[1] Gogate, P. R., Pandit, A. B. (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advances in Environmental Research, 8(3-4), 501-551.
[2] Pittoors, E., Guo, Y., Van Hulle, S. W. (2014). Oxygen transfer model development based on activated sludge and clean water in diffused aerated cylindrical tanks. Chemical Engineering Journal, 243, 51-59.
[3] Moussavi, G., Naddafi, K., Mesdaghinia, A., Deshusses, M. A. (2007). The removal of H2S from process air by diffusion into activated sludge. Environmental Technology, 28(9), 987-993.
[4] Nadayil, J., Mohan, D., Dileep, K., Rose, M., Parambi, R. R. P. (2015). A study on effect of aeration on domestic wastewater. International Journal of Interdisciplinary Research and Innovations, 3(2), 10-15.
[5] Fuchs, W., Binder, H., Mavrias, G., Braun, R. (2003). Anaerobic treatment of wastewater with high organic content using a stirred tank reactor coupled with a membrane filtration unit. Water Research, 37(4), 902-908.
[6] Walker, G. M., Weatherly, L. R. (1999). Biological activated carbon treatment of industrial wastewater in stirred tank reactors. Chemical Engineering Journal, 75(3), 201-206.
[7] Siddique, N. I., Munaim, M. S. A., Wahid, Z. A. (2015). Role of biogas recirculation in enhancing petrochemical wastewater treatment efficiency of continuous stirred tank reactor. Journal of Cleaner Production, 91, 229-234.
[8] Esteves, B. M., Rodrigues, C. S., Boaventura, R. A., Maldonado-Hódar, F. J., Madeira, L. M. (2016). Coupling of acrylic dyeing wastewater treatment by heterogeneous Fenton oxidation in a continuous stirred tank reactor with biological degradation in a sequential batch reactor. Journal of Environmental Management, 166, 193-203.
[9] Gargouri, B., Karray, F., Mhiri, N., Aloui, F., Sayadi, S. (2011). Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents. Journal of Hazardous Materials, 189(1-2), 427-434.
[10] Kanaujiya, D. K., Pakshirajan, K. (2022). Mass balance and kinetics of biodegradation of endocrine disrupting phthalates by Cellulosimicrobium funkei in a continuous stirred tank reactor system. Bioresource Technology, 344, 126172.
[11] Shen, R., Jing, Y., Feng, J., Zhao, H., Yao, Z., Yu, J., Chen, J., Chen, R. (2021) Simultaneous carbon dioxide reduction and enhancement of methane production in biogas via anaerobic digestion of cornstalk in continuous stirred–tank reactors: The influences of biochar, environmental parameters, and microorganisms. Bioresource Technology, 319, 124146.
[12] Yadav M., Vivekanand, V. (2021). Combined fungal and bacterial pretreatment of wheat and pearl millet straw for biogas production – A study from batch to continuous stirred tank reactors. Bioresource Technology, 321, 124523.
[13] Azimi, B., Abdollahzadeh–Sharghi, E., Bonakdarpour, B. (2021). Anaerobic–aerobic processes for the treatment of textile dyeing wastewater containing three commercial reactive azo dyes: Effect of number of stages and bioreactor type. Chinese Journal of Chemical Engineering, 39, 228–239.
[14] Ayare, S.D., Gogate, P.R. (2019). Sonocatalytic treatment of phosphonate containing industrial wastewater intensified using combined oxidation approaches. Ultrasonics Sonochemistry, 51, 69–76.
[15] Jawale, R. H., Gogate, P. R., Pandit, A. B. (2014). Treatment of cyanide containing wastewater using cavitation-based approach. Ultrasonics Sonochemistry, 21(4), 1392-1399.
[16] Samstag, R.W., Wicklein, E.A. (2014). A protocol for optimization of activated sludge mixing. 87th Annual Water Environment Federation Technical Exhibition and Conference. WEFTEC 2014, 7, 3614–3640.
