A Comparative study on photocatalytic degradation of quinalphos pesticide using ZnO/MgO and ZnO/SnO2 nanocomposites

Document Type : Research Paper

Authors

Department of Chemistry and Research Centre, Nesamony Memorial Christian College, Tamilnadu, India

Abstract

The photocatalytic degradation of Quinalphos, an organic pesticide, in the presence of modified ZnO metal composites, namely ZnO/MgO and ZnO/SnO2, was investigated at normal pH in the presence of sunlight. The structural and morphological properties of both the synthesized nanocomposites were characterised by different spectral techniques. The effect of pesticide concentration, catalyst dosage, and pH on the photocatalytic degradation efficiency was investigated. The photocatalytic activity of the respective nanocomposites on the degradation of Quinalphos was confirmed by UV-Visible spectroscopy. Moreover, the recycling ability of the prepared nanocomposites was also conducted and analyzed. However, the photocatalytic efficiency of ZnO/SnO2 nanocomposite was more efficient than the ZnO/MgO nanocomposite for the treatment of pesticide effluent, achieving 98 % and 95 % of total organic carbon (TOC) and chemical oxygen demand (COD) removals, respectively. The present study therefore concluded that the ZnO/SnO2 nanocomposite was the more stable and well organised composite, which could be the preferred treatment of industrial and agricultural wastewater containing organic contaminants within a short span of time.

Graphical Abstract

A Comparative study on photocatalytic degradation of quinalphos pesticide using ZnO/MgO and ZnO/SnO2 nanocomposites

Keywords

Main Subjects


  1. [1] Subramanian, H., Krishnan, M., Mahalingam, A. (2022). Photocatalytic dye degradation and photoexcited anti-microbial activities of green zinc oxide nanoparticles synthesized via Sargassum muticum extracts. RSC Advances, 12(2), 985-997.

    https://doi.org/10.1039/D1RA08196A

    [2] Mali, H., Shah, C., Patel, D. H., Trivedi, U., Subramanian, R. B. (2022). Degradation insight of organophosphate pesticide chlorpyrifos through novel intermediate 2, 6-dihydroxypyridine by Arthrobacter sp. HM01. Bioresources and Bioprocessing, 9(1), 1-14.

    https://doi.org/10.1016/j.biortech.2020.124641

    [3] Kumar, K. D., Vyshnava, S. S., Shanthi, B. S., Bontha, R. R. (2022). In-silico analysis of the interaction of quinalphos and 2-hydroxyquinoxaline with organophosphate hydrolase and oxygenases. Bio interface Research in Applied Chemistry, 12, 608-17.

    https://doi.org/10.1080/07391102.2023.2232045

    [4] Yeganeh, M., Charkhloo, E., Sobhi, H. R., Esrafili, A., Gholami, M. (2022). Photocatalytic processes associated with degradation of pesticides in aqueous solutions: Systematic review and meta-analysis. Chemical Engineering Journal, 428, 130081.

    https://doi.org/0.1016/j.cej.2021.130081

    [5] Mehta, M., Sharma, M., Pathania, K., Jena, P. K., Bhushan, I. (2021). Degradation of synthetic dyes using nanoparticles: a mini-review. Environmental Science and Pollution Research, 28, 49434-49446.

    https://doi.org/10.1007/s11356-021-15470-5

    [6] Qu, T., Yao, X.X, Owens, G., Gao, L., Zhang, H. (2022) A Sustainable natural clam Shell derived photocatalyst for the effective adsorption and photo degradation of organic dyes, Scientific Reports, 12, 1-14.

    https://doi.org/10.1038/s41598-022-06981-3

    [7] Su, F., Li, P., Huang, P., Gu, M., Liu, Z., Xu,Y.(2021). Photocatalytic degradation of Organic dye and tetracycline by ternary Ag2O/ AgBr-CeO, photocatalyst under visible light irradiation, Scientific Reports, 11, 1-13.

    https://doi.org/10.1038/s41598-020-76997-0

    [8]. Vedhantham, K., Girigoswami, A., Harin, A., Gringoswami, K. (2022).  Waste water remediation using nano technology - A review, Bio Interface Research in Applied Chemistry, 12, 4476-4495.

    https://doi.org/10.33263/BRIAC124.44764495

    [9] Othman, Z., Sinopoli, A., Mackey, H. R., Mahmoud, K. A. (2021). Efficient Photocatalytic Degradation of Organic Dyes by AgNPs/TiO2/Ti3C2T x MXene Composites under UV and Solar Light. ACS Omega, 6(49), 33325-33338.

