[1] Vijila, B., Gladis, E. E., Jose, J. M. A., Sharmila, T. M., Joseph, J. (2021). Removal of fluoride with rice husk derived adsorbent from agro waste materials. Materials Today: Proceedings, 45, 2125-2129.
[2] Meenakshi, Garg, V. K., Kavita, Renuka, Malik, A. (2004). Groundwater quality in some villages of Haryana, India: focus on fluoride and fluorosis. Journal of Hazardous Materials, 106(1), 85-97.
[3] World Health Organization (2001). Environmental Health Criteria (EHC).
[4] Jolly, S.S., Sing, B.M., Mathur, O.C. (1969). Endemic fluorosis in Punjab (India). The American Journal of Medicine, 47(4), 553-563.
https://doi.org/10.1016/0002-9343(69)90186-7
[5] Oguz, E. (2005). Adsorption of fluoride on gas concrete materials. Journal of Hazardous Materials, 117(2-3), 227-233.
[6] Dehbandi, R., Moore, F., Keshavarzi, B. (2018). Geochemical sources, hydrogeochemical behavior, and health risk assessment of fluoride in an endemic fluorosis area, central Iran. Chemosphere, 193, 763-776.
[7] Mukherjee, I., Singh, U.K., Patra, P.K. (2019). Exploring a multi-exposure-pathway approach to assess human health risk associated with groundwater fluoride exposure in the semi-arid region of east India. Chemosphere, 233, 164-173.
[8] Miretzky, P.and Cirelli, A.F. (2011). Fluoride removal from water by chitosan deriva- tives and composites: a review. Journal of Fluorine Chemistry, 132(4), 231-240.
[9] Lahnid, S., Tahaikt, M., Elaroui, K., Idrissi, I., Hafsi, M., Laaziz, I. (2008). Eco- nomic evaluation of fluoride removal by electrodialysis. Desalination, 230(1–3), 213-219.
[10] Reardon, E.J. and Wang, Y. X. (2000). A limestone reactor for fluoride removal from wastewaters. Environmental Science and Technology, 34(15), 3247-3253.
[11] Ndiayea, P.I., Moulin, P., Dominguez, L., Millet, J.C., Charbit, F. (2005). Removal of fluoride from electronic industrial effluent by RO membrane separation. Desalination, 173(1), 25-32.
[12] Meenakshi, S. and Viswanathan, N. (2007). Identification of selective ion-exchange resin for fluoride sorption. Journal of Colloid and Interface Science, 308(2), 438–450.
[13] Ahmed, S.A. (2011). Batch and fixed-bed column techniques for removal of Cu (II) and Fe (III) using carbohydrate natural polymer modified complexing agents. Carbohydrate Polymers, 83(4), 1470-1478.
http://dx.doi.org/10.1016/j.carbpol.2010.09.051
[14] Akafu, T., Chimdi, A., Gomoro, K. (2019). Removal of fluoride from drinking water by sorption using diatomite modified with aluminum hydroxide. Journal of analytical methods in chemistry, 2019.
[15] Waghmare, S., Arfin, T., Rayalu, S., Lataye, D., Dubey, S., Tiwari, S. (2015). Adsorption behavior of modified zeolite as novel adsorbents for fluoride removal from drinking water: surface phenomena, kinetics and thermodynamics studies. International Journal of Science, Engineering and Technology Research, 4(12), 4114-4124.
[16] Bhatnagar, A., Kumar, E., Sillanpaa, M. (2011). Fluoride removal from water by adsorption—a review. Chemical Engineering Journal, 171(3), 811–840.
[17] Mohapatra, M., Anand, S., Mishra, B.K., Giles, D.E., Singh, P. (2009). Review of fluoride removal from drinking water. Journal of Environmental Management, 91(1), 67-77.
[18] Yu, X., Tong, S., Ge, M., Zuo, J. (2013). Removal of fluoride from drinking water by cellulose @ hydroxyapatite nanocomposites. Carbohydrate Polymers, 92(1), 269-275.
https://doi.org/10.1016/j.carbpol.2012.09.045
[19] Han, R., Wang, Y., Yu, W., Zou, W., Shi, J., Liu, H. (2007). Biosorption of methylene blue from aqueous solution by rice husk in a fixed-bed column. Journal of Hazardous Materials, 141(3), 713-718.