[17] Do-Quang, Z., Cockx, A., Liné, A., Roustan, M. (1998). Computational fluid dynamics applied to water and wastewater treatment facility modeling. Environmental Engineering and Policy, 1, 137-147.
https://doi.org/10.1007/s100220050015
[18] Amini, E., Mehrnia, M. R., Mousavi, S. M., Mostoufi, N. (2013). Experimental study and computational fluid dynamics simulation of a full-scale membrane bioreactor for municipal wastewater treatment application. Industrial and Engineering Chemistry Research, 52(29), 9930-9939.
https://doi.org/10.1021/ie400632y
[19] Samstag, R. W., Ducoste, J. J., Griborio, A., Nopens, I., Batstone, D. J., Wicks, J. D., Laurent, J. (2016). CFD for wastewater treatment: an overview. Water Science and Technology, 74(3), 549-563.
[20] Matko, T., Chew, J., Wenk, J., Change, J., Hofman, J. (2021). Computational fluid dynamics simulation of two–phase flow and dissolved oxygen in a wastewater treatment oxidation ditch. Process Safety and Environmental Protection, 145, 340–353.
[21] Le Moullec, Y., Gentric, C., Potier, O., Leclerc, J. P. (2010). Comparison of systemic, compartmental and CFD modelling approaches: application to the simulation of a biological reactor of wastewater treatment. Chemical Engineering Science, 65(1), 343-350.
[22] Joshi, J. B. (2001). Computational flow modelling and design of bubble column reactors. Chemical Engineering Science, 56(21-22), 5893-5933.
[23] Teli, S. M., Pawar, V. S., Mathpati, C. (2020). Experimental and computational studies of aerated stirred tank with dual impeller. International Journal of Chemical Reactor Engineering, 18(3), 20190172.
[24] Bouaifi, M., Hebrard, G., Bastoul, D., Roustan, M. (2001). A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas–liquid reactors and bubble columns. Chemical Engineering and Processing: Process Intensification, 40(2), 97-111.
https://doi.org/10.1016/S0255–2701(00)00129–X
[25] Bouaifi, M., Roustan, M. (1998). Bubble size and mass transfer coefficients in dual‐impeller agitated reactors. The Canadian Journal of Chemical Engineering, 76(3), 390-397.
[26] Devi, T. T., Kumar, B. (2017). Mass transfer and power characteristics of stirred tank with Rushton and curved blade impeller. Engineering Science and Technology, an International Journal, 20(2), 730-737.
[27] Komori, S., Murakami, Y. (1988). Turbulent mixing in baffled stirred tanks with vertical‐blade impellers. AIChE journal, 34(6), 932-937.
[28] Rutherford, K., Lee, K. C., Mahmoudi, S. M. S., Yianneskis, M. (1996). Hydrodynamic characteristics of dual Rushton impeller stirred vessels. AIChE Journal, 42(2), 332-346.
[29] Tomiyama, A., Celata, G. P., Hosokawa, S., Yoshida, S. (2002). Terminal velocity of single bubbles in surface tension force dominant regime. International Journal of Multiphase Flow, 28(9), 1497-1519.
[30] Roy, S. & Joshi, J. (2008). CFD Study of Mixing Characteristics of Bubble Column and External Loop Airlift Reactor. Asia‐Pacific Journal of Chemical Engineering, 3, 97– 105.
[31] Miller, D. N. (1974). Scale‐up of agitated vessels gas‐liquid mass transfer. AIChE Journal, 20(3), 445-453.
[32] Buffo, M. M., Corrêa, L. J., Esperança, M. N., Cruz, A. J. G., Farinas, C. S., Badino, A. C. (2016). Influence of dual-impeller type and configuration on oxygen transfer, power consumption, and shear rate in a stirred tank bioreactor. Biochemical Engineering Journal, 114, 130-139.
[33] Lange, H., Taillandier, P., Riba, J. P. (2001). Effect of high shear stress on microbial viability. Journal of Chemical Technology and Biotechnology: International Research in Process, Environmental and Clean Technology, 76(5), 501-505.
[34] You, S. T., Raman, A. A. A., Shah, R. S. S. R. E., Mohamad Nor, M. I. (2014). Multiple-impeller stirred vessel studies. Reviews in Chemical Engineering, 30(3), 323-336.