[1] Lishman, L., Smyth, S.A., Sarafin, K., Kleywegt, S., Toito, J., Peart, T., Lee, I.B., Servos, M., Beland, M., Seto, P. (2006). Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada. Science of the total environment, 367(2–3), 544-558.
[2] Weber, F. A., aus der Beek, T., Bergmann, A., Carius, A., Grüttner, G., Hickmann, S., Stolzenberg, H. C. (2016). Pharmaceuticals in the environment-the global perspective: Occurrence, effects, and potential cooperative action under SAICM. German Environment Agency.
[3] Halling-Sørensen, B., Nors Nielsen, S., Lanzky, P. F., Ingerslev, F., HoltenL¨utzhøft, H. C., Jørgensen, S. E. (1998). Occurrence, fate and effects of pharmaceutical substances in the environment-A review, Chemosphere, 36(2), 357-393.
[4] K¨ummerer, K. (2001). Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources—a review, Chemosphere, 45(6-7), 957-969.
[5] Xu, W.H., Zhang, G., Zou, S.C., Li, X.D., Liu, Y.C. (2007). Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography electrospray ionization tandem mass spectrometry. Environmental Pollution, 145(3), 672–679.
[6] Demirden, P. (2005). Treatability of pharmaceutical industry wastewaters containing antibiotic in anaerobic/aerobic sequential processes. PhD-thesis, İzmir.
[7] Hayder, I., Qazi, I.A., Awan, M.A., Khan, M.A., Turabi, A. (2012). Degradation and inactivation of ciprofloxacin by photocatalysis using TiO2 nanoparticles. Journal of applied pharmaceuticals, 4(1), 487-497.
[8] Müntener, C. R., Bruckner, L., Kupper, J., Althaus, F. R., Schäublin, M. (2014). Vigilance for veterinary medicinal products: reports of adverse reactions in the year 2013. SAT, Schweizer Archiv für Tierheilkunde, 156(11), 519-525.
[9] Zhu, S., Chen, H., Li, J. (2013). Sources, distribution and potential risks of pharmaceuticals and personal care products in Qingshan lake basin, Eastern China. Ecotoxicology and environmental safety, 96, 154-159.
[10] Boudriche, L., Michael-Kordatou, I., Michael, S., Stravou, I., Karaolia, P., Fatta-kassinos, D. (2016). Ciprofloxacin in conventionally treated urban wastewater; oxidation by UV/H2O2 treatment and toxicity assessment. Third International Conference on Energy, Materials, Applied Energetics and Pollution, Constantine, Algeria.
[11] De Bel, E., Dewulf, J., De Witte, B., Van Langenhove, H., Janssen, C. (2009). Influence of pH on the sonolysis of ciprofloxacin; biodegradibility, ecotoxicity and antibiotic activity of its degradation products. Chemosphere, 77(2), 291-295.
[12] Samadi, M. T., Shokoohi, R., Poormohammadi, A., Salmani, B., Harati, R. (2016). Ciprofloxacin oxidation by magnetic Fe3O4/multi walled carbon nano tubes composite as an effective heterogeneous fenton catalysts. Der pharmacia lettre, 7(6), 253-259.
[13] Balarak, D., Joghataei, A., Mostafapour, F.K., Bazrafshan, E. (2017). Ciprofloxacin antibiotics removal from effluent using heat-acid activated red mud. Journal of pharmaceutical research international. 20(5), 1-8.
[14] Githinji, L.J., Musey, M.K., Ankumah, R.O. (2010). Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater. Water, air and soil pollution, 219(1-4), 191-201
[15] Bhattacharya, S., Saha, I., Mukhopadhyay, A., Chattopadhyay, D., Chand, U. (2013). Role of nanotechnology in water treatment and purification: Potential applications and implications. International journal chemical sciences and technology, 3(3), 59-64.
[16] Satheeskumar, S., Ramesh, K., Srinivasan, N. (2015). Synthesis and characterization of chitosan and polyvinylpyrrolidone (PVP) capped ZnO nanoparticles and their antibacterial activity against Escherichia coli and Staphylococcus aurens. International journal of chemical technology research, 7(5), 2478-2482.
[17] Ghosh, S., Majumder, D., Sen, A., Roy, S. (2014). Facile sonochemical synthesis of zinc oxide nanoflakes at room temperature. Material letters, 130, 215-217.
[18] El-Rafei, A.M., Zawrah, M.F. (2014). Effect of alkali concentration and reaction time on the morphology of ZnO nano-microparticles prepared by hydrothermal method. Journal of ceramic science and technology, 5(3), 193-198.