[20] Vardhan, C. V., Karthikeyan, J. (2011, September). Removal of fluoride from water sing low-cost materials. In Fifteenth International Water Technology Conference, IWTC-15 (Vol. 1, No. 2, pp. 1-14).
[21] Goering, H. K., Van Soest, P. J. (1970). Forage fiber analyses (apparatus, reagents, procedures, and some applications) (No. 379). US Agricultural Research Service.
[22] Ananthi, A., Geetha, D., Ramesh, P.S. (2016). Preparation and characterization of silica material from rice husk ash–an economically viable method. Chemistry and Materials Research, 8(6), 1-7.
[23] Ma’ruf, A., Pramudono, B., Aryanti, N. (2017, March). Lignin isolation process from rice husk by alkaline hydrogen peroxide: Lignin and silica extracted. In AIP Conference Proceedings (Vol. 1823, No. 1). AIP Publishing.
[24] Chandra, J., George, N., Narayanankutty, S.K. (2016). Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydrate Polymers,142, 158-166.
[25] Mandal, A.andChakrabarty, D. (2011). Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydrate Polymers, 86(3), 1291-1299.
[26] Alemdar, A. and Sain, M. (2008). Biocomposites from wheat straw nanofibres: Morphology, thermal and mechanical properties. Composites Science and Technology, 68(2), 557-565.
[27] Segal, L.G.J.M.A., Creely, J.J., Martin Jr, A.E., Conrad, C.M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29(10), 786-794.
[28] de Souza Lima, M.M.and Borsali, R. (2004). Rodlike cellulose microcrystals: structure, properties, and applications. Macromolecular Rapid Communications, 25(7), 771-787.
[29] Tang, L.G., Hon, D.N.S., Pan, S.H., Zhu, Y.Q., Wang, Z., Wang, Z.Z. (1996). Evaluation of microcrystalline cellulose. I. Changes in ultrastructural characteristics during preliminary acid hydrolysis. Journal of Applied Polymer Science, 59(3), 483-488.
[30] Azizi Samir, M.A.S., Alloin, F., Dufresne, A. (2005). Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules, 6(2), 612-626.
[31] Moran, J.I., Alvarez, V.A., Cyras, V.P., Vázquez, A. (2008). Extraction of cellulose and preparation of nanocellulose from sisal fibres. Cellulose, 15(1), 149-159.
https://doi.org/10.1007/s10570-007-9145-9
[32] Silverio, H.A., Neto, W.P.F., Dantas, N.O., Pasquini, D. (2013). Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Industrial Crops and Products 44, 427-436.
[33] Johar, N., Ahmad, I., Dufresne, A. (2012). Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products, 37(1), 93-99.
[34] Hornsby, P.R., Hinrichsen, E., Tarverdi, K. (1997). Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres: part I fibre characterization. Journal of Materials Science, 32(2), 443-449.
https://doi.org/10.1023/A:1018521920738
[35] Deshmukh, W.S., Attar, S.J., Waghmare, M.D. (2009). Investigation on fluoride in water using rice husk as an adsorbent. Nature, Environment and Pollution Technology, 8(2), 217-223.
[36] Tembhurkar, A.R.andDongre, S. (2006). Studies on fluoride removal using adsorption process. Journal of Environmental Science and Engineering, 48(3), 151-156.
[37] Yadav, A.K., Kaushik, C.P., Haritash, A.K., Kansal, A., Rani, N. (2006). Defluoridation of groundwater using brick powder as an adsorbent. Journal of Hazardous materials, 128(2-3), 289-293.
