[1] Spennati, E., Mirizadeh. S., Casazza, A. A., Solisio, C., Converti, A. ( 2021). Chlorella vulgaris and Arthrospira platensis growth in a continuous membrane photobioreactor using industrial winery wastewater. Algal research, 60, 102519.
[2] Zhang, E., Wang, B., Wang, Q., Zhang, S., Zhao, B. (2008). Ammonia–nitrogen and orthophosphate removal by immobilized Scenedesmus sp. isolated from municipal wastewater for potential use in tertiary treatment. Bioresource technology, 99(9), 3787-93.
[3] Gonçalves, A. L., Pires, J. C., Simões, M. (2017). A review on the use of microalgal consortia for wastewater treatment. Algal research, 24, 403-15.
[4] Benítez, M. B., Champagne, P., Ramos, A., Torres, A. F., Ochoa-Herrera, V.( 2019). Wastewater treatment for nutrient removal with Ecuadorian native microalgae. Environmental technology, 40(22), 2977-85.
[5] Torres-Franco, A., Passos,F., Figueredo, C., Mota, C., Muñoz, R. (2021). Current advances in microalgae-based treatment of high-strength wastewaters: challenges and opportunities to enhance wastewater treatment performance. Reviews in environmental science and biotechnology, 20(1), 209-35.
[6] Otondo, A., Kokabian, B., Stuart-Dahl, S., Gude, V. G. (2018). Energetic evaluation of wastewater treatment using microalgae, Chlorella vulgaris. Journal of environmental chemical engineering, 6(2), 3213-22.
[7] Wang, L., Liu, J., Zhao, Q., Wei, W., Sun, Y.( 2016). Comparative study of wastewater treatment and nutrient recycle via activated sludge, microalgae and combination systems. Bioresource technology, 211, 1-5.
[8] Satpal, S., Khambete, A. K. (2016). Wastewater treatment using micro-algae -A review paper. International journal of engineering technology management and applied sciences, 4(2), 188-192.
[9] Al-Jabri, H., Das, P., Khan, S., Thaher, M., AbdulQuadir, M. (2021). Treatment of wastewaters by microalgae and the potential applications of the produced biomass-A review. Water, 13(1), 27.
[10] Yadav, G., Dash, S.K., Sen, R. (2019). A biorefinery for valorization of industrial wastewater and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production. Science of the total environment, 688,129-35.
[11] Ziganshina, E. E., Bulynina, S. S., Ziganshin, A. M. (2021). Assessment of Chlorella sorokiniana growth in anaerobic digester effluent. Plants (Basel), 10(3), 478
[12] Li, K., Liu, Q., Fang, F., Luo, R., Lu ,Q,. Zhou, W., Huo, Shuhao, Cheng, p., Liu, J., Addy, M., Chen, P., Chen, D., Ruan, R. ( 2019). Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresource technology, 291, 121934.
[13] Kim, J., Lingaraju, B. P., Rheaume, R., Lee, J. Y., Siddiqui, K. F. (2010). Removal of ammonia from wastewater effluent by Chlorella vulgaris. Tsinghua science and technology, 15(4), 391-6.
[14] Chen, Z., Xiao, Y., Liu, T., Yuan, M., Liu, G., Fang, J., Yang, Bo. (2021). Exploration of microalgal species for nutrient removal from anaerobically digested swine wastewater and potential lipids production. Microorganisms, 9(12), 2469.
[15] Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., Wang, Y., Ruan, R. (2010). Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Applied biochemistry and biotechnology, 162(4), 1174-1186.
[16] Kim, J., Liu, Z., Lee, J-Y., Lu, T. (2013). Removal of nitrogen and phosphorus from municipal wastewater effluent using Chlorella vulgaris and its growth kinetics. Desalination and water treatment, 51(40-42), 7800-7806.
[17] Min, M., Wang, L., Li, Y., Mohr, M. J., Hu, B., Zhou, W., Zhou, W., Chen, P., Ruan, R., Micheal, J. (2011). Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Applied biochemistry and biotechnology, 165(1), 123-137.
[18] Ahmad, F., Khan, A. U., Yasar, A. (2013). The potential of Chlorella vulgaris for wastewater treatment and biodiesel production. Pakistan journal of botany, 45, 461-465.
[19] Gao, F., Yang, Z. H., Li, C., Zeng, G. M., Ma D-H, Zhou, L. (2015). A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent. Bioresource technology, 179, 8-12.
