[1] Utkarsh, M., Thakur, R. V., Deshpande, D., Ghodke, S. (2023). Efficiency evaluation of orange and banana peels for dye removal from synthetic industrial effluent. Materials today: proceedings, 76, 170-176.
[2] Tian, X., Yang, R., Chen, T., Cao, Y., Deng, H., Zhang, M., Jiang, X. (2022). Removal of both anionic and cationic dyes from wastewater using pH-responsive adsorbents of L-lysine molecular-grafted cellulose porous foams. Journal of hazardous materials, 426, 128121.
[3] Teixeira, R. A., Lima, E. C., Benetti, A. D., Thue, P. S., Cunha, M. R., Cimirro, N. F., Dotto, G. L. (2021). Preparation of hybrids of wood sawdust with 3-aminopropyl-triethoxysilane. Application as an adsorbent to remove Reactive Blue 4 dye from wastewater effluents. Journal of the Taiwan institute of chemical engineers, 125, 141-152.
[4] Moradi, O., Sharma, G. (2021). Emerging novel polymeric adsorbents for removing dyes from wastewater: a comprehensive review and comparison with other adsorbents. Environmental research, 201, 111534.
[5] Kumar, U., Bandyopadhyay, M. (2006). Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresource technology, 97(1), 104-109.
[6] Yadav, S., Yadav, A., Bagotia, N., Sharma, A. K., Kumar, S. (2021). Adsorptive potential of modified plant-based adsorbents for sequestration of dyes and heavy metals from wastewater-A review. Journal of water process engineering, 42, 102148
[7] Ahsani-Namin, Z., Norouzbeigi, R., Shayesteh, H. (2022). Green mediated combustion synthesis of copper zinc oxide using Eryngium planum leaf extract as a natural green fuel: Excellent adsorption capacity towards Congo red dye. Ceramics international, 48(14), 20961-20973.
[8] Laskar, N., Kumar, U. (2022). Application of low‐cost, eco‐friendly adsorbents for the removal of dye contaminants from wastewater: Current developments and adsorption technology. Environmental quality management, 32(1), 209-221.
[9] Abbasi, S., Hasanpour, M., Ahmadpoor, F., Sillanpää, M., Dastan, D., Achour, A. (2021). Application of the statistical analysis methodology for photodegradation of methyl orange using a new nanocomposite containing modified TiO2 semiconductor with SnO2. International journal of environmental analytical chemistry, 101(2), 208-224.
[10] Laskar, N., Kumar, U. (2019). Removal of Brilliant Green dye from water by modified Bambusa Tulda: adsorption isotherm, kinetics and thermodynamics study. International journal of environmental science and technology, 16, 1649-1662.
[11] Abbasi, S., Dastan, D., Ţălu, Ş., Tahir, M. B., Elias, M., Tao, L., Li, Z. (2022). Evaluation of the dependence of methyl orange organic pollutant removal rate on the amount of titanium dioxide nanoparticles in MWCNTs-TiO2 photocatalyst using statistical methods and Duncan’s multiple range test. International journal of environmental analytical chemistry, 1-15.
[12] Abbasi, S. (2018). Investigation of the enhancement and optimization of the photocatalytic activity of modified TiO2 nanoparticles with SnO2 nanoparticles using statistical method. Materials research express, 5(6), 066302.
[13] Abbasi, S. (2022). The degradation rate study of methyl orange using MWCNTs@ TiO2 as photocatalyst, application of statistical analysis based on Fisher’s F distribution. Journal of cluster science, 33(2), 593-602.
[14] Chamoli, S., Singh, A., Kapoor, R. K., Singh, S., Singh, R. K., Saini, J. K. (2023). Purification and characterization of laccase from Ganoderma lucidum and its application in decolorization of malachite green dye. Bioresource technology reports, 21, 101368
[15] Kubra, K. T., Salman, M. S., Znad, H., Hasan, M. N. (2021). Efficient encapsulation of toxic dye from wastewater using biodegradable polymeric adsorbent. Journal of molecular liquids, 329, 115541.,
[16] Geng, J., Lin, L., Gu, F., Chang, J. (2022). Adsorption of Cr (Ⅵ) and dyes by plant leaves: Effect of extraction by ethanol, relationship with element contents and adsorption mechanism. Industrial crops and products, 177, 114522.