[38] Roy, S., Das, P., Sengupta, S. (2017). Thermodynamics and kinetics study of defluoridation using Ca-SiO2-TiO2 as adsorbent: column studies and statistical approach. Korean Journal of Chemical Engineering, 34(1), 179-188.
https://doi.org/10.1007/s11814-016-0217-0
[39] Uddin, M.K., Ahmed, S.S., Naushad, M. (2019). A mini update on fluoride adsorption from aqueous medium using clay materials. Desalination and Water Treatment, 145, 232-248.
[40] Kir, E., Oruc, H., Kir, I., Sardohan-Koseoglu, T. (2016). Removal of fluoride from aqueous solution by natural and acid-activated diatomite and ignimbrite materials. Desalination and Water Treatment, 57(46), 21944-21956.
[41] Jamode, A.V., Sapkal, V.S., Jamode, V.S., Deshmukh, S.K. (2004). Adsorption kinetics of defluoridation using low-cost adsorbents. Adsorption Science and Technology, 22(1), 65-73.
[42] Chandra, V., Park, J., Chun, Y., Lee, J.W., Hwang, I.C., Kim, K.S. (2010). Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS nano, 4(7), 3979-3986.
https://doi.org/10.1021/nn1008897
[43] Ho, Y.S. and McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451-465.
[44] Ho, Y.S. and McKay, G. (1999). The sorption of lead (II) ions on peat. Water Research, 33(2), 578-584.
[45] Freundlich, H. (1906). Concerning adsorption in solutions.Zeitschrift Fur Physikalis- cheChemie—Stochiometrie Und Verwandtschaftslehre, 57(4), 385–470.
[46] Langmuir, I. (1918). Adsorption of gases on plain surfaces of glass, mica platinum. Journal of the American Chemical Society, 40, 1361–1403.
https://doi.org/10.1021/ja02242a004
[47] Tian, Y., Wu, M., Lin, X., Huang, P., Huang, Y. (2011). Synthesis of magnetic wheat straw for arsenic adsorption. Journal of Hazardous Materials, 193, 10-16.
[48] Chen, Z., Ma, W., Han, M. (2008). Biosorption of nickel and copper onto treated alga (Undariapinnatifida): application of isotherm and kinetic models. Journal of Hazardous Materials, 155(1-2), 327-333.
[49] Foo, K.Y.and Hameed, B.H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2-10.
[50] Benhammou, A., Yaacoubi, A., Nibou, L., Tanouti, B. (2005). Adsorption of metal ions onto Moroccan stevensite: kinetic and isotherm studies. Journal of Colloid and Interface Science, 282(2), 320-326.
[51] Srivastava, V.C., Swamy, M.M., Mall, I.D., Prasad, B., Mishra, I.M. (2006). Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium, kinetics and thermodynamics. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 272(1-2), 89-104.
[52] Allen, S.J., Mckay, G., Porter, J.F. (2004). Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. Journal of Colloid and Interface Science, 280(2), 322-333.
[53] Tsai, W.T., Hsu, H.C., Su, T.Y., Lin, K.Y., Lin, C.M. (2006). Adsorption characteristics of bisphenol-A in aqueous solutions onto hydrophobic zeolite. Journal of Colloid and Interface Science, 299(2), 513-519.
[54] Artola, A., Martin, M., Balaguer, M., Rigola, M. (2000). Isotherm model analysis for the adsorption of Cd (II), Cu (II), Ni (II), and Zn (II) on anaerobically digested sludge. Journal of Colloid and Interface Science, 232(1), 64-70.
[55] Wu, F.C., Liu, B.L., Wu, K.T., Tseng, R. L. (2010). A new linear form analysis of Redlich–Peterson isotherm equation for the adsorptions of dyes. Chemical Engineering Journal, 162(1), 21-27.
[56] Wang, J.P., Feng, H.M., Yu, H.Q. (2007). Analysis of adsorption characteristics of 2, 4-dichlorophenol from aqueous solutions by activated carbon fibre. Journal of Hazardous Materials, 144(1-2), 200-207.
[57] Tor, A.and Cengeloglu, Y. (2006). Removal of congo red from aqueous solution by adsorption onto acid activated red mud. Journal of Hazardous Materials,138(2), 409-415.
