[1] Li, J., Li, Y., Meng, Q. (2010). Removal of nitrate by zero-valent iron and pillared bentonite. Journal of hazardous materials, 174(1-3), 188-193.
[2] Islam, M., Patel, R. (2010). Synthesis and physicochemical characterization of Zn/Al chloride layered double hydroxide and evaluation of its nitrate removal efficiency. Desalination, 256(1-3), 120-128.
[3] Park, J. B. K., Craggs, R. J., Sukias, J. P. S. (2009). Removal of nitrate and phosphorus from hydroponic wastewater using a hybrid denitrification filter (HDF). Bioresource technology, 100(13), 3175-3179.
[4] Pang, Y., Wang, J. (2021). Various electron donors for biological nitrate removal: A review. Science of the total environment, 794, 148699.
[5] Altman, S. J., Parizek, R. R. (1995). Dilution of nonpoint‐source nitrate in groundwater (Vol. 24, No. 4, pp. 707-718). American society of agronomy, crop science society of America, and soil science society of America.
[6] Fanning, J. C. (2000). The chemical reduction of nitrate in aqueous solution. Coordination chemistry reviews, 199(1), 159-179.
[7] Cliford, D., Liu, X. (1993). Ion exchange for nitrate removal. Journal‐American water works association, 85(4), 135-143.
[8] Schoeman, J. J., Steyn, A. (2003). Nitrate removal with reverse osmosis in a rural area in South Africa. Desalination, 155(1), 15-26.
[9] Sahli, M. M., Annouar, S., Mountadar, M., Soufiane, A., Elmidaoui, A. (2008). Nitrate removal of brackish underground water by chemical adsorption and by electrodialysis. Desalination, 227(1-3), 327-333.
[10] Kulkarni, S., Kaware, J. (2014). Regeneration and recovery in adsorption-a review. International journal of innovative science engineering and technology 1(8), 61-64.
[11] Reeve, P. J., Fallowfield, H. J. (2018). Natural and surfactant modified zeolites: A review of their applications for water remediation with a focus on surfactant desorption and toxicity towards microorganisms. Journal of environmental management, 205, 253-261.
[12] Mokhtari-Hosseini, Z. B., Kazemiyan, E., Tayebee, R., Shenavaei-Zare, T. (2016). Optimization of ammonia removal by natural zeolite from aqueous solution using response surface methodology. Hemijska industrija, 70(1), 21-29.
[13] Guan, H., Bestland, E., Zhu, C., Zhu, H., Albertsdottir, D., Hutson, J., Ellis, A. V. (2010). Variation in performance of surfactant loading and resulting nitrate removal among four selected natural zeolites. Journal of hazardous materials, 183(1-3), 616-621.
[14] Schick, J., Caullet, P., Paillaud, J. L., Patarin, J., Mangold-Callarec, C. (2010). Batch-wise nitrate removal from water on a surfactant-modified zeolite. Microporous and mesoporous materials, 132(3), 395-400.
[15] Gönder, Z. B., Kaya, Y., Vergili, I., Barlas, H. (2010). Optimization of filtration conditions for CIP wastewater treatment by nanofiltration process using Taguchi approach. Separation and purification technology, 70(3), 265-273.
[16] Srivastava, V. C., Mall, I. D., Mishra, I. M. (2008). Optimization of parameters for adsorption of metal ions onto rice husk ash using Taguchi's experimental design methodology. Chemical engineering journal, 140(1-3), 136-144.
[17] Hu, X., Cheng, Z. (2015). Removal of diclofenac from aqueous solution with multi-walled carbon nanotubes modified by nitric acid. Chinese journal of chemical engineering, 23(9), 1551-1556.
[18] Schick, J., Caullet, P., Paillaud, J. L., Patarin, J., Mangold-Callarec, C. (2011). Nitrate sorption from water on a Surfactant-Modified Zeolite. Fixed-bed column experiments. Microporous and mesoporous materials, 142(2-3), 549-556.
[19] Zhan, Y., Lin, J., Zhu, Z. (2011). Removal of nitrate from aqueous solution using cetylpyridinium bromide (CPB) modified zeolite as adsorbent. Journal of hazardous materials,186(2-3), 1972-1978.
[20] Hailu, S. L., Nair, B. U., Redi-Abshiro, M., Diaz, I., & Tessema, M. (2017). Preparation and characterization of cationic surfactant modified zeolite adsorbent material for adsorption of organic and inorganic industrial pollutants. Journal of environmental chemical engineering, 5(4), 3319-3329.
[21] Hrenovic, J., Rozic, M., Sekovanic, L., Anic-Vucinic, A. (2008). Interaction of surfactant-modified zeolites and phosphate accumulating bacteria. Journal of hazardous materials, 156(1-3), 576-582.
[22] Li, Z., Bowman, R. S. (2001). Regeneration of surfactant-modified zeolite after saturation with chromate and perchloroethylene. Water research, 35(1), 322-326.
[23] Guan, H., Schulze‐Makuch, D., Schaffer, S., Pillai, S. D. (2003). The effect of critical pH on virus fate and transport in saturated porous medium. Groundwater, 41(5), 701-708.
[24] Misaelides, P. (2011). Application of natural zeolites in environmental remediation: A short review. Microporous and mesoporous materials, 144(1-3), 15-18.
[25] Srivastava, V. C., Mall, I. D., Mishra, I. M. (2007). Multicomponent adsorption study of metal ions onto bagasse fly ash using Taguchi's design of experimental methodology. Industrial and engineering chemistry research, 46(17), 5697-5706.
[26] Küçük, Ö. (2006). Application of Taguchi method in the optimization of dissolution of ulexite in NH4Cl solutions. Korean journal of chemical engineering, 23, 21-27.
[27] Yeşilyurt, M. (2004). Determination of the optimum conditions for the boric acid extraction from colemanite ore in HNO3 solutions. Chemical engineering and processing: Process intensification, 43(10), 1189-1194.
[28] Chou, C. S., Yang, R. Y., Chen, J. H., Chou, S. W. (2010). The optimum conditions for preparing the lead-free piezoelectric ceramic of Bi05Na05TiO3 using the Taguchi method. Powder technology, 199(3), 264-271.
[29] Srivastava, V. C., Mall, I. D., Mishra, I. M. (2006). Equilibrium modelling of single and binary adsorption of cadmium and nickel onto bagasse fly ash. Chemical engineering journal, 117(1), 79-91.