Acacia trees-legumes potential for phytoremediation of urban landfill soil in Bonoua (Côte d’Ivoire)

Document Type : Research Paper

Authors

1 Félix Houphouët-Boigny University, Faculty of Earth Sciences and Mineral Resources. Laboratory of Soil, Water and Geomaterials Sciences, Abidjan, Côte d’Ivoire, 22 BP 582 Abidjan 22, Côte d'Ivoire

2 Swiss Centre for Scientific Research in Côte d’Ivoire, 01 BP 1303 Abidjan 01, Côte d’Ivoire

Abstract

Landfills in urban areas contribute to soil and water pollution with heavy metals. In Côte d’Ivoire, urban landfill soil is used to produce food, which presents health risks. This study evaluates the growth capacity of Acacia spp. trees-legumes (Acacia mangium, Acacia auriculiformis, and Acacia crassicarpa) and their potential for landfill soil remediation and restorations. These trees-legumes were grown under controlled conditions for six months in polluted soils sampled from urban landfills located in southeastern Côte d'Ivoire. The study used a simple, completely randomized design with four treatments (Acacia mangium, Acacia auriculiformis, Acacia crassicarpa, and control) and five replicates. Growth parameters, soil pH, metal contents (bulk soil, leachate), and plants were measured during this experiment. The results indicated that Acacia auriculiformis and Acacia mangium displayed better growth indicators (dry biomass, heights, and number of phyllodes) compared to Acacia crassicarpa. The soil pH under the trees-legumes indicated a significant decrease compared to the control (p < 0.05). In addition, heavy metal contents significantly decreased in the leached solutions of the planted soil compared to the control (p < 0.05). In the exchangeable soil fraction, only the Acacia auriculiformis treatment showed a significant decrease in Zn compared to the control. Regarding the plants, Acacia auriculiformis showed the highest amounts of Pb (111 µg plant-1) and Cd (54 µg plant-1) in total biomasses. Acacia crassicarpa had the highest metal extraction capacity from the polluted soil (Pb: 24 µg plant‑1, Cr: 11 µg plant-1, Cd: 14 µg plant-1, and Zn: 83 µg plant-1) compared to the two other species. The Acacia crassicarpa species appears to be the best one for the phytoremediation of landfill soils.

Graphical Abstract

Acacia trees-legumes potential for phytoremediation of urban landfill soil in Bonoua (Côte d’Ivoire)