[58] Kundu, S. and Gupta, A.K. (2007). Adsorption characteristics of As (III) from aqueous solution on iron oxide coated cement (IOCC). Journal of Hazardous Materials, 142(1-2), 97-104.
[59] Ozer, A.andDursun, G. (2007). Removal of methylene blue from aqueous solution by dehydrated wheat bran carbon. Journal of Hazardous Materials, 146(1-2), 262-269.
[60] McKay, G., Mesdaghinia, A., Nasseri, S., Hadi, M., Aminabad, M.S. (2014). Optimum isotherms of dyes sorption by activated carbon: Fractional theoretical capacity and error analysis. Chemical Engineering Journal, 251, 236-247.
[61] Ravnote, O.M.and Adsorpcizo, N.I.Z. (2013). Evaluation of equilibrium isotherm models for the adsorption of Cu and Ni from wastewater on bentonite clay. Materiali in Tehnologije, 47(4), 481-486.
[62] Van Vliet, B.M., Weber Jr, W.J., Hozumi, H. (1980). Modeling and prediction of specific compound adsorption by activated carbon and synthetic adsorbents. Water Research 14(12), 1719-1728.
[63] Hamad, B.K., Noor, A.M., Rahim, A.A. (2011). Removal of 4-chloro-2-methoxyphenol from aqueous solution by adsorption to oil palm shell
activated carbon activated with K2CO3. Journal of Physical Science, 22(1), 39-55.
[64] Sujana, M.G., Pradhan, H.K., Anand, S. (2009). Studies on sorption of some geomaterials for fluoride removal from aqueous solutions. Journal of Hazardous Materials, 161(1), 120-125.
[65] Yu, Y., Zhuang, Y.Y., Wang, Z.H., Qiu, M.Q. (2004). Adsorption of water-soluble dyes onto modified resin. Chemosphere, 54(3), 425-430.
[66] Liu, Y.and Liu, Y.J. (2008). Biosorption isotherms, kinetics and thermodynamics. Separation and Purification Technology, 61(3), 229-242.
[67] Dzieniszewska, A., Nowicki, J., Rzepa, G., Kyziol-Komosinska, J., Semeniuk, I., Kiełkiewicz, D., Czupioł, J. (2022). Adsorptive removal of fluoride using ionic liquid-functionalized chitosan–Equilibrium and mechanism studies. International Journal of Biological Macromolecules, 210, 483-493.
[68] Tefera, N., Mulualem, Y., Fito, J. (2020). Adsorption of fluoride from aqueous solution and groundwater onto activated carbon of avocado seeds. Water Conservation Science and Engineering, 5(3), 187-197.
https://doi.org/10.1007/s41101-020-00093-7
[69] Bibi, S., Farooqi, A., Yasmin, A., Kamran, M. A., Niazi, N. K. (2017). Arsenic and fluoride removal by potato peel and rice husk (PPRH) ash in aqueous environments. International journal of Phytoremediation, 19(11), 1029-1036.
[70] Singh, K., Lataye, D.H.,Wastewater, K.L. (2016). Removal of fluoride from aqueous solution by using low-cost sugarcane bagasse: kinetic study and equilibrium isotherm analyses. Journal of Hazardous, Toxic, and Radioactive Waste, 20(3), 04015024.
[71] Mondal, N.K. and Roy, A. (2018). Potentiality of a fruit peel (banana peel) toward abatement of fluoride from synthetic and underground water samples collected from fluoride affected villages of Birbhum district. Applied Water Science, 8(3), 1-10.
[72] Singh, N.B., Srivastava, Y.K.,Shukla, S.P. (2019). Investigating the efficacy of saw dust in fluoride removal through adsorption. Journal of The Institution of Engineers (India): Series A, 100(4), 667-674.
https://doi.org/10.1007/s40030-019-00387-7
[73] Talat, M., Mohan, S., Dixit, V., Singh, D.K., Hasan, S.H., Srivastava, O.N. (2018). Effective removal of fluoride from water by coconut husk activated carbon in fixed bed column: Experimental and breakthrough curves analysis. Groundwater for Sustainable Development, 7, 48-55.