[19] Uikey, P., Vishwakarma, K. (2016). Review on zinc oxide (ZnO) nanoparticles applications and properties. International journal of emerging technology in computer science and electronics, 21(2), 239-281.
[20] Bian, D., Guo, Y., Zao, Y. (2017). Influence of zinc oxide on corrosion resistance of alumina based chemically bonded ceramic coatings. Russia journal of applied chemistry, 89(12), 2091-2094.
[21] Ma, H., Williams, P.L, Diamond, S.A. (2013). Ecotoxicity of manufactured ZnO nanoparticles-A Review. Environmental pollution, 172, 76–85.
[22] Gaggero, E., Calza, P., Cerrato, E., Paganini, M. C. (2021). Cerium-, Europium-and Erbium-Modified ZnO and ZrO2 for Photocatalytic Water Treatment Applications: A Review. Catalysts, 11(12), 1520.
[23] Wang, H., Zhang, G., Gao, Y. (2010). Photocatalytic degradation of metronidazole in aqueous solution by niobate K6Nb10.8O30. Wuhan university journal of natural science, 15, 345-349.
[24] Rahdar, S., Igwegbe, C.A., Rahdar, A., Ahmadi, S. (2018). Efficiency of sono-nano-catalytic process of magnesium oxide nanoparticle in removal of penicillin G from aqueous solution. Desalination water treatment, 106, 330-335.
[25] Zazouli, M.A., Ulbricht, M., Nasseri, S., Susanto, H. (2010). Effect of hydrophilic and hydrophobic organic matter on amoxicillin and cephalexin residuals rejection from water by nanofiltration. Iranian journal of environmental health science and engineering, 15-24.
[26] Ayanda, O.S., Aremu, O.H., Akintayo, C.O., Sodeinde, K.O., Igboama, W.N., Osegbe, E.O., Nelana, S.M. (2021). Sonocatalytic degradation of amoxicillin from aquaculture effluent by zinc oxide nanoparticles. Environmental nanotechnology, monitoring and management, 16, 100513.
[27] Rahdar, S., Ahmadi, S. (2019). The removal of amoxicillin with ZnO nanoparticles in combination with US-H202 Advanced Oxidation Processes from aqueous solutions. Iran journal of health science, 7(1), 36-45.
[28] Ayanda, O.S., Nelana, S.M., Naidoo, E.B. (2018). Ultrasonic degradation of aqueous phenolsulfonphthalein (PSP) in the presence of nano-Fe/H2O2. Ultrasonics sonochemistry, 47, 29-35.
[29] Matouq, M., Tagawa, T., Nii, S. (2014). High frequency ultrasound waves for degradation of amoxicillin in the presence of hydrogen peroxides for industrial pharmaceutical wastewater treatment. Global NEST journal,16(5), 805-813.
[30] Ayanda, O.S., Nelana, S.M., Petrik, L.F., Naidoo, E.B. (2017). Nano-TiO2, ultrasound and sequential nano-TiO2/ultrasonic degradation of N-acetyl-para-aminophenol from aqueous solution. Journal of water and health, 15(6), 1015-1027.
[31] Beltran, F.J., Pocastales, P., Alvarez, P., Oropesa, A. (2009). Diclofenac removal from water with ozone and activated carbon. Journal of hazardous materials, 163(2-3), 768-776.
[32] Igwegbe, C.A., Ahmadi, S., Rahdar, S., Ramazani, A., Mollazehi, A.R. (2020). Efficiency comparison of advanced oxidation processes for ciprofloxacin removal from aqueous solutions: Sonochemical, sono-nano-chemical, sono-nano-chemical/persulfate processes. Environmental engineering research, 25(2), 178-185.
[33] Getie, S., Belay, A., Chandra Reddy, A.R., Belay, Z. (2017). Synthesis and characterization of zinc oxide nanoparticles for antibacterial applications. Journal of nanomedicine and nanotechnology, S, 8(004).
[34] Farzana, R., Rajarao, R., Behera, P.R., Hassan, K., Sahajwalla, V. (2018). Zinc oxide nanoparticles from waste Zn-C battery via thermal route: characterization and properties. Nanomaterials, 8, 717.
[35] Ramimoghadam, D., Hussein, M.Z.B., Taufiq-Yap, Y.H. (2013). Synthesis and characterization of ZnO nanostructures using palm olein as biotemplate. Chemistry central journal, 7(1), 1-10.
[36] Kolodziejczak-Radzimska, A., Markiewicz, E., Jesionowski, T. (2012). Structura characterization of ZnO particles obtained by the emulsion precipitation method. Journal of nanomaterials, 1-9.