[17] Bayramoglu, G., Angi, S. B., Acikgoz-Erkaya, I., Arica, M. Y. (2022). Preparation of effective green sorbents using O. Princeps alga biomass with different composition of amine groups: comparison to adsorption performances for removal of a model acid dye. Journal of molecular liquids, 347, 118375.
[18] Hassanien, R., Hassan, Z. A., Al-Assy, W., Ibrahim, S. M. (2022). Removal of toxic thymol sulfone phthalein dye from wastewater by using efficient adsorbent NiO nanoparticles. Journal of molecular structure, 1269, 133864.
[19] Rai, A., Sirotiya, V., Mourya, M., Khan, M. J., Ahirwar, A., Sharma, A. K., Vinayak, V. (2022). Sustainable treatment of dye wastewater by recycling microalgal and diatom biogenic materials: Biorefinery perspectives. Chemosphere, 305, 135371.
[20] Zhang, Y., Zhao, S., Mu, M., Wang, L., Fan, Y., Liu, X. (2022). Eco-friendly ferrocene-functionalized chitosan aerogel for efficient dye degradation and phosphate adsorption from wastewater. Chemical engineering journal, 439, 135605.
[21] Khalfaoui, A., Bouchareb, E. M., Derbal, K., Boukhaloua, S., Chahbouni, B., Bouchareb, R. (2022). Uptake of methyl red dye from aqueous solution using activated carbons prepared from moringa Oleifera shells. Cleaner chemical engineering, 4, 100069.
[22] Shelke, B. N., Jopale, M. K., Kategaonkar, A. H. (2022). Exploration of biomass waste as low-cost adsorbents for removal of methylene blue dye: A review. Journal of the Indian chemical society, 99(7), 100530.
[23] Abbasi, S., Ekrami-Kakhki, M. S., Tahari, M. (2017). Modeling and predicting the photodecomposition of methylene blue via ZnO–SnO2 hybrids using design of experiments (DOE). Journal of materials science: materials in electronics, 28, 15306-15312.
[24] Abbasi, S., Hasanpour, M. (2017). The effect of pH on the photocatalytic degradation of methyl orange using decorated ZnO nanoparticles with SnO2 nanoparticles. Journal of materials science: Materials in electronics, 28, 1307-1314.
[25] Abbasi, S., Hasanpour, M. (2017). Variation of the photocatalytic performance of decorated MWCNTs (MWCNTs-ZnO) with pH for photo degradation of methyl orange. Journal of materials science: materials in electronics, 28, 11846-11855.
[26] Abbasi, S. (2021). Improvement of photocatalytic decomposition of methyl orange by modified MWCNTs, prediction of degradation rate using statistical models. Journal of materials science: Materials in electronics, 32(11), 14137-14148.
[27] Abbasi, S., Ekrami-Kakhki, M. S., Tahari, M. (2019). The influence of ZnO nanoparticles amount on the optimisation of photo degradation of methyl orange using decorated MWCNTs. Progress in industrial ecology, an international journal, 13(1), 3-15.
[28] Abbasi, S., Hasanpour, M., Ekrami-Kakhki, M. S. (2017). Removal efficiency optimization of organic pollutant (methylene blue) with modified multi-walled carbon nanotubes using design of experiments (DOE). Journal of materials science: Materials in electronics, 28, 9900-9910.
[29] Abbasi, S., Ahmadpoor, F., Imani, M., Ekrami-Kakhki, M. S. (2020). Synthesis of magnetic Fe3O4@ ZnO@ graphene oxide nanocomposite for photodegradation of organic dye pollutant. International journal of environmental analytical chemistry, 100(2), 225-240.
[30] Abbasi, S. (2020). Adsorption of dye organic pollutant using magnetic ZnO embedded on the surface of graphene oxide. Journal of inorganic and organometallic polymers and materials, 30, 1924-1934.
[31] Abbasi, S. (2021). Response surface methodology for photo degradation of methyl orange using magnetic nanocomposites containing zinc oxide. Journal of cluster science, 32(4), 805-812.
[32] Abbasi, S. (2019). Photocatalytic activity study of coated anatase-rutile titania nanoparticles with nanocrystalline tin dioxide based on the statistical analysis. Environmental monitoring and assessment, 191(4), 206.
[33] Sakr, F., Alahiane, S., Sennaoui, A., Dinne, M., Bakas, I., Assabbane, A. (2020). Removal of cationic dye (Methylene Blue) from aqueous solution by adsorption on two types of biomaterials of South Morocco. Materials today: Proceedings, 22, 93-96.
