[1] M. E. El Aissaoui El Meliani, A. Debab, M. Kheladi, A. Benhamou, (2019). Prediction et modelisation du coefficient (KLa) par respirometrie dans un bioreacteur a boues activees. African review of science, technology and development, 4, 39-45.
[2] D. Rosso, L. M. Jiang, R. Sobhani, B. Wett, (2012). Energy Footprint Modelling: a tool for process optimization in Large Wastewater Treatment Plants. Water practice and technology, 7 (1).
[3] G. A. Baquero-Rodríguez, J. A. Lara-Borrero, D. Nolasco, D. Rosso, (2018). A Critical review of the factors affecting modeling oxygen transfer by fine-pore diffusers in activated sludge. Water environment research, 90(5), 431-441.
[4] Wang, M., Mo, H., Liu, G. H., Qi, L., Yu, Y., Fan, H., Wang, H. (2020). Impact of scaling on aeration performance of fine-pore membrane diffusers based on a pilot-scale study. Scientific reports, 10(1), 1-10.
[5] R. Oulebsir, A. Lefkir, A. Safri, A. Bermad, (2020). Optimisation of the energy consumption in activated sludge process using deep learning selective modeling. Biomass bioenergy, 132, 105-420.
[6] Füreder, K., Svardal, K., Frey, W., Kroiss, H., Krampe, J. (2018). Energy consumption of agitators in activated sludge tanks–actual state and optimization potential. Water science and technology, 77(3), 800-808.
[7] Dao, N. T. M., Liu, B., Terashima, M., Yasui, H. (2019). Computational fluid dynamics study on attainable flow rate in a lamella settler by increasing inclined plates. Journal of water and environment technology, 17(2), 76-88.
[8] Dao, N. T. M., Terashima, M., Yasui, H. (2019). Improvement of suspended solids removal efficiency in sedimentation tanks by increasing settling area using computational fluid dynamics. Journal of water and environment technology, 17(6), 420-431.
[9] Gillot, S., Capela-Marsal, S., Roustan, M., Héduit, A. (2005). Predicting oxygen transfer of fine bubble diffused aeration systems—model issued from dimensional analysis. Water research, 39(7), 1379-1387.
[10] M. R. Wagner, H. J. Pöpel, (1998). Oxygen transfer and aeration efficiency—influence of diffuser submergence, diffuser density, and blower type. Water science and technology, 38, 1-6.
[11] S. Bun, K. Wongwailikhit, N. Chawaloesphonsiya, J. Lohwacharin, P. Ham, P. Painmanakul, (2020). Development of modified airlift reactor (MALR) for improving oxygen transfer: optimize design and operation condition using design of experiment methodology. Environmental. technology, 41(20), 2670-2682.
[12] J. Behnisch, M. Schwarz, M. Wagner, (2020). Three decades of oxygen transfer tests in clean water in a pilot-scale test tank with fine-bubble diffusers and the resulting conclusions for WWTPs operation. Water practice and technology, 15(4), 910-920.
[13] M. Garrido-Baserba, R. Sobhani, P. Asvapathanagul, G. W. McCarthy, B. H. Olson, V. Odize, A. Al-Omari, S. Murthy, A. Nifong, J. Godwin, C. Bott, M. Stenstrom, A. Shaw, D. Rosso, (2017). Modelling the link amongst fine-pore diffuser fouling, oxygen transfer efficiency, and aeration energy intensity. Water research, 111, 127-139.
[14] R. Gori, A. Balducci, C. Caretti, C. Lubello, (2014). Monitoring the oxygen transfer efficiency of full-scale aeration systems: investigation method and experimental results. Water science and technology, 70(1), 8-14.
[15] D. H. Nguyen, (2014). Optimisation of the design and operation of wastewater treatment plants, Doctoral dissertation, University of Lorraine.
[16] G. Zhao, M. Garrido-Baserba, S. Reifsnyder, J. C. Xu, D. Rosso, (2019). Comparative energy and carbon footprint analysis of biosolids management strategies in water resource recovery facilities. Science of the total environment, 665, 762-773.
[17] K. I. Ashley, K. J. Hall, D. S. Mavinic, (1991). Factors influencing oxygen transfer in fine pore diffused aeration. Water research, 25, 1479-1486.
[18] D. Rosso, S. E. Lothman, M. K. Jeung, P. Pitt, W. J. Gellner, A. L. Stone, D. Howard, (2011). Oxygen transfer and uptake, nutrient removal, and energy footprint of parallel full-scale IFAS and activated sludge processes. Water research, 45(18), 5987-5996.
[19] M. Terashima, M. So, R. Goel, H. Yasui, (2016). Determination of diffuser bubble size in computational fluid dynamics models to predict oxygen transfer in spiral roll aeration tanks. Journal of water process engineering, 12, 120-126.
[20] M. E. El Aissaoui El Meliani, A. Debab, A. Benhamou, T. Amen, M. Terashima, H. Yasui, (2020). Modelling the (α)-factor in a Pneumatic Bioreactor Using the Taguchi Approach. International review on modeling and simulations, 13, 252-259.
[21] L. Nazari, Z. Yuan, M. B. Ray, C. C. Xu, (2017). Co-conversion of waste activated sludge and sawdust through hydrothermal liquefaction: optimization of reaction parameters using response surface methodology. Applied energy, 203, 1-10.
[22] J. Rodier, C. Bazin, J. P. Broutin, P. Chambon, H. Champsaur, L. Rodi, (2009) Water Analysis, 9th Ed. Dunod, Paris, France, 15-79.
[23] E. Pittoors, Y. Guo, S. W. Van Hulle, (2014). Oxygen transfer model development based on activated sludge and clean water in diffused aerated cylindrical tanks. Chemica. engineering journal, 243, 51-59.
[24] K. Campbell, J. Wang, G. T. Daigger, (2020). Filamentous organisms degrade oxygen transfer efficiency by increasing mixed liquor apparent viscosity: Mechanistic understanding and experimental verification. Water research, 173, 115-570.
[25] Y. Amerlinck, G. Bellandi, A. Amaral, S. Weijers, I. Nopens, (2016). Detailed off-gas measurements for improved modeling of the aeration performance at the WWTPs of Eindhoven. Water science and. technology, 74, 203-211.
[26] M. Von Sperling, (2007). Basic principles of wastewater treatment, Volume 2. IWA publishing. London, UK,151.
[27] N. H. Naqiuddin, L. H. Saw, M. C. Yew, F. Yusof, H. M. Poon, Z. Cai, H. San Thiam, (2018) Numerical investigation for optimizing segmented micro-channel heat sink by Taguchi-Grey method. Applied energy, 222, 437-450.
[28] M. Sarıkaya, A. Güllü, A., (2014). Taguchi design and response surface methodology-based analysis of machining parameters in CNC turning under MQL. Journal of cleaner production, 65, 604-616.
[29] B. Liu, Y. Li, J. Wu, Y. Shao, F. Chen, J. H. Wu, R. Goel, M. Terashima, H. Yasui, (2020). Evaluating nitrite-oxidizing organism survival under different nitrite concentrations. Water science and technology, 82(2), 273-280.
[30] A. A. Almetwally, (2020). Multi-objective Optimisation of woven fabric parameters using Taguchi–Grey relational analysis. Journal of natural fibers, 17(10), 1468-1478.
[31] T. K. Bharadwaj, K. N. Gupta, (2021). Dye separation using a semi-batch foaming process: Process optimization using Taguchi methodology and Grey relational analysis. Environmental engineering research, 26(4), 20-31.
[32] P. Painmanakul, J. Wachirasak, M. Jamnongwong, G. Hébrard, (2009). Theoretical prediction of volumetric mass transfer coefficient (KLa) for designing an aeration tank Engineering journal, 13(3), 13-28.
[33] G. Sodeifian, S. A. Sajadian, N. Ardestani, (2017). Experimental optimization and mathematical modeling of the supercritical fluid extraction of essential oil from Eryngium billardieri: application of simulated annealing (SA) algorithm. The journal of supercritical fluids, 127, 146-157.
[34] S. Gillot, F. Kies, C. Amiel, M. Roustan, A. Héduit, (2005). Application of the off-gas method to the measurement of oxygen transfer in biofilters. Chemical engineering science, 60(22), 6336-6345.
[35] H. Fan, L. Qi, G. Liu, Y. Zhang, Q. Fan, H. Wang, (2017). Aeration optimization through operation at low dissolved oxygen concentrations: Evaluation of oxygen mass transfer dynamics in different activated sludge systems. Journal of environmental sciences, 55, 224-235.
[36] Trambouze, P., Euzen, J. P. (2004). Chemical reactors: from design to operation. Technip Editions.
[37] K. K. Al-Ahmady, (2011). Mathematical model for calculating oxygen mass transfer coefficient in diffused air systems. Al-Rafidain engineering journal (AREJ), 19(4), 43-54.
[38] K. Wongwailikhit, P. Warunyuwong, N. Chawaloesphonsiya, N. Dietrich, G. Hébrard, P. Painmanakul, (2018). Gas sparger orifice sizes and solid particle characteristics in a bubble column–relative effect on hydrodynamics and mass transfer. Chemical engineering and technology, 41(3), 461-468.
[39] J. Lee, (2020) Oxygen transfer rate and oxygen uptake rate in subsurface bubble aeration systems. Journal of environmental engineering, 146(1), 0251-9003.
[40] L. Uby, (2019) Next steps in clean water oxygen transfer testing–A critical review of current standards. Water research, 157, 415-434.
[41] G. Skouteris, G. Rodriguez-Garcia, S. F. Reinecke, U. Hampel, (2020). The use of pure oxygen for aeration in aerobic wastewater treatment: a review of its potential and limitations. Bioresource technology, 3, 12, 123-595.
[42] H. Benmoussa, W. Elfalleh, S. He, M. Romdhane, A. Benhamou, R. Chawech, (2018) Microwave hydro-diffusion and gravity for rapid extraction of essential oil from Tunisian cumin (Cuminum cyminum L.) seeds: Optimisation by response surface methodology. Industrial crops and products, 124, 633-642.
[43] Mueller, J., Boyle, W. C., Popel, H. J. (2002). Aeration: Principles and practice, Volume 11. CRC press.