Keywords

Main Subjects


[1] Kolédzi, K.E., Baba, G., Feuillade, G., Matejka, G. (2011). Caractérisation physique des déchets solides urbains à Lomé au Togo, dans la perspective du compostage décentralisé dans les quartiers. Déchets sciences et techniques, 59.
[2] Sbaa, M., Chergui, H., Melhaoui, M., Bouali, A. (2001). Tests d’adsorption des métaux lourds (Cd, Cu, Ni, Pb, Zn) sur des substrats organiques et minéraux de la ville d’Oujda. Actes institut agronomique et vétérinaire, 21(2), 109-119.
[3] Ettler, V., Matura, M., Mihaljevic, M., Bezdicka, P. (2006). Metal speciation and attenuation in stream waters and sediments contaminated by landfill leachate. Environmental geology, 49, 610-619.
[4] Mokhtaria, M.M., Eddine, B.B., Larbi, D., Azzedine, H., Rabah, L. (2007). Caractérisation de la décharge publique de la ville de Tiaret et son impact sur la qualité des eaux souterraines. Courrier du Savoir, 08, 93-99.
[5] Bongoua-Devisme, A., Bolou-Bi, E., Kassin, K., Balland-Bolou-Bi, C., Gueable, Y., Adiaffi, B., Yao-Kouame, A., Djagoua, E. (2018). Assessment of heavy metal contamination degree of municipal open-air dumpsite on surrounding soils: Case of dumpsite of Bonoua, Ivory Coast. International journal of engineering research and general science, 6(5), 28-42.
[6] Chaney, R.L., Malik, M., Li Y.M., Brown, S.L., Brewer, E.P., Angle, J.S., Baker, A.J.M.(1997). Phytoremediation of soil metals. Current opinion in biotechnology, 8, 279-284.
[7] Gadd, G. M. (2001). Phytoremediation of toxic metals; using plants to clean up the environment. Edited by Ilya Raskin and Burt D Ensley, John Wiley and Sons, Inc, New York, 2000, 304 pp, price UK£ 58.80, ISBN 0 471 19254 6.
[8] Ali, H., Khan, E., Sajad, M.A. (2013). Phytoremediation of heavy metals-Concepts and applications. Chemosphere, 91, 869-881.
[9] Ouédraogo, O. (2011). Essai de phytoremédiation des boues polluées aux hydrocarbures et métaux par des espèces végétales autochtones au climat subsaharien. Mémoire pour l’obtention du master en ingénierie de l'eau et de l'environnement option : environnement, 62.
[10] Majid, N.M., Islam, M.M, Justin, V., Abdu, A., Ahmadpour, P. (2011). Evaluation of heavy metal uptake and translocation by Acacia mangium as a phytoremediator of copper contaminated soil. African journal of biotechnology, 10(42), 8373-8379.
[11] Manikandan, M., Kannan, V., Mahalingam, K., Vimala, A., Chun, S. (2015). Phytoremediation potential of chromium-containing tannery effluent-contaminated soil by native Indian timber-yielding tree species. Preparative biochemistry and biotechnology, 46(1), 100-108.
[12] Maryam, G., Majid, N.M., Islam, M.M., Ahmed, O.H., Abdu, A. (2015). Phytoremediation of copper-contaminated sewage sludge by tropical plants. Journal of tropical forest science, 27(4), 535-547.
[13] Mohd, S.N., Majid, N.M., Noor, A.M.S., Abdu, A. (2013). Growth performance, biomass and phytoextraction efficiency of Acacia mangium and Melaleuca cajuputi in remediating heavy metal contaminated soil. American journal of environmental science, 9 (4), 310-316.
[14] Ng, C.C., Boyce, A.N., Rahman, M.M., Abas, M.R., Mahmood, N.Z. (2018). Phyto-evaluation of Cd-Pb using tropical plants in soil-leachate conditions. Air, soil and water research, 11, 1-9.
[15] Yongpisanphop, J., Babel, S., Kruatrachue, M., Pokethitiyook, P. (2020). Pb phytostabilization by fast-growing trees inoculated with Pb-resistant plant growth-promoting endophytic bacterium. Pollution, 6(4), 923-934.
[16] Rosli, R. A., Harumain, Z. A., Zulkalam, M. F., Hamid, A. A., Sharif, M. F., Mohamad, M. A., Shahari, R. (2021). Phytoremediation of arsenic in mine wastes by acacia mangium. Remediation journal, 31(3), 49-59.
[17] Rana, V., Maiti, S.K. (2018). Differential distribution of metals in tree tissues growing on reclaimed coal mine overburden dumps, Jharia coal field (India). Environmental science and pollution research, 25, 9745-9758.
[18] Sampanpanish, P. (2018). Arsenic, manganese, and cyanide removal in a tailing storage facility for a gold mine using phytoremediation. Remediation journal, 28, 83-89.
[19] Yi, Y., Peng, S., Zhang, L., Yao, B., Luo, X., Zang, X., Zhang, G., Wen, D. (2020). Growth dynamics of Acacia auriculiformis under cadmium pollution and its combination with atmospheric CO2 enrichment and nitrogen addition. Journal of tropical and subtropical botany, 28, 17-24.