[20] Moondra, N., Jariwala, N. D., Christian, R. A. (2020). Sustainable treatment of domestic wastewater through microalgae. International journal of phytoremediation, 22(14), 1480-1486.
[21] Rada-Ariza, A. M., Lopez-Vazquez, C. M., van der Steen, N., Lens, P. (2017). Nitrification by microalgal-bacterial consortia for ammonium removal in flat panel sequencing batch photo-bioreactors. Bioresource technology, 245, 81-89.
[22] Aditya, L., Mahlia, T. M. I., Nguyen, L. N., Vu, H. P., Nghiem, L. D. (2022). Microalgae-bacteria consortium for wastewater treatment and biomass production. Science of the total environment, 838, 155871.
[23] Fito, J., Alemu, K. (2018). Microalgae–bacteria consortium treatment technology for municipal wastewater management. Nanotechnology for environmental engineering, 4(1), 4.
[24] Ji, B., Liu, Y. (2021). Assessment of microalgal-bacterial granular sludge process for environmentally sustainable municipal wastewater treatment. ACS EST Water, 1(12), 2459-2469.
[25] Foladori, P., Petrini, S., Andreottola, G. (2018). Evolution of real municipal wastewater treatment in photobioreactors and microalgae-bacteria consortia using real-time parameters. Chemical engineering journal, 345, 507-516.
[26] Krustok, I., Odlare, M., Truu, J., Nehrenheim, E. (2016). Inhibition of nitrification in municipal wastewater-treating photobioreactors: Effect on algal growth and nutrient uptake. Bioresource technology, 202, 238-243.
[27] Su, Y., Mennerich, A., Urban, B. (2011). Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water research, 45(11), 3351-3358.
[28] Khaldi, H., Maatoug, M., Dube, C.S., Ncube, M., Tandlich, R., Heilmeier, H., Della, A., Laubscher, R. K.( 2017). Efficiency of wastewater treatment by a mixture of sludge and microalgae. Journal of fundamental and applied sciences, 9(3), 1454-1572.
[29] Jiang, H., Luo, S., Shi, X., Dai, M., Guo, R.B. ( 2012). A novel microbial fuel cell and photobioreactor system for continuous domestic wastewater treatment and bioelectricity generation. Biotechnology letters, 34(7), 1269-1274.
[30] Boonchai, R., Seo, G., Park, D., Seong, C. (2012). Microalgae photobioreactor for nitrogen and phosphorus removal from wastewater of sewage treatment plant. International journal of bioscience, biochemistry and bioinformatics, 2, 407-410.
[31] Sukačová, K., Trtílek, M., Rataj, T. ( 2015). Phosphorus removal using a microalgal biofilm in a new biofilm photobioreactor for tertiary wastewater treatment. Water research, 71, 55-63.
[32] Singh, P., Singh, M. K., Beg, Y. R., Nishad, G. R. (2019). A review on spectroscopic methods for determination of nitrite and nitrate in environmental samples. Talanta, 191, 364-381.
[33] Dickman, S. R., Bray, R. H. (1940). Colorimetric determination of phosphate. Industrial and engineering chemistry analytical edition, 12(11), 665-8.
[34] Posadas, E., Alcántara, C., García-Encina, P. A., Gouveia, L., Guieysse, B., Norvill, Z., Muñoz, R. (2017). Microalgae cultivation in wastewater. Microalgae-based biofuels and bioproducts: From feedstock cultivation to end-products, 1st. Edition, Elsevier Pub., 67–91.
[35] Arias, D. M., Solé-Bundó, M., Garfí, M., Ferrer, I., García, J., Uggetti, E. (2018). Integrating microalgae tertiary treatment into activated sludge systems for energy and nutrients recovery from wastewater. Bioresource technology, 247, 513-519.
[36] Ponte, W. M. L., Talaverano, N. Z., Huaynate, A., O., Cafferata, E. A., Gallegos, M. C. (2022). Efficiency of microalgae cultures for nutrient removal from domestic wastewater. Advances in environmental technology, 8(1), 73-81.
[37] Rani, S., Chowdhury, R., Tao, W., Nedbalová, L., Saha, K. (2021). Microalga-mediated tertiary treatment of municipal wastewater: Removal of nutrients and pathogens. Sustainability, 13, 9554.