Document Type : Research Paper
Authors
Department of Chemistry and Research Centre, Nesamony Memorial Christian College, Tamilnadu, India
Abstract
Graphical Abstract
Keywords
Main Subjects
[1] Subramanian, H., Krishnan, M., Mahalingam, A. (2022). Photocatalytic dye degradation and photoexcited anti-microbial activities of green zinc oxide nanoparticles synthesized via Sargassum muticum extracts. RSC Advances, 12(2), 985-997.
https://doi.org/10.1039/D1RA08196A
[2] Mali, H., Shah, C., Patel, D. H., Trivedi, U., Subramanian, R. B. (2022). Degradation insight of organophosphate pesticide chlorpyrifos through novel intermediate 2, 6-dihydroxypyridine by Arthrobacter sp. HM01. Bioresources and Bioprocessing, 9(1), 1-14.
https://doi.org/10.1016/j.biortech.2020.124641
[3] Kumar, K. D., Vyshnava, S. S., Shanthi, B. S., Bontha, R. R. (2022). In-silico analysis of the interaction of quinalphos and 2-hydroxyquinoxaline with organophosphate hydrolase and oxygenases. Bio interface Research in Applied Chemistry, 12, 608-17.
https://doi.org/10.1080/07391102.2023.2232045
[4] Yeganeh, M., Charkhloo, E., Sobhi, H. R., Esrafili, A., Gholami, M. (2022). Photocatalytic processes associated with degradation of pesticides in aqueous solutions: Systematic review and meta-analysis. Chemical Engineering Journal, 428, 130081.
https://doi.org/0.1016/j.cej.2021.130081
[5] Mehta, M., Sharma, M., Pathania, K., Jena, P. K., Bhushan, I. (2021). Degradation of synthetic dyes using nanoparticles: a mini-review. Environmental Science and Pollution Research, 28, 49434-49446.
https://doi.org/10.1007/s11356-021-15470-5
[6] Qu, T., Yao, X.X, Owens, G., Gao, L., Zhang, H. (2022) A Sustainable natural clam Shell derived photocatalyst for the effective adsorption and photo degradation of organic dyes, Scientific Reports, 12, 1-14.
https://doi.org/10.1038/s41598-022-06981-3
[7] Su, F., Li, P., Huang, P., Gu, M., Liu, Z., Xu,Y.(2021). Photocatalytic degradation of Organic dye and tetracycline by ternary Ag2O/ AgBr-CeO, photocatalyst under visible light irradiation, Scientific Reports, 11, 1-13.
https://doi.org/10.1038/s41598-020-76997-0
[8]. Vedhantham, K., Girigoswami, A., Harin, A., Gringoswami, K. (2022). Waste water remediation using nano technology - A review, Bio Interface Research in Applied Chemistry, 12, 4476-4495.
https://doi.org/10.33263/BRIAC124.44764495
[9] Othman, Z., Sinopoli, A., Mackey, H. R., Mahmoud, K. A. (2021). Efficient Photocatalytic Degradation of Organic Dyes by AgNPs/TiO2/Ti3C2T x MXene Composites under UV and Solar Light. ACS Omega, 6(49), 33325-33338.
https://doi.org 10.1021/acsomega.1c03189
[10] Abouseada, N., Ahmed, M.A., Elmahgary, G. (2022). Synthesis and characterisation of novel magnetic nano articles for photo degradation of indigo carmine dye, Materials Science for Energy Technologies, 5, 116-124.
https://doi.org/10.1016/j.mset.2022.01.001
[11] Bano, K., Susheel, K.M., Singh, P.P., Kaushal, S. (2021). Sunlight driven photocatalytic degradation of organic pollutants using a MnVO6/BiVO4 hétero junction: Mechanistic perception and degradation path ways, Nano Scale Advances, 22, 1-28.
https://doi.org/10.1039/d1na00499a
[12] Qutub, N., Singh, P., Sabir, S., Sagadevan, S., Oh, W. C. (2022). Enhanced photocatalytic degradation of Acid Blue dye using CdS/TiO2 nanocomposite. Scientific Reports, 12(1), 5759.
