadeghi, S., Zandavar, H., Rajabi, H.R., Sajadiasl, F., Ganjali, M.R., Pourmortazavi, S.M. (2021). Superior degradation of organic pollutants and H2O2 generation ability on environmentally-sound constructed Fe3O4-Cu nanocomposite. Journal of Materials Research and Technology, 14, 808-821.
[8] Qu, Y., Chen, Z., Duan, Y., Liu, L. (2022). H2O2 assisted photocatalysis over Fe-MOF modified BiOBr for degradation of RhB. Journal of Chemical Technology and Biotechnology, 97, 2881-2888.
https://doi.org/10.1002/jctb.7199
[9] Wang, X., Li, S., Chen, P., Li, F., Hu, X., Hua, T. (2022). Photocatalytic and antifouling properties of TiO
2-based photocatalytic membranes.
Materials Today Chemistry,
23, 100650.
https://doi.org/
10.1016/j.mtchem.2021.100650
[10] Chemin, J.-B., Bulou, S., Baba, K., Fontaine, C., Sindzingre, T., Boscher, N.D., Choquet, P. (2018). Transparent anti-fogging and self-cleaning TiO2/SiO2 thin films on polymer substrates using atmospheric plasma. Scientific Reports, 8, 9603.
https://doi.org/10.1038/s41598-018-27526-7
[11] He, F., Jeon, W., Choi, W. (2021). Photocatalytic air purification mimicking the self-cleaning process of the atmosphere. Nature Communications, 12, 2528.
https://doi.org/10.1038/s41467-021-22839-0
[12] Sharma, S., Kumar, R., Raizada, P., Ahamad, T., Alshehri, S.M., Nguyen, V.-H., Thakur, S., Nguyen, C.C., Kim, S.Y., Le, Q.V., Singh, P. (2022). An overview on recent progress in photocatalytic air purification: metal-based and metal-free photocatalysis.
Environmental Research,
214, 113995.
[13] Ren, G., Han, H., Wang, Y., Liu,S., Zhao, J., Meng, X., Li, Z. (2021). Recent advances of photocatalytic application in water treatment: a review. Nanomaterials, 11(7), 1804.
[15] Zhang, X., Wang, Y., Liu, B., Sang, Y., Liu, H. (2017). Heterostructures construction on TiO2 nanobelts: a powerful tool for building high-performance photocatalysts. Applied Catalysis B: Environmental, 202, 620-641.
[16] Lin, Y.-F., Hsu, Y.-J. (2013). Interfacial charge carrier dynamics of type-II semiconductor nanoheterostructures. Applied Catalysis B: Environmental, 130, 93-98.
https://doi.org/10.1016/j.apcatb.2012.10.024
[17] Yousaf, A.B., Imran, M., Zaidi, S.J., Kasak, P., Ansari, T.M., Manzoor, S., Yasmeen, G., (2017). Synergistic effect of interfacial phenomenon on enhancing catalytic performance of Pd loaded MnOx-CeO2-C hetero-nanostructure for hydrogenation and electrochemical reactions. Journal of Materials Chemistry A, 5, 10704-10712.
[18] Yousaf, A.B., Imran, M., Zaidi, S.J., Kasak, P. (2017). Highly efficient photocatalytic Z-scheme hydrogen production over oxygen-deficient WO3–x nanorods supported Zn0.3Cd0.7S heterostructure. Scientific Reports, 7, 6574. https://doi.org/10.1038/s41598-017-06808-6
[19] Imran, M., Yousaf, A.B., Kasak, P., Zeb, A., Zaidi, S.J. (2017). Highly efficient sustainable photocatalytic Z-scheme hydrogen production from an α-Fe2O3 engineered ZnCdS heterostructure. Journal of Catalysis, 353, 81-88. https://doi.org/dx.doi.org/10.1016/j.jcat.2017.06.019
[20] Lee, G.-J., Wu, J.J. (2017). Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications - A review.
Powder Technology, 318, 8-22. https://doi.org/
10.1016/j.powtec.2017.05.022
[21] Isac, L., Enesca, A. (2022). Recent developments in ZnS-based nanostructures photocatalysts for wastewater treatment. International Journal of Molecular Sciences, 23(24), 15668.
[22] Ma, H., Cheng, X., Ma, C., Dong, X., Zhang,X., Xue, M., Zhang, X., Fu, Y. (2013). Synthesis, characterization, and photocatalytic activity of N-doped ZnO/ZnS composites. International Journal of Photoenergy, 625024.
[23] Jiang, X., Huang, L., Li, L., Zhang, L., Guo, X., Li, Y., Sun, X. (2021). A novel strategy to construct the superior performance of 3D multi-shell CeO
2/ZnO@ZnS as a reusable sunlight-driven ternary photocatalyst for highly efficient water remediation.
Journal of Environmental Chemical Engineering,
Journal of Environmental Chemical Engineering,
9, 105608.
https://doi.org/10.1016/j.jece.2021.105608
[24] Fathi Sanad, M., Shalan, A.E., Magdy Bazid, S., Abdelbasir, S.M. (2018). Pollutant degradation of different organic dyes using the photocatalytic activity of ZnO@ZnS nanocomposite materials.
Journal of Environmental Chemical Engineering,
6 (4), 3981-3990. https://doi.org/
10.1016/j.jece.2018.05.035
[25] Li, X., Li, X., Zhu, B., Wang, J., Lan, H., Chen, X. (2017). Synthesis of porous ZnS, ZnO and ZnS/ZnO nanosheets and their photocatalytic properties,
RSC Advances,
7, 30956-30962.
https://doi.org/10.1039/C7RA03243A
[26]Sadollahkhani, A., Nur, O., Willander, M., Kazeminezhad, I., Khranovskyy, V., Eriksson, M.O., Yakimova, R., Holtz P.-O. (2015). A detailed optical investigation of ZnO@ZnS core–shell nanoparticles and their photocatalytic activity at different pH values.
Ceramics International,
41(5), 7174-7184.
https://doi.org/10.1016/j.ceramint.2015.02.040
[27] Gupta, A., Kaur, J., Prakash Pandey, O. (2023). A comparative study of ZnS-ZnO nanocomposite assembly for photocatalytic removal of crystal violet dye. Phys. Status Solidi A, 220, 2300028.
[28] Sheshmani, S., Mardali, M., Shahvelayati, A.S., Hajiaghababaei, L. (2022). ZnS/ZnO heterostructure semiconductor: Promising approach through ionic liquid media without calcination. Journal of Particle Science and Technology, 8, 115-119.
[29] Ashori, A., Hamzeh, Y., Ziapour, A. (2014). Application of soybean stalk for the removal of hazardous dyes from aqueous solutions. Polymer Engineering and Science, 54 (1), 239-245.
[30] Alkaim, A.F., Aljebori, A.M., Alrazaq, N.A., Baqir, S.J., Hussein, F.H., Lilo, A.J. (2014). Effect of pH on adsorption and photocatalytic degradation efficiency of different catalysts on removal of methylene blue. Asian Journal of Chemistry, 26, 8445-8448.
http://dx.doi.org/10.14233/ajchem.2014.17908