[1] Fayazi, M., Afzali, D., Ghanei-Motlagh, R., Iraji, A. (2019). Synthesis of novel sepiolite–iron oxide–manganese dioxide nanocomposite and application for lead(II) removal from aqueous solutions. Environmental science and pollution research journal, 26(18), 18893-18903
[2] Lee, I., Hwang, H, Lee, J, Yu, N, Yun, J Kim, H. (2017). Modeling approach to evaluation of environmental impacts on river water quality: a case study with Galing River, Kuantan, Pahang, Malaysia. Journal of ecological modelling, 353, 167-173.
[3] Jin, W., Du, H, Zheng, S Zhang, Y. (2016). Electrochemical processes for the environmental remediation of toxic Cr (VI): A review. Electrochimica acta journal, 191, 1044-1055.
[4] Fayazi, M. (2020). Removal of mercury (II) from wastewater using a new and effective composite: sulfur-coated magnetic carbon nanotubes. Environmental science and pollution research, 27(11), 12270-12279.
[5] Zhao, M., Xu, Y., Zhang, C, Rong, H Zeng, G. (2016). New trends in removing heavy metals from wastewater. Applied microbiology and biotechnology journal, 100(15), 6509-6518.
[6] Zou, Y., Wang, X, Khan, A, Wang, P, Liu, Y Alsaedi, A. (2016). Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Journal of environmental science and technology, 50(14), 7290-7304.
[7] Neculita, C. M., Rosa, E. (2019). A review of the implications and challenges of manganese removal from mine drainage. Chemosphere journal, 214, 491-510.
[8] WHO. (2004). Manganese in drinking water: background document for development of WHO Guidelines for drinking-water quality.
[9] Gerke, T., Little, BJ and Barry Maynard, J. (2015). Manganese deposition in drinking water distribution systems. Science of total environment journal, 541, 184-193.
[10] Idrees, N., Tabassum, B., Abd_Allah, E. F., Hashem, A., Sarah, R., Hashim, M. (2018). Groundwater contamination with cadmium concentrations in some West UP Regions, India. Saudi journal of biological sciences, 25(7), 1365-1368.
[11] Neshat, A., Oghazyan, A., Kariminejad, F., Mahmudiono, T., Fakhri, Y., Asadi, A. M. SKhaneghah, A. M. (2022). The concentration of potentially toxic elements (PTEs) in human milk: a systematic review, meta-analysis, and health risk assessment. Journal of food composition and analysis, 104933.
[12] Mthombeni, N. H., Mbakop, S., Onyango, M. S. (2022, April). Adsorptive removal of manganese from industrial and mining wastewater. In proceedings of the sustainable research and innovation conference (pp. 36-45).
[13] Tobiason, J. E., Bazilio, A., Goodwill, J., Mai, X., Nguyen, C. (2016). Manganese removal from drinking water sources. Journal of current pollution reports, 2(3), 168-177.
[14] Canada, H. (2016). Manganese in drinking water (Document for public consultation, Prepared by the federal-provinvial-territorial committee for drinking water, Issue.
[15] Adams, B., Anderson, R., Bless, D., Butler, B., Conway, B., Dailey, A., Freed, E., Gervais, G., Gill, M., Grosse, D. (2014). Reference guide to Treatment Technologies for mining-influenced water. Washington, USA: US environmental protection Agency-OSRTI, 8-30.
[16] Favas, P. J. C., Sarkar, S. K., Rakshit, D., Venkatachalam, P., Prasad, M. N. V. (2016). Acid mine drainages from abandoned mines: hydrochemistry, environmental impact, resource recovery, and prevention of pollution. In Environmental materials and waste (pp. 413-462). Academic Press.
[17] Patil, D., Chavan, S., Oubagaranadin, J. (2016). A review of tehnologies for manganese removal from wastewater. Environmental chemical engineering journal, 4(1), 468-487.
[18] Rudi, N. N., Muhamad, M. S., Te Chuan, L., Alipal, J., Omar, S., Hamidon, N., Hamid, N. H. A., Sunar, N. M., Ali, R., Harun, H. (2020). Evolution of adsorption process for manganese removal in water via agricultural waste adsorbents. Heliyon journal, 6(9), e05049.
[19] Gunatilake, S. (2015). Methods of removing heavy metals from industrial wastewater. Methods journal, 1(1), 14.
[20] Shirmohammadi, E., Khaje, M., Shirdali, M., Hosein, G., Shahgholi, H. (2014). Microorganisms's application strategy for bio-phytoremediation of heavy metal: a review. Biodiversity and environmental sciences journal, 5, 289-298.
[21] Myasnikov, S., Tikhonov, A., Chipryakova, A., Kulov, N. (2016). Removal of heavy metal ions from water by an combined sorption-crystallization process using activated clays. Theoretical foundations of chemical engineering journal, 50(4), 366-382.