    https://doi.org 10.1021/acsomega.1c03189

    [10] Abouseada, N., Ahmed, M.A., Elmahgary, G. (2022). Synthesis and characterisation of novel magnetic nano articles for photo degradation of indigo carmine dye, Materials Science for Energy Technologies, 5, 116-124.

    https://doi.org/10.1016/j.mset.2022.01.001

    [11] Bano, K., Susheel, K.M., Singh, P.P., Kaushal, S. (2021). Sunlight driven photocatalytic degradation of organic pollutants using a MnVO6/BiVO4 hétero junction: Mechanistic perception and degradation path ways, Nano Scale Advances, 22, 1-28.

    https://doi.org/10.1039/d1na00499a

    [12] Qutub, N., Singh, P., Sabir, S., Sagadevan, S., Oh, W. C. (2022). Enhanced photocatalytic degradation of Acid Blue dye using CdS/TiO2 nanocomposite. Scientific Reports, 12(1), 5759.

    https://doi.org/10.1038/s41598-022-09479-0

    [13] Helmy, E. T., El Nemr, A., Mousa, M., Arafa, E., Eldafrawy, S. (2018). Photocatalytic degradation of organic dyes pollutants in the industrial textile wastewater by using synthesized TiO2, C-doped TiO2, S-doped TiO2 and C, S co-doped TiO2 nanoparticles. Journal of Water and Environmental Nanotechnology, 3(2), 116-127.

    https://doi.org/10.22090/JWENT.2018.02.003

    [14] Gola, D., Bhatt, N., Bajpai, M., Singh, A., Arya, A., Chauhan, N., Agrawal, Y. (2021). Silver nanoparticles for enhanced dye degradation. Current Research in Green and Sustainable Chemistry, 4, 100132.

    https://doi.org/10.1016/j.crgsc.2021.100132

    [15] Verma, N., Jagota, V., Alguno, A. C., Alimuddin, Rakhra, M., Kumar, P., Dugbakie, B. N. (2022). Characterization of fabricated gold-doped ZnO nanospheres and their use as a photocatalyst in the degradation of DR-31 dye. Journal of Nanomaterials, 2022, 1-8.

    https://doi.org/10.1155/2022/7532332

    [16] Joshi, N. C., Gururani, P., Gairola, S. P. (2022). Metal oxide nanoparticles and their nanocomposite-based materials as photocatalysts in the degradation of dyes. Bio interface Research in Applied Chemistry, 12, 6557-6579.

    https://doi.org/10.33263/BRIAC125.65576579

    [17] Chani, M. T. S., Khan, S. B., Rahman, M. M., Kamal, T., Asiri, A. M. (2022). Sunlight assisted photocatalytic dye degradation using zinc and iron based mixed metal-oxides nanopowders. Journal of King Saud University-Science34(3), 101841.

    https://doi.org/10.1016/j.jksus.2022.101841

    [18] Ahuja, P., Ujjain, S.K., Kanojia, R., Attri, P. (2021). Ahuja, P., Ujjain, S. K., Kanojia, R., Attri, P. (2021). Transition metal oxides and their composites for photocatalytic dye degradation. Journal of Composites Science, 5(3), 82. https://doi.org/10.3390/jcs5030082

    [19] Khan, N.A., Saeed, K., khan, I., Gul, T., Sadiq, M., Uddin, A., Ivarzekker. (2022). Efficient photodegradation of Orange II dye by nickel oxide nanoparticles and nano clay supported nickel oxide nano composite, Applied Water Science, 12, 1-10.

    https://doi.org/10.1007/s13201-022-01647-x

    [20] Mathiarasu, R.R., Manikandan, A., Paneerselvam, K., George, M., Raja, K.K. (2021).  Photocatalytic degradation of reactive anionic dyes RB5, RR198 and RY145 Via rare earth elements (REE) Lanthanum Substituted CaTi03 perovskite Catalysts, Journal of Materials Research and Technology, 15, 5936-59471.

    https://doi.org/10.1016/j.jmrt.2021.11.047

    [21] Lim, H., Yusuf, M., Song, S., Park, S., Park, K. H. (2021). Efficient photocatalytic degradation of dyes using photo-deposited Ag nanoparticles on ZnO structures: simple morphological control of ZnO. RSC Advances, 11(15), 8709-8717.

    https://doi.org/10.1039/D0RA10945B

    [22] Li, C., Li, H., He, G., Lei, Z., Wu, W. (2021). Preparation and photocatalytic performance of ZnO/Sepiolite composite materials. Advances in Materials Science and Engineering, 2021, 1-17.