[34] Wekoye, J. N., Wanyonyi, W. C., Wangila, P. T., Tonui, M. K. (2020). Kinetic and equilibrium studies of Congo red dye adsorption on cabbage waste powder. Environmental chemistry and ecotoxicology, 2, 24-31.
[35] Sirajudheen, P., Poovathumkuzhi, N. C., Vigneshwaran, S., Chelaveettil, B. M., Meenakshi, S. (2021). Applications of chitin and chitosan-based biomaterials for the adsorptive removal of textile dyes from water—A comprehensive review. Carbohydrate polymers, 273, 118604.
[36] Yadav, M., Thakore, S., Jadeja, R. (2022). Removal of organic dyes using Fucus vesiculosus seaweed bioadsorbent an ecofriendly approach: Equilibrium, kinetics and thermodynamic studies. Environmental chemistry and ecotoxicology, 4, 67-77.
[37] Ihaddaden, S., Aberkane, D., Boukerroui, A., Robert, D. (2022). Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica). Journal of water process engineering, 49, 102952.
[38] Thanh, N. C., Shanmugam, S., Shanmugasundaram, S., AlSalhi, M. S., Devanesan, S., Shanmuganathan, R., Chi, N. T. L. (2022). Comparison of Simarouba glauca seed shell carbons for enhanced direct red 12B dye adsorption: Adsorption isotherm and kinetic studies. Food and chemical toxicology, 168, 113326.
[39] Suhaimi, A., Abdulhameed, A. S., Jawad, A. H., Yousef, T. A., Al Duaij, O. K., ALOthman, Z. A., Wilson, L. D. (2022). Production of large surface area activated carbon from a mixture of carrot juice pulp and pomegranate peel using microwave radiation-assisted ZnCl2 activation: An optimized removal process and tailored adsorption mechanism of crystal violet dye. Diamond and related materials, 130, 109456.
[40] Chung, W. J., Shim, J., Ravindran, B. (2022). Application of wheat bran based biomaterials and nano-catalyst in textile wastewater. Journal of king Saud university-science, 34(2), 101775.
[41] Homagai, P. L., Poudel, R., Poudel, S., Bhattarai, A. (2022). Adsorption and removal of crystal violet dye from aqueous solution by modified rice husk. Heliyon, 8(4), e09261.
[42] Dahlan, I., Keat, O. H., Aziz, H. A., Hung, Y. T. (2023). Synthesis and characterization of MOF-5 incorporated waste-derived siliceous materials for the removal of malachite green dye from aqueous solution. Sustainable chemistry and pharmacy, 31, 100954.
[43] Dbik, A., Bentahar, S., El Khomri, M., El Messaoudi, N., Lacherai, A. (2020). Adsorption of Congo red dye from aqueous solutions using tunics of the corm of the saffron. Materials today: proceedings, 22, 134-139.
[44] Goria, K., Bharti, A., Raina, S., Kothari, R., Tyagi, V. V., Singh, H. M., Kour, G. (2022). Low-cost adsorbent biomaterials for the remediation of inorganic and organic pollutants from industrial wastewater: Eco-friendly approach. In sustainable materials for sensing and remediation of noxious pollutants (pp. 87-112). Elsevier.
[45] Chan, L., Cheung, W., Allen, S., McKay, G. (2009). Separation of acid-dyes mixture by bamboo derived active carbon. Separation and purification technology, 67(2), 166-172.
[46] Chan, L. S., Cheung, W. H., McKay, G. (2008). Adsorption of acid dyes by bamboo derived activated carbon. Desalination, 218(1-3), 304-312.
[47] Chan, L. S., Cheung, W. H., Allen, S. J., McKay, G. (2012). Error analysis of adsorption isotherm models for acid dyes onto bamboo derived activated carbon. Chinese journal of chemical engineering, 20(3), 535-542.
[48] Sharma, J., Sharma, S., Soni, V. (2023). Toxicity of malachite green on plants and its phytoremediation: A review. Regional studies in marine science, 102911.
[49] Ramírez-Montoya, L. A., Hernández-Montoya, V., Montes-Morán, M. A. (2014). Optimizing the preparation of carbonaceous adsorbents for the selective removal of textile dyes by using Taguchi methodology. Journal of analytical and applied pyrolysis, 109, 9-20.