[20] Zerkout, A., Mustafa, M., Omar, H., Hafiz, M.I., Go, R. (2021). Acacia auriculiformis Cunn. Ex Benth as Phytoextraction Agent: A Growth response, Physiological tolerance and lead removal capability evaluation. Jordan journal of biological sciences, 14, 423-431.
[21] Rejeki, Y.S., Saryono, N. (2014). Phytoremediation with Acasia (Acasia crassicarpa) on peat soil using fly ash and dreg as ameliorants. Indonesian journal environmental science and technology, 1, 22-27.
[22] Daryat, F., Rasyad, A., Nasution, S. (2020). Analysis of industrial forest plants as phytoremediation agents of heavy metals fly ash contamination. Jurnal Ilmu-Ilmu Kehutanan, 4(2), 36-47.
[23] Justin, V., Majid, N.M., Islam, M.M., Abdu, A. (2011). Assessment of heavy metal uptake and translocation in Acacia mangium for phytoremediation of cadmium-contaminated soil. Journal of food, agriculture and environment, 9(2), 588-592.
[24] Cipriani, H.N., Dias, L.E., Costa, M.D., Campos, N.V., Azevedo, A.A., Gomes, R.J., Fialho, I.F., Amezquita, S.P. (2013). Arsenic toxicity in Acacia mangium willd. and Mimosa caesalpiniaefolia benth. seedlings. Revista brasileira de ciência do sol, 37, 1423-1430.
[25] Mulchi, C., Adamu, C.A., Bell, P.F., Chaney, R.L. (1992). Residual heavy metal concentrations in sludge amended coastal plain soils. II: Predicting metal concentrations in tabacco from soil test information. Communications in soil science and plant analysis, 23, 1053-1069.
[26] El Himer, S., Bouabdli, A., Baghdad, B., Saidi, N. (2013). Perspectives de phytostabilisation par Jatropha curcas L. des résidus miniers de la mine de Zaida (Haute Moulouya, Maroc). Ecologia mediterranea, 39 (2), 19-30.
[27] Robinson, B. H., Bañuelos, G., Conesa, H. M., Evangelou, M. W., Schulin, R. (2009). The phytomanagement of trace elements in soil. Critical Reviews in Plant Sciences, 28(4), 240-266.
[28] Ruban, V., Durand, C., Legret, M. (2004). Caractérisation physico-chimique des sédiments de deux bassins de retenue des eaux pluviales: Wissous (urbain) et Ronchin (routier). Bulletin des laboratoires des ponts et chaussées, (252), 119-134.
[29] Hargreaves, J. C., Adl, M. S., & Warman, P. R. (2008). A review of the use of composted municipal solid waste in agriculture. Agriculture, ecosystems and environment, 123(1-3), 1-14.
[30] CCME (Canadian council of ministers of the environment updated) (2001). Canadian soil quality guidelines for the protection of environmental and human health. Canadian environmental quality guidelines, No.1299. CCME, Winnipeg. ISBN 1-896997.
[31] Howeler, R.H. (2004). Nutrient inputs and losses in cassava-based cropping systems: Examples from Vietnam and Thailand. In: Simmons, R.W.; Noble, A.D.; Lefroy, R.D.B. (eds.). Intern. Workshop on Nutrient Balances for Sustainable Agriculture Production and Natural Resource Management in Southeast Asia (2001, Bangkok, Thailand). Selected papers and presentations. International Water Management Institute (IWMI); Centro Internacional de Agricultura Tropical (CIAT), 1-30.
[32] Giroux, M., Audesse, P. (2004). Comparaison de deux méthodes de détermination des teneurs en carbone organique, en azote total et du rapport C/N de divers amendements organiques et engrais de ferme. Agrosol, 15(2), 107-110.
[33] Doucet, R. (2010). Le climat et les sols agricoles. Éditions Berger, 443.
[34] Ballot, C.S.A., Mawussi, G., Atakpama, W., Moita-Nassy, M., Yangakola, T.M., Zinga, I., Silla, S., Kpérkouma, W., Dercon, G., Komlan, B., Koffi, A. (2016). Caractérisation physico-chimique des sols en vue de l’amélioration de la productivité du manioc (Manihot esculenta Crantz) dans la région de Damara au Centre-sud de Centrafrique. Agronomie Africaine, 28 (1), 9-23.
[35] Clarkson, D. T., Hanson, J. B. (1980). The mineral nutrition of higher plants. Annual review of plant physiology, 31(1), 239-298.
[36] Marschner, H. (1996). Root-induced changes in the availability of micronutrients in the rhizosphere. Plant roots: the hidden half, 557-579.
[37] Hinsinger, P. (1998). How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Advances in agronomy, 64, 225-265.
[38] Loosemore, N., Straczek, A., Hinsinger, P., Jaillard, B. (2004). Zinc mobilisation from a contaminated soil by three genotypes of tobacco as affected by soil and rhizosphere pH. Plant soil, 260, 19-32.
[39] Séguin, V., Gagnon, C., Courchesne, F. (2004). Changes in water extractable metals, pH and organic carbon concentrations at the soil–root interface of forested soils. Plant and soil ,260, 1-17.