    https://doi.org/10.1155/2021/5357843

    [23] Kaur,P., Bansal,P., Sud,D.(2013). Hetero structured nano photocatalyst for degradation of Organophosphate pesticides from aqueous streams, Journal of the Korean Chemical Society, 57, 382-388.

    http://dx.doi.org/10.5012/jkcs.2013.57.3.382

    [24] Jiang, S., Lin, K., Cai, M. (2020). ZnO nanomaterials: Current advancements in antibacterial mechanisms and applications, Frontiers in Chemistry, 8, 1-5.

    https://doi.org/10.3389/fchem.2020.00580

    [25] Krishnan, B., Velavan, R., Batoo, K.M., Raslan, E.H. (2020). Microstructure, optical and photocatalytic properties of MgO nanoparticles, Results in Physics, 16, 1-4.

    https://doi.org/10.1016/j.rinp.2020.103013

    [26] Paramarta, V., Taufik, A., Munisa, L., Saleh, R. (2017, January). Sono-and photocatalytic activities of SnO2 nanoparticles for degradation of cationic and anionic dyes. In AIP Conference Proceedings (Vol. 1788, No. 1). AIP Publishing.

    https://doi.org/10.1063/1.4968378

    [27]. Sraw, A., Kaur, T., Pandey, Y., Verma, A., Sobti, A., Wanchoo, R. K., Toor, A. P. (2020). Photocatalytic degradation of monocrotophos and quinalphos using solar-activated S-doped TiO2. International journal of Environmental Science and Technology, 17, 4895-4908.

    [28] Behera, L., Barik, B., Mohapatra, S. (2021). Improved photodegradation and antimicrobial activity of hydrothermally synthesized 0.2 Ce-TiO2/RGO under visible light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 620, 126553.

    https://doi.org/10.1016/j.colsurfa.2021.126553

    [29] Garg, R., Gupta, R., Singh, N., Bansal, A. (2022). Eliminating pesticide quinalphos from surface waters using synthesized GO-ZnO nanoflowers: Characterization, degradation pathways and kinetic study. Chemosphere, 286, 131837.

    https://doi.org/10.1016/j.chemosphere.2021.131837

    [30] Sharotri, N., Sharma, D., Sud, D. (2019). Experimental and theoretical investigations of Mn-N-co-doped TiO2 photocatalyst for visible light induced degradation of organic pollutants. Journal of Materials Research and Technology, 8(5), 3995-4009.

    https://doi.org/10.1016/j.jmrt.2019.07.008

    [31] Fernandez, A.S., Garcia, S.C., Villalba, L.S., Cornelio, S.G., Rabanal, M.E., Fort, R., Quintana, P. (2017). Synthesis, photocatalytic and antifungal properties of MgO, ZnO and Zn/Mg oxide nanoparticles for the protection of calcareous stone heritage, Applied Materials and Interfaces, 9, 24873-24886.

    https://doi.org/10.1021/acsami.7b06130

    [32] Sangeetha, M., Karthick, K.V., Ravishankar, R., Anantharaju, K.S., Nagabhushana, H., Jeetendra, K., Vidya, Y.S., Renuka, L. (2017). Synthesis of ZnO, MgO and ZnO/MgO by solution combustion method: Characterisation and photocatalytic studies, Materials today: Proceedings, 4, 11791-1179.

    https://doi.org/10.1016/j.matpr.2017.09.096

    [33] Zarei, S., Hasheminiasari, M., Masoudpanah, S. M., Javadpour, J. (2022). Photocatalytic properties of ZnO/SnO2 nanocomposite films: role of morphology. Journal of Materials Research and Technology, 17, 2305-2312.

    https://doi.org/10.1016/j.jmrt.2022.01.126

    [34] Verma, N., Yadav, S., Marí, B., Mittal, A., Jindal, J. (2018). Synthesis and charcterization of coupled ZnO/SnO2 photocatalysts and their activity towards degradation of cibacron red dye. Transactions of the Indian Ceramic Society, 77(1), 1-7.

    https://doi.org/10.1080/0371750X.2017.1417059

    [35] Das, S., Srivasatava, V. C. (2016). Synthesis and characterization of ZnO–MgO nanocomposite by co-precipitation method. Smart Science, 4(4), 190-195.

    https://doi.org/10.1080/23080477.2016.1260425

    [36] Lin, L., Han, Y., Fuji, M., Endo, T., Wang, X., Takahashi, M. (2008). Synthesis of hexagonal ZnO microtubes by a simple soft aqueous solution method. Journal of the Ceramic Society of Japan, 116(1350), 198-200.