[22] Fayazi, M., Ghanbarian, M. (2020). One-pot hydrothermal synthesis of polyethylenimine functionalized magnetic clay for efficient removal of noxious Cr (VI) from aqueous solutions. Silicon, 12(1), 125-134.
[23] Aguiar, A., Xavier, G., Ladeira, A. (2010, May). The use of limestone, lime and MnO2 in the removal of soluble manganese from acid mine drainage. In 10th International conference of water pollution: modelling, monitoring and management (pp. 267-276).
[24] Mulyadi, D., Haryati, S., Said, M. (2020). The effect of calcium oxide and aluminum sulfate on iron, manganese and color removal at peat water treatment. Indonesian journal of fundamental and applied chemistry, 5(2), 42-48.
[25] Cortina, J. L., Lagreca, I., De Pablo, J., Cama, J., Ayora, C. (2003). Passive in situ remediation of metal-polluted water with caustic magnesia: evidence from column experiments. Environmental science and technology, 37(9), 1971-1977.
[26] Charerntanyarak, L. (1999). Heavy metals removal by chemical coagulation and precipitation. Water science and technology journal, 39(10-11), 135-138.
[27] Chen, B., Qu, R., Shi, J., Li, D., Wei, Z., Yang, X., & Wang, Z. (2011). Heavy metal and phosphorus removal from waters by optimizing use of calcium hydroxide and risk assessment. Environment and pollution journal, 1(1), 38.
[28] Masindi, V., Ndiritu, J. G., Maree, J. P. (2018). Fractional and step-wise recovery of chemical species from acid mine drainage using calcined cryptocrystalline magnesite nano-sheets: An experimental and geochemical modelling approach. Journal of environmental chemical engineering, 6(2), 1634-1650.
[29] Schiller, J., Tallman, D., Khalafalla, S. (1984). Mineral processing water treatment using magnesium oxide. Environmental progress journal, 3(2), 6.
[30] Masindi, V., Gitari, M. W., Tutu, H., DeBeer, M. (2017). Synthesis of cryptocrystalline magnesite–bentonite clay composite and its application for neutralization and attenuation of inorganic contaminants in acidic and metalliferous mine drainage. Journal of water process engineering, 15, 2-17.
[31] Tran, H. N., You, S. J., Hosseini-Bandegharaei, A., Chao, H. P. (2017). Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water research, 120, 88-116.
[32] Parkhurst, D. L., Appelo, C. (2013). Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US geological survey techniques and methods, 6(A43), 497.
[33] Parkhurst, D. L., Appelo, C. (1999). User’s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-resources investigations report, 99(4259), 312.
[34] Choi, H., Woo, N. C., Jang, M., Cannon, F. S., Snyder, S. A. (2014). Magnesium oxide impregnated polyurethane to remove high levels of manganese cations from water. Separation and purification technology journal, 136, 184-189.
[35] Bamforth, S. M., Manning, D. A., Singleton, I., Younger, P. L., Johnson, K. L. (2006). Manganese removal from mine waters–investigating the occurrence and importance of manganese carbonates. Applied geochemistry journal, 21(8), 1274-1287.
[36] Masindi, V., Foteinis, S., Chatzisymeon, E. (2022). Co-treatment of acid mine drainage and municipal wastewater effluents: Emphasis on the fate and partitioning of chemical contaminants. Journal of hazardous materials, 421, 126677.
[37] Masindi, V., Foteinis, S., Renforth, P., Ndiritu, J., Maree, J. P., Tekere, M., Chatzisymeon, E. (2022). Challenges and avenues for acid mine drainage treatment, beneficiation, and valorisation in circular economy: A review. Ecological engineering, 183, 106740.
[38] Orescanin, V., Ruk, D., Kollar, R., Mikelic, I. L., Nad, K., Mikulic, N. (2011). A combined treatment of landfill leachate using calcium oxide, ferric chloride and clinoptilolite. Journal of environmental science and health part A, 46, 323-328.
[39] Rout, C., Sharma, A. (2011). Assessment of drinking water quality: A case study of Ambala cantonment area, Haryana, India. International journal of environmental sciences, 2(2), 933-945.
[40] Masindi, V., Fosso-Kankeu, E., Mamakoa, E., Nkambule, T. T. I., Mamba, B. B., Naushad, M., Pandey, S. (2022). Emerging remediation potentiality of struvite developed from municipal wastewater for the treatment of acid mine drainage. Environmental research, 210, 112944.
[41] Akinwekomi, V., Maree, J. P., Zvinowanda, C., Masindi, V. (2017). Synthesis of magnetite from iron-rich mine water using sodium carbonate. Journal of environmental chemical engineering, 5(3), 2699-2707.
