[1] Chauhan, R.S., Srivastava, V.C. (2021). Superior reduction of nitrate with simultaneous oxidation of intermediates and enhanced nitrogen gas selectivity via novel electrochemical treatment. Process safety and environmental protection, 147, 245-258.
[2] Wang, H., Turner, J.A. (2015). Correction: Photoelectrochemical reduction of nitrates at the illuminated p-GaInP2 photoelectrode. Energy and environmental science, 8, 1046-1046.
[3] Shomar, B., Osenbrück, K., Yahya, A. (2008). Elevated nitrate levels in the groundwater of the Gaza Strip: distribution and sources. The science of the total environment, 398 1-3, 164-74.
[4] Majumdar, D., Gupta, N. (2000). Nitrate pollution of groundwater and associated human health disorders.Indian journal of environmental health, 42, 28-39.
[5] Abdel-Raouf, N., Al-Homaidan, A.A., Ibraheem, I.B. (2012). Microalgae and wastewater treatment. Saudi journal of biological sciences, 19 (3), 257-275.
[6] Townsend, A. R., Howarth, R. W., Bazzaz, F. A., Booth, M. S., Cleveland, C. C., Collinge, S. K., Dobson, A. P., Epstein, P. R., Holland, E. A., Keeney, D. R., Mallin, M. A., Rogers, C. A., Wayne, P., Wolfe, A. H. (2003). Human health effects of a changing global nitrogen cycle. Frontiers in ecology and the environment, 1(5), 240-246.
[7] Fewtrell, L. (2004). Drinking-water nitrate, methemoglobinemia, and global burden of disease: a discussion. Environmental health perspectives, 112(14), 1371–1374.
[8] Hedayati, A., Sargolzaei, J. (2013). A review over diverse methods used in nitrogen removal from wastewater. Recent patents on chemical engineering, 6(2), 133-139.
[9] Atkins, P.F., Scherger, D.A. (2013). A review of physical-chemical methods for nitrogen removal from wastewaters, Proceedings of the conference on nitrogen as a water pollutant, Pergamon, 8(4), 713-719.
[10] Tsuji, M., Kawamura, M., Tsuji, H. (2008). Physicochemical denitrification process for drinking water resources at ambient conditions, AIChE Annual meeting conference.
[11] Ingole, Dr. Nitin P, Burghate. (2014). Biological denitrification- a review. International journal of research in environmental science and technology, 3, 78-85.
[12] Zhan, G., Zhang, L., Li, D., Su, W., Tao, Y., Qian, J. (2012). Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell. Bioresource Technology, 116, 271-277.
[13] Vineyard, D., Vineyard, D., Hicks, A., Karthikeyan, K.G., Barak, P. (2020). Economic analysis of electrodialysis, denitrification, and anammox for nitrogen removal in municipal wastewater treatment. Journal of cleaner production, 262, 121-145.
[14] Li, Z., Ren, X., Zuo, J., Liu, Y., Duan, E., Yang, J., Chen, P., Wang, Y. (2012). Struvite precipitation for ammonia nitrogen removal in 7-aminocephalosporanic acid wastewater. Molecules, 17, 2126-2139.
[15] Chen, P., Lu, X., Qiu, J. (2014). Nitrogen removal from wastewater by adsorption of bentonite. IMPC 2014 - 27th International mineral processing congress.
[16] Jorgensen, T.C., Weatherley, L.R. (2003). Ammonia removal from wastewater by ion exchange in the presence of organic contaminants. Water research, 37(8), 1723-1728.
[17] Vo, T.-K.-Q., Lee, J.-J., Kang, J.-S., Park, S., Kim, H.-S. (2018). Nitrogen removal by sulfur-based carriers in a membrane bioreactor (MBR). Membranes, 8, 115.
[18] Ukwuani, A.T., Tao, W. (2016). Developing a vacuum thermal stripping - acid absorption process for ammonia recovery from anaerobic digester effluent. Water research, 106, 108-115.
[19] Jellali, S., El-Bassi, L., Charabi, Y., Uaman, M., Khiari, B., Al-Wardy, M., Jeguirim, M. (2021). Recent advancements on biochars enrichment with ammonium and nitrates from wastewaters: A critical review on benefits for environment and agriculture. Journal of environmental management, 305, 114368.
[20] Zhang, M., Song, G., Gelardi, D.L., Huang, L., Khan, E., Mašek, O., Parikh, S.J., Ok, Y.S. (2020). Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water. Water research, 186, 116303.
[21] Singh, V., Ormeci, B., Mishra, S., Hussain, A. (2021). Simultaneous partial Nitrification, ANAMMOX and denitrification (SNAD) – A review of critical operating parameters and reactor configurations. Chemical engineering journal. 433, 133677.
[22] Fallahi, A., Rezvani, F., Asgharnejad, H., Khorshidi Nazloo, E., Hajinajaf, N., Higgins, B.T. (2021). Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: A review. Chemosphere, 272, 129878.
[23] Grzyb, A., Wolna-Maruwka, A., Niewiadomska, A. (2021). The significance of microbial transformation of nitrogen compounds in the light of integrated crop management. Agronomy, 11, 1415.
[24] Cuerda-Correa, E.M., Alexandre-Franco, M.F., Fernández-González, C. (2020). Advanced oxidation processes for the removal of
antibiotics from water. An overview. Water, 12(1), 102.
[25] Vellanki, B.P., Batchelor, B., Abdel-Wahab, A. (2013). Advanced reduction processes: A new class of treatment processes. Environmental engineering science, 264-271.
[26] Mendia, L. (1982). Electrochemical processes for wastewater treatment. Water science and technology, 14 (1-2), 331-344.
[27] Nascimento, C.A.O., Teixeira, A.C.S.C., Guardani, R., Quina, F.H., Chiavone-Filho, O., Braun, A.M. (2007). Industrial wastewater treatment by photochemical processes based on solar energy. Journal of solar energy engineering, 129, 45-52.
[28] Divyapriya, G., Singh, S., Martínez-Huitle, C.A., Scaria, J., Karim, A.V., Nidheesh, P.V. (2021). Treatment of real wastewater by photoelectrochemical methods: An overview. Chemosphere, 276, 130-188.
[29] Byrne, J. A., Dunlop, P. S., Hamilton, J. W., Fernández-Ibáñez, P., Polo-López, I., Sharma, P. K., Vennard, A. S. (2015). A review of heterogeneous photocatalysis for water and surface disinfection. Molecules (Basel, Switzerland), 20(4), 5574-5615.
[30] Liu, Z., Ma, W., Ye, X. (2018) Shape control in the synthesis of colloidal semiconductor nanocrystals, in: Anisotropic Particle assemblies, Wu, N., Lee, D, Striolo, A. (Eds).; Elsevier, pp 37-54.
[31] Danish, M.S.S., Estrella, L.L., Alemaida, I.M.A., Lisin, A., Moiseev, N., Ahmadi, M., Nazari, M., Wali, M., Zaheb, H., Senjyu, T. (2021). Photocatalytic applications of metal oxides for sustainable environmental remediation. Metals, 11, 80.
[32] Argyle, M.D., Bartholomew, C.H. (2015). Heterogeneous catalyst deactivation and regeneration: A review. Catalysts, 5, 145-269.
[33] Gao, C., Low, J., Long, R., Kong, T., Zhu, J., Xiong, Y. (2020). Heterogeneous single atom photocatalyst: fundamentals and applications. Journal of chemical reviews, 120(21), 12175-12216.
[34] Liu, M., Zhou, L., Luo, X., Wan, C., Xu, L. (2020). Recent Advances in noble metal catalysts for hydrogen production from ammonia borane. Catalysts, 10, 788.
[35] Garcia-Segura, S., Brillas, E. (2017). Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters Journal of photochemistry and photobiology C: Photochemistry reviews, 31, 1-35.
[36] Blake, D. M., Wolfrum, E., Boulter, J. (1996). Photocatalytic oxidation and reduction chemistry and a new process for treatment of pink water and related contaminated water (No. NREL/TP-430-21580). National renewable energy lab (NREL), Golden, CO (United States).
[37] Abdel-Maksoud, Y.K., Imam, E.H., Ramadan, A.R. (2016). TiO2 solar photocatalytic reactor systems: selection of reactor design for scale-up and commercialization—Analytical review. Catalysts, 6, 138.
[38] Ren, G., Han, H., Wang, Y., Liu, S., Zhao, J., Meng, X., Li, Z. (2021). Recent advances of photocatalytic application in water treatment: A review. Nanomaterials, 11(7), 1804.
[39] Doudrick, K., Yang, T., Hristovski, K.D., Westerhoff, P.K. (2013). Photocatalytic nitrate reduction in water: Managing the hole scavenger and reaction by-product selectivity. Applied catalysis B-environmental, 136, 40-47.
[40] Zhou, Y., Fan, X., Zhang, G., Dong, W. (2019). Fabricating MoS2 nanoflakes photoanode with unprecedented high photoelectrochemical performance and multi-pollutants degradation test for water treatment. Chemical engineering journal, 