https://doi.org/10.1038/s41598-022-09479-0
[13] Helmy, E. T., El Nemr, A., Mousa, M., Arafa, E., Eldafrawy, S. (2018). Photocatalytic degradation of organic dyes pollutants in the industrial textile wastewater by using synthesized TiO2, C-doped TiO2, S-doped TiO2 and C, S co-doped TiO2 nanoparticles. Journal of Water and Environmental Nanotechnology, 3(2), 116-127.
https://doi.org/10.22090/JWENT.2018.02.003
[14] Gola, D., Bhatt, N., Bajpai, M., Singh, A., Arya, A., Chauhan, N., Agrawal, Y. (2021). Silver nanoparticles for enhanced dye degradation. Current Research in Green and Sustainable Chemistry, 4, 100132.
https://doi.org/10.1016/j.crgsc.2021.100132
[15] Verma, N., Jagota, V., Alguno, A. C., Alimuddin, Rakhra, M., Kumar, P., Dugbakie, B. N. (2022). Characterization of fabricated gold-doped ZnO nanospheres and their use as a photocatalyst in the degradation of DR-31 dye. Journal of Nanomaterials, 2022, 1-8.
https://doi.org/10.1155/2022/7532332
[16] Joshi, N. C., Gururani, P., Gairola, S. P. (2022). Metal oxide nanoparticles and their nanocomposite-based materials as photocatalysts in the degradation of dyes. Bio interface Research in Applied Chemistry, 12, 6557-6579.
https://doi.org/10.33263/BRIAC125.65576579
[17] Chani, M. T. S., Khan, S. B., Rahman, M. M., Kamal, T., Asiri, A. M. (2022). Sunlight assisted photocatalytic dye degradation using zinc and iron based mixed metal-oxides nanopowders. Journal of King Saud University-Science, 34(3), 101841.
https://doi.org/10.1016/j.jksus.2022.101841
[18] Ahuja, P., Ujjain, S.K., Kanojia, R., Attri, P. (2021). Ahuja, P., Ujjain, S. K., Kanojia, R., Attri, P. (2021). Transition metal oxides and their composites for photocatalytic dye degradation. Journal of Composites Science, 5(3), 82. https://doi.org/10.3390/jcs5030082
[19] Khan, N.A., Saeed, K., khan, I., Gul, T., Sadiq, M., Uddin, A., Ivarzekker. (2022). Efficient photodegradation of Orange II dye by nickel oxide nanoparticles and nano clay supported nickel oxide nano composite, Applied Water Science, 12, 1-10.
https://doi.org/10.1007/s13201-022-01647-x
[20] Mathiarasu, R.R., Manikandan, A., Paneerselvam, K., George, M., Raja, K.K. (2021). Photocatalytic degradation of reactive anionic dyes RB5, RR198 and RY145 Via rare earth elements (REE) Lanthanum Substituted CaTi03 perovskite Catalysts, Journal of Materials Research and Technology, 15, 5936-59471.
https://doi.org/10.1016/j.jmrt.2021.11.047
[21] Lim, H., Yusuf, M., Song, S., Park, S., Park, K. H. (2021). Efficient photocatalytic degradation of dyes using photo-deposited Ag nanoparticles on ZnO structures: simple morphological control of ZnO. RSC Advances, 11(15), 8709-8717.
https://doi.org/10.1039/D0RA10945B
[22] Li, C., Li, H., He, G., Lei, Z., Wu, W. (2021). Preparation and photocatalytic performance of ZnO/Sepiolite composite materials. Advances in Materials Science and Engineering, 2021, 1-17.
https://doi.org/10.1155/2021/5357843
[23] Kaur,P., Bansal,P., Sud,D.(2013). Hetero structured nano photocatalyst for degradation of Organophosphate pesticides from aqueous streams, Journal of the Korean Chemical Society, 57, 382-388.
http://dx.doi.org/10.5012/jkcs.2013.57.3.382
[24] Jiang, S., Lin, K., Cai, M. (2020). ZnO nanomaterials: Current advancements in antibacterial mechanisms and applications, Frontiers in Chemistry, 8, 1-5.
https://doi.org/10.3389/fchem.2020.00580
[25] Krishnan, B., Velavan, R., Batoo, K.M., Raslan, E.H. (2020). Microstructure, optical and photocatalytic properties of MgO nanoparticles, Results in Physics, 16, 1-4.
https://doi.org/10.1016/j.rinp.2020.103013
[26] Paramarta, V., Taufik, A., Munisa, L., Saleh, R. (2017, January). Sono-and photocatalytic activities of SnO2 nanoparticles for degradation of cationic and anionic dyes. In AIP Conference Proceedings (Vol. 1788, No. 1). AIP Publishing.
https://doi.org/10.1063/1.4968378
[27]. Sraw, A., Kaur, T., Pandey, Y., Verma, A., Sobti, A., Wanchoo, R. K., Toor, A. P. (2020). Photocatalytic degradation of monocrotophos and quinalphos using solar-activated S-doped TiO2. International journal of Environmental Science and Technology, 17, 4895-4908.
[28] Behera, L., Barik, B., Mohapatra, S. (2021). Improved photodegradation and antimicrobial activity of hydrothermally synthesized 0.2 Ce-TiO2/RGO under visible light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 620, 126553.
https://doi.org/10.1016/j.colsurfa.2021.126553
[29] Garg, R., Gupta, R., Singh, N., Bansal, A. (2022). Eliminating pesticide quinalphos from surface waters using synthesized GO-ZnO nanoflowers: Characterization, degradation pathways and kinetic study. Chemosphere, 286, 131837.
https://doi.org/10.1016/j.chemosphere.2021.131837
[30] Sharotri, N., Sharma, D., Sud, D. (2019). Experimental and theoretical investigations of Mn-N-co-doped TiO2 photocatalyst for visible light induced degradation of organic pollutants. Journal of Materials Research and Technology, 8(5), 3995-4009.
https://doi.org/10.1016/j.jmrt.2019.07.008
[31] Fernandez, A.S., Garcia, S.C., Villalba, L.S., Cornelio, S.G., Rabanal, M.E., Fort, R., Quintana, P. (2017). Synthesis, photocatalytic and antifungal properties of MgO, ZnO and Zn/Mg oxide nanoparticles for the protection of calcareous stone heritage, Applied Materials and Interfaces, 9, 24873-24886.
https://doi.org/10.1021/acsami.7b06130
[32] Sangeetha, M., Karthick, K.V., Ravishankar, R., Anantharaju, K.S., Nagabhushana, H., Jeetendra, K., Vidya, Y.S., Renuka, L. (2017). Synthesis of ZnO, MgO and ZnO/MgO by solution combustion method: Characterisation and photocatalytic studies, Materials today: Proceedings, 4, 11791-1179.
https://doi.org/10.1016/j.matpr.2017.09.096
[33] Zarei, S., Hasheminiasari, M., Masoudpanah, S. M., Javadpour, J. (2022). Photocatalytic properties of ZnO/SnO2 nanocomposite films: role of morphology. Journal of Materials Research and Technology, 17, 2305-2312.
https://doi.org/10.1016/j.jmrt.2022.01.126
[34] Verma, N., Yadav, S., Marí, B., Mittal, A., Jindal, J. (2018). Synthesis and charcterization of coupled ZnO/SnO2 photocatalysts and their activity towards degradation of cibacron red dye. Transactions of the Indian Ceramic Society, 77(1), 1-7.
https://doi.org/10.1080/0371750X.2017.1417059
[35] Das, S., Srivasatava, V. C. (2016). Synthesis and characterization of ZnO–MgO nanocomposite by co-precipitation method. Smart Science, 4(4), 190-195.
https://doi.org/10.1080/23080477.2016.1260425
[36] Lin, L., Han, Y., Fuji, M., Endo, T., Wang, X., Takahashi, M. (2008). Synthesis of hexagonal ZnO microtubes by a simple soft aqueous solution method. Journal of the Ceramic Society of Japan, 116(1350), 198-200.
https://doi.org/10.2109/jcersj2.116.198
http://dx.doi.org/10.13005/ojc/340252
[38] Sumathi. P. (2020). Synthesis and characterisation of SnO2 nanocomposite against bacteria and fungi, International Journal of Chemtech Research, 13(3), 203-209.
https://doi.org/10.20902/IJCTR.2019.130317
[39] Yar, A., Haspulat, B., Üstün, T., Eskizeybek, V., Avcı, A., Kamış, H., Achour, S. (2017). Electrospun TiO2/ZnO/PAN hybrid nanofiber membranes with efficient photocatalytic activity. RSC Advances, 7(47), 29806-29814.
https://doi.org/10.1039/C7RA03699J
[40] Sinha, A. K., Pradhan, M., Sarkar, S., Pal, T. (2013). Large-scale solid-state synthesis of Sn–SnO2 nanoparticles from layered SnO by sunlight: a material for dye degradation in water by photocatalytic reaction. Environmental Science and Technology, 47(5), 2339-2345.
https://doi.org/10.1021/es303413q
[41] Kajbafvala, A., Ghorbani, H., Paravar, A., Samberg, J. P., Kajbafvala, E., Sadrnezhaad, S. K. (2012). Effects of morphology on photocatalytic performance of Zinc oxide nanostructures synthesized by rapid microwave irradiation methods. Superlattices and Microstructures, 51(4), 512-522.
https://doi.org/10.1016/j.spmi.2012.01.015
[42] Kiwaan, H. A., Atwee, T. M., Azab, E. A., El-Bindary, A. A. (2020). Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide. Journal of Molecular Structure, 1200, 127115.
https://doi.org/10.1016/j.molstruc.2019.127115
[43] Pachiyappan, J., Gnanasundaram, N., Rao, G. L. (2020). Preparation and characterization of ZnO, MgO and ZnO–MgO hybrid nanomaterials using green chemistry approach. Results in Materials, 7, 100104.
https://doi.org/10.1016/j.rinma.2020.100104
[44] Subhan, M. A., Ahmed, T., Uddin, N., Azad, A. K., Begum, K. (2015). Synthesis, characterization, PL properties, photocatalytic and antibacterial activities of nano multi-metal oxide NiO⋅ CeO2ZnO. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 824-831.
https://doi.org/10.1016/j.saa.2014.09.100
[45] Kathik, K., Dhanushkodi, S., Gobinath, C., Prabukumar, S., Sivaramakrishnan, S. (2019). Ultrasonic-assisted CdO-MgO nanocomposite for multifunctional applications, Materials Technology, 34, 403-414.
https://doi.org/10.1080/10667857.2019.1574963
[46] Jin, C., Ge, C., Jian, Z., Wei.Y. (2016). Facile synthesis and high photocatalytic degradation performance of ZnO/SnO₂ hollow Spheres, Nano Scale Research Letters, 11, 1-6.
https://doi.org/10.1186/s11671-016-1740-y
[47]. Ali, A. M., Qreshah, O., Ismail, A. A., Harraz, F. A., Algarni, H., Assiri, M. A., Chiu, W. S. (2019). Morphological and optical properties of SnO2 doped ZnO nanocomposites for electrochemical sensing of hydrazine. International Journal of Electrochemical Science, 14(2), 1461-1478. https://doi.org/10.20964/2019.02.04
[48]. Dulta, K., Koşarsoy Ağçeli, G., Chauhan, P., Jasrotia, R., Chauhan, P. K., Ighalo, J. O. (2022). Multifunctional CuO nanoparticles with enhanced photocatalytic dye degradation and antibacterial activity. Sustainable Environment Research, 32(1), 1-15.
https://doi.org/10.1186/s42834-021-00111-w
[49]. Adeel, M., Saeed, M., Khan, I., Muneer, M., Akram, N. (2021). Synthesis and characterization of Co–ZnO and evaluation of its photocatalytic activity for photodegradation of methyl orange. ACS Omega, 6(2), 1426-1435.
https://doi.org/10.1021/acsomega.0c05092
[50]. Amdeha, E., Mohamed, R. S. (2021). A green synthesized recyclable ZnO/MIL-101 (Fe) for Rhodamine B dye removal via adsorption and photo-degradation under UV and visible light irradiation. Environmental Technology, 42(6), 842-859.
https://doi.org/10.1080/09593330.2019.1647290