[37] Ismail, M.A., Taha, K.K., Modwi, A., Khezami, L. (2018). ZnO nanoparticles: Surface and x-ray profile analysis. Journal of ovonic research, 14(5), 381-393.
[38] Saif-Aldin, K., Al-Hariri, S., Ali-Nizam, A. (2020). Zinc oxide nanoparticles synthesis without organic solvents with ultrasonic wave assistance. Chemistry research journal, 5(3), 6-13.
[39] Srisvastava, V., Gusain, D., Sharma, Y.C. (2013). Synthesis, characterization and application of zinc oxide nanoparticles (n-ZnO). Ceramics international, 39(8), 9803-9808.
[40] Hassan, F., Miran, M.S., Simol, H.A., Susan, M.A.B.H., Mollah, M.Y.A. (2015). Synthesis of ZnO nanoparticles by a hybrid electrochemical-thermal method: influence of calcinations temperature. Bangladesh journal of scientific and industrial research, 50(1), 21-28.
[41] Nagaraju, G., Ashoka, S., Chithaiah, P., Tharamani, C.N., Chandrappa, G.T. (2010). Surfactant free hydrothermal derived ZnO nanowires, nanorods, microrods and their characterization. Materials science in semiconductor processing, 13(1), 21-28.
[42] Becheri, A., Dürr, M., Nostro, P.L., Baglioni, P. (2008). Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. Journal of Nanoparticle Research, 10(4), 679-689.
[43] Zhang, G., Zhang, P., Wang, B., Liu, H. (2006). Ultrasonic frequency effects on the removal of microcystis aeruginosa. Ultrasonics sonochemistry, 446-450.
[44] Sayadi, M.H., Ahmadpour, N. (2017). The ultrasonic of drug removal using catalysts from aqueous solutions. International journal of environmental sciences and natural resources, 5, 82-85.
[45] Guzman-Duque, F., Petrier, C., Pulgarin, C., Penuela, G., Torres-Palma, R.A. (2011). Effects of sonochemical parameters and inorganic ions during the sonochemical degradation of crystal violet in water. Ultrasonic sonochemistry, 18, 440-446.
[46] Awe, A.A., Opeolu, B.O., Fatoki, O.S., Ayanda, O.S., Jackson, V.A., Snyman, R. (2020). Preparation and characterization of activated carbon from Vitis vinifera leaf litter and its adsorption performance for aqueous phenanthrene. Applied biological chemistry, 63(12), 1-17.
[47] Yang, J., Chen, H. (2013). Degradation of ciprofloxacin in aqueous solution by Fenton process. Advanced materials research, 610-613, 352-355.
[48] Ozcan, A.S., Erdem, B., Ozcan, A. (2004). Adsorption of acid blue 193 from aqueous solutions onto Na-bentonite and DIMA-bentonite. Journal of colloid interface science, 280(1), 44-54.
[49] Garg, V., Gupta, R., Bala Yadav A., Kumar, R. (2003). Dye removal from aqueous solution by adsorption on treated sawdust. Bioresource technology, 89(2), 121-124.
[50] Klavarioti, M., Mantzavinos, D., Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environmental international, 35(2), 402-417.
[51] Rahdar, S., Rahdar, A., Igwegbe, C.A., Moghaddam, F., Ahmadi, S. (2019). Synthesis and physical characterization of nickel oxide nanoparticles and its application study in the removal of ciprofloxacin from contaminated water by adsorption: Equilibrium and kinetic studies. Desalination water treatment 141, 386-393.
[52] Golmohammadi, S., Ahmadpour, M., Mohammadi, A., Alinejad, A., Mirzaei, N., Ghaderpoori, M., Ghaderpoori, A. (2016). Removal of blue cat 41 dye from aqueous solutions with ZnO nanoparticles in combination with US and US- H2O2 advanced oxidation processes. Environmental health engineering management journal 3(2), 107-113.
[53] Banerjee, P., Mukhopadhayay, A., Das, P. (2018). Ultrasound enhanced Azo dye adsorption by graphene oxide nanocomposite. Madridge journal of nanotechnology and nanoscience 3(2), 106-111.
[54] Ghauch, A., Bayodun, H., Dermesropian, P. (2011). Degradation of aqueous carbamazepine in ultrasonic/FeO/H2O2 systems. Chemical engineering journal, 18-27.
[55] Bhavani, R. and Sivasamy, A. (2016). Sonocatalytic degradation of malachite green by a semiconductor metal oxide nanocatalyst. Ecotoxicology and environmental safety 134, 403-411.