[50] Gupta, T. B., Lataye, D. H., Kurwadkar, S. T. (2020). Adsorption of crystal violet dye: Parameter optimization using Taguchi’s experimental methodology. In advanced engineering optimization through intelligent techniques: Select proceedings of AEOTIT 2018 (pp. 653-665). Springer Singapore.
[51] Gupta, V. K. (2009). Application of low-cost adsorbents for dye removal–a review. Journal of environmental management, 90(8), 2313-2342.
[52] Yusuff, A. S., Ajayi, O. A., Popoola, L. T. (2021). Application of Taguchi design approach to parametric optimization of adsorption of crystal violet dye by activated carbon from poultry litter. Scientific African, 13, e00850.
[53] Biswal, A. K., Sahoo, M., Suna, P. K., Panda, L., Lenka, C., Misra, P. K. (2022). Exploring the adsorption efficiency of a novel cellulosic material for removal of food dye from water. Journal of molecular liquids, 350, 118577.
[54] Yusuff, A. S., Ajayi, O. A., Popoola, L. T. (2021). Application of Taguchi design approach to parametric optimization of adsorption of crystal violet dye by activated carbon from poultry litter. Scientific African, 13, e00850.
[55] Roozban, N., Abbasi, S., Ghazizadeh, M. (2017). The experimental and statistical investigation of the photo degradation of methyl orange using modified MWCNTs with different amount of ZnO nanoparticles. Journal of materials science: Materials in electronics, 28, 7343-7352.
[56] Roozban, N., Abbasi, S., Ghazizadeh, M. (2017). Statistical analysis of the photocatalytic activity of decorated multi-walled carbon nanotubes with ZnO nanoparticles. Journal of materials science: Materials in electronics, 28, 6047-6055.
[57] Jawad, A. H., Saber, S. E. M., Abdulhameed, A. S., Farhan, A. M., AL Othman, Z. A., Wilson, L. D. (2023). Characterization and applicability of the natural Iraqi bentonite clay for toxic cationic dye removal: Adsorption kinetic and isotherm study. Journal of King Saud university-science, 35(4), 102630.
[58] Modwi, A., Albadri, A., Taha, K. K. (2023). High Malachite Green dye removal by ZrO2-g-C3N4 (ZOCN) meso-sorbent: Characteristics and adsorption mechanism. Diamond and related materials, 132, 109698.
[59] Perez-Calderon, J., Marin-Silva, D. A., Zaritzky, N., Pinotti, A. (2022). Eco-friendly PVA-chitosan adsorbent films for the removal of azo dye Acid Orange 7: Physical cross-linking, adsorption process, and reuse of the material. Advanced industrial and engineering polymer research,6(3), 2542-5048.
[60] Tran, T. K. N., Ngo, T. C. Q., Nguyen, Q. V., Do, T. S., Hoang, N. B. (2022). Chemistry potential and application of activated carbon manufactured from coffee grounds in the treatment of wastewater: A review. Materials today: Proceedings, 60, 1914-1919.
[61] Giri, D. D., Alhazmi, A., Mohammad, A., Haque, S., Srivastava, N., Thakur, V. K., Pal, D. B. (2022). Lead removal from synthetic wastewater by biosorbents prepared from seeds of Artocarpus Heterophyllus and Syzygium Cumini. Chemosphere, 287, 132016.
[62] Yadav, M., Thakore, S., Jadeja, R. (2022). Removal of organic dyes using Fucus vesiculosus seaweed bioadsorbent an ecofriendly approach: Equilibrium, kinetics and thermodynamic studies. Environmental chemistry and ecotoxicology, 4, 67-77.
[63] Syahida F A, Muhamad S S, Adrian B-P, Suzylawati I, (2021) Kinetics, process design and implementation of zwitterionic adsorbent coating for dipolar dyes removal in wastewater treatment industry, Environmental Technology & Innovation, 23,101763.
[64] Pereira, J. E., Ferreira, R. L., Nascimento, P. F., Silva, A. J., Padilha, C. E., Neto, E. L. B. (2021). Valorization of carnauba straw and cashew leaf as bio adsorbents to remove copper (II) ions from aqueous solution. Environmental technology and innovation, 23, 101706.
[65] Sanad, M. M. S., Farahat, M. M., Khalek, M. A. (2021). One-step processing of low-cost and superb natural magnetic adsorbent: kinetics and thermodynamics investigation for dye removal from textile wastewater. Advanced powder technology, 32(5), 1573-1583.