[40] Bolou-Bi, B.E., Kraidy, N.B.A., Sermé, A., Ettien, D.J.B., Balland-Bolou-Bi, C. (2020). Contribution of rhizosphere processes to acacia seedlings adaptation into polluted soils of a municipal landfill (Côte d’Ivoire). International journal of research in environmental science, 6 (3), 36-48.
[41] Knight, B., Zhao, F.J., McGrath, S.P., Shen, Z.G. (1997). Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentrations and chemical speciation of metals in soil solution. Plant and soil, 197, 71-78.
[42] Zhang, H., Zhao, F.J., Sun, B., Davison, W., and McGrath, S.P. (2001). A new method to measure effective soil solution concentration predicts copper availability to plants. Environmental science and technology, 35, 2602–2607.
[43] Hinsinger, P., Courchesne, F. (2008). Biogeochemistry of metals and metalloids at the soil-root interface. In biophysico-chemical processes of heavy metals and metalloids in soil environments (pp. 268-311). Wiley-Interscience Hoboken, NJ. pp. 265-311.
[44] Bento, R.A., Saggin-Júnior, O.J., Pitard, R.M., Straliotto, R., Da Silva, E.M.R., Tavares, S.R., De Landa, F.H., Martins, L.F., Volpon, A.G.T. (2012). Selection of leguminous trees associated with symbiont microorganisms for phytoremediation of petroleum-contaminated soil. Water air soil pollution, 223, 5659–5671.
[45] Majid, N.M., Islam, M.M., Mathew, L. (2012). Heavy metal uptake and translocation by mangium (Acacia mangium) from sewage sludge contaminated soil. Australian journal of crop science, 6(8), 1228-1235.
[46] Gaboury, S., Boucher, J.F., Villeneuve, C, Lord, D., Gagnon, R. (2009). Estimating the net carbon balance of boreal open woodland afforestation: A case-study in Quebec's closed-crown boreal forest. Forest ecology and management, 257(2), 483-494.
[47] Peverill, K. I., Sparrow, L. A., Reuter, D. J. (Eds.). (1999). Soil analysis: an interpretation manual. CSIRO publishing, 12.
[48] N'guessan, A. K., Assande, A., Issali, A. E., Bi, N. B. V., Yeo, O. (2016). Fiche technique-Comment régénérer naturellement une forêt en Côte d’Ivoire?, Journal of applied biosciences, 105, 10085-10091.
[49] Seshadri, B., Bolan, N.S., Naidu, R. (2015). Rhizosphere-induced heavy metal(loid) transformation in relation to bioavailability and remediation. Journal of soil science and plant nutrition, 15, 524-548.
[50] Hinsinger, P., Plassard, C., Tang, C., Jaillard, B. (2003). Origins of root‐mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant and Soil 248, 43‐59.
[51] Lopareva‐Pohu, A. (2011). Intérêt de la phytostabilisation aidée pour la gestion des sols pollués par des éléments traces métalliques (Cd, Pb, Zn). Thèse de doctorat de l’Université du Littoral Côte d’Opale, 288.
[52] Dear, B.S., Virgona, J.M., Sandral, G.A., Swan, A.D., Morris, B. (2009). Changes in soil mineral nitrogen, nitrogen leached, and surface pH under annual and perennial pasture species. Crop Pasture science, 60(10), 975-986.
[53] Tang, C., Weligama, C., Sale, P. (2013). Subsurface soil acidification in farming systems: its possible causes and management options. Molecular environmental soil science, 389-412.
[54] Abbas, G., Saqib M., Akhtar, J., Murtaza, G., Shahid, M, Hussain, A. (2016). Relationship between rhizosphere acidification and phytoremediation in two Acacia species. Journal of soils and sediments, 16, 1392-1399.
[55] Larsen, P.B., Degenhardt, J., Tai, C.Y., Stenzler, L.M., Howell, S.H., Kochain, L.V. (1998). Aluminum-resistant arabidopsis mutants that exhibit altered patterns of aluminum accumulation and organic acid release from roots. Plant physiology, 117, 9-18.
[56] Singh, S., Parihar, P., Singh, R. and Singh, V.P. (2016). Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and bionomics. Frontiers in plant science, 6, 1143.
[57] Baker, A.J.M. (1987). Metal tolerance. New phytologist, 106, 93-111.
[58] Yoon, J., Cao, X., Zhou, Q., Ma, L.Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the total environment, 368, 456-464.
[59] Mununga, K.F., Kaumbu, K.J.M., Chuimika Mulumbati, M., Mwilambwe, .K.X, Maloba Kazembe, J.P., Banza, I.M., Bushabu, M., Mpundu, M.M.M. (2017). Essai de phytostabilisation des sites contaminés par les éléments traces métalliques dans la région de Lubumbashi (RD. Congo) : Gamme de tolérance de Jatropha curcas au sulfate de cuivre. Journal of applied biosciences, 112, 11080-11091.