[42] Akinwekomi, V., Maree, J. P., Masindi, V., Zvinowanda, C., Osman, M. S., Foteinis, S., Mpenyana-Monyatsi, L., Chatzisymeon, E. (2020). Beneficiation of acid mine drainage (AMD): A viable option for the synthesis of goethite, hematite, magnetite, and gypsum – Gearing towards a circular economy concept. Minerals engineering, 148, 106204.
[43] Kefeni, K. K., Msagati, T. A. M., Mamba, B. B. (2017). Acid mine drainage: Prevention, treatment options, and resource recovery: A review. Journal of cleaner production, 151, 475-493.
[44] Lei, X., Shimada, S., Intabon, K., Maekawa, T. (2006). Pretreatment of methane fermentation effluent by physico-chemical processes before applied to soil trench system. Agricultural engineering international: the CIGR ejournal, 8.
[45] Simate, G. S., Ndlovu, S. (2014). Acid mine drainage: Challenges and opportunities. Journal of environmental chemical engineering, 2(3), 1785-1803.
[46] Park, I., Tabelin, C. B., Jeon, S., Li, X., Seno, K., Ito, M., Hiroyoshi, N. (2019). A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere journal, 219, 588-606.
[47] Naidu, G., Ryu, S., Thiruvenkatachari, R., Choi, Y., Jeong, S., Vigneswaran, S. (2019). A critical review on remediation, reuse, and resource recovery from acid mine drainage. Environmental pollution, 247, 1110-1124.
[48] Masindi, V., Foteinis, S., Renforth, P., Ndiritu, J., Maree, J. P., Tekere, M., Chatzisymeon, E. (2022). Challenges and avenues for acid mine drainage treatment, beneficiation, and valorisation in circular economy: A review. Ecological engineering, 183, 106740.
[49] Masindi, V., Akinwekomi, V., Maree, J. P., Muedi, K. L. (2017). Comparison of mine water neutralisation efficiencies of different alkaline generating agents. Journal of environmental chemical engineering, 5(4), 3903-3913.
[50] Chen, G., Ye, Y., Yao, N., Hu, N., Zhang, J., Huang, Y. (2021). A critical review of prevention, treatment, reuse, and resource recovery from acid mine drainage. Journal of cleaner production, 329, 129666.
[51] Masindi, V., Osman, M., Abu-Mahfouz, A. (2017). Integrated treatment of acid mine drainage using BOF slag, lime/soda ash and reverse osmosis (RO): Implication for the production of drinking water. Desalination journal, 424, 45-52.
[52] Yu, J., Xu, A., Zhang, L., Song, R., Wu, L. (2004). Synthesis and characterization of porous magnesium hydroxide and oxide nanoplates. Physical chemistry journal, 108, 64-70.
[53] Hwidi, R. S., Izhar, T. N. T., Saad, F. N. M., Dahham, O. S., Noriman, N. Z., Shayfull, Z. (2018, November). Characterization of quicklime as raw material to hydrated lime: effect of temperature on its characteristics. In AIP conference proceedings (Vol. 2030, No. 1, p. 020027). AIP publishing LLC.
[54] Kandiban, M., Vigneshwaran, P., Potheher, I. V. (2015, January). Synthesis and characterization of mgo nanoparticles for photocatalytic applications. In department of physics, Bharathidasan institute of technology (BIT) Campus, Anna University, Tiruchirappalli, Tamilnadu, India, conference paper.
[55] Selvam, N. C. S., Kumar, R. T., Kennedy, L. J., Vijaya, J. J. (2011). Comparative study of microwave and conventional methods for the preparation and optical properties of novel MgO-micro and nano-structures. Alloys and compounds journal, 509, 9809-9815.
[56] Kang, L., Zhang, M., Liu, Z. H., Ooi, K. (2007). IR spectra of manganese oxide with either layered or tunnel structures. Journal of spectrochimica acta part A, 67, 864-869.
[57] Stumm, W. (1997). Reactivity at the mineral-water interface: dissolution and inhibition. Colloids and surfaces A: physicochemical and engineering aspects journal, 120(1-3), 143-166.
[58] Masindi, V., Gitari, M. W., Tutu, H., & DeBeer, M. (2017). Synthesis of cryptocrystalline magnesite–bentonite clay composite and its application for neutralization and attenuation of inorganic contaminants in acidic and metalliferous mine drainage. Journal of water process engineering, 15, 2-17.
[59] Pishtshev, A., Karazhanov, S. Z., Klopov, M. (2014). Material properties of magnesium and calcium hydroxides from first-principles calculations. Computational materials science journal, 95, 693 - 705.
[60] Rotting, T. S., Cama, J., Ayora, C., Cortina, J. L., De Pablo, J. (2006). Use of caustic magnesia to remove cadmium, nickel and cobalt from water in passive treatment systems: Column experiments. Environmental science and technology journal, 40, 6438 - 6443.