    https://doi.org/10.2109/jcersj2.116.198

    1. Sutapa, I. W., Wahab, A. W., Taba, P., La Nafie, N. (2018). Synthesis and structural profile analysis of the MgO nanoparticles produced through the sol-gel method followed by annealing process.Oriental Journal of Chemistry,34(2), 1016.

    http://dx.doi.org/10.13005/ojc/340252

    [38] Sumathi. P. (2020). Synthesis and characterisation of SnO2 nanocomposite against bacteria and fungi, International Journal of Chemtech Research, 13(3), 203-209.

    https://doi.org/10.20902/IJCTR.2019.130317

    [39] Yar, A., Haspulat, B., Üstün, T., Eskizeybek, V., Avcı, A., Kamış, H., Achour, S. (2017). Electrospun TiO2/ZnO/PAN hybrid nanofiber membranes with efficient photocatalytic activity. RSC Advances, 7(47), 29806-29814.

    https://doi.org/10.1039/C7RA03699J

    [40] Sinha, A. K., Pradhan, M., Sarkar, S., Pal, T. (2013). Large-scale solid-state synthesis of Sn–SnO2 nanoparticles from layered SnO by sunlight: a material for dye degradation in water by photocatalytic reaction. Environmental Science and Technology, 47(5), 2339-2345.

    https://doi.org/10.1021/es303413q

    [41] Kajbafvala, A., Ghorbani, H., Paravar, A., Samberg, J. P., Kajbafvala, E., Sadrnezhaad, S. K. (2012). Effects of morphology on photocatalytic performance of Zinc oxide nanostructures synthesized by rapid microwave irradiation methods. Superlattices and Microstructures, 51(4), 512-522.

    https://doi.org/10.1016/j.spmi.2012.01.015

    [42] Kiwaan, H. A., Atwee, T. M., Azab, E. A., El-Bindary, A. A. (2020). Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide. Journal of Molecular Structure, 1200, 127115.

    https://doi.org/10.1016/j.molstruc.2019.127115

    [43] Pachiyappan, J., Gnanasundaram, N., Rao, G. L. (2020). Preparation and characterization of ZnO, MgO and ZnO–MgO hybrid nanomaterials using green chemistry approach. Results in Materials, 7, 100104.

    https://doi.org/10.1016/j.rinma.2020.100104

    [44] Subhan, M. A., Ahmed, T., Uddin, N., Azad, A. K., Begum, K. (2015). Synthesis, characterization, PL properties, photocatalytic and antibacterial activities of nano multi-metal oxide NiO⋅ CeO2ZnO. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 824-831.

    https://doi.org/10.1016/j.saa.2014.09.100

    [45] Kathik, K., Dhanushkodi, S., Gobinath, C., Prabukumar, S., Sivaramakrishnan, S. (2019). Ultrasonic-assisted CdO-MgO nanocomposite for multifunctional applications, Materials Technology, 34, 403-414.

    https://doi.org/10.1080/10667857.2019.1574963

    [46] Jin, C., Ge, C., Jian, Z., Wei.Y. (2016). Facile synthesis and high photocatalytic degradation performance of ZnO/SnO₂ hollow Spheres, Nano Scale Research Letters, 11, 1-6.

    https://doi.org/10.1186/s11671-016-1740-y

    [47]. Ali, A. M., Qreshah, O., Ismail, A. A., Harraz, F. A., Algarni, H., Assiri, M. A., Chiu, W. S. (2019). Morphological and optical properties of SnO2 doped ZnO nanocomposites for electrochemical sensing of hydrazine. International Journal of Electrochemical Science, 14(2), 1461-1478. https://doi.org/10.20964/2019.02.04

    [48]. Dulta, K., Koşarsoy Ağçeli, G., Chauhan, P., Jasrotia, R., Chauhan, P. K., Ighalo, J. O. (2022). Multifunctional CuO nanoparticles with enhanced photocatalytic dye degradation and antibacterial activity. Sustainable Environment Research, 32(1), 1-15.

    https://doi.org/10.1186/s42834-021-00111-w

    [49]. Adeel, M., Saeed, M., Khan, I., Muneer, M., Akram, N. (2021). Synthesis and characterization of Co–ZnO and evaluation of its photocatalytic activity for photodegradation of methyl orange. ACS Omega6(2), 1426-1435.

    https://doi.org/10.1021/acsomega.0c05092

    [50]. Amdeha, E., Mohamed, R. S. (2021). A green synthesized recyclable ZnO/MIL-101 (Fe) for Rhodamine B dye removal via adsorption and photo-degradation under UV and visible light irradiation. Environmental Technology42(6), 842-859.

    https://doi.org/10.1080/09593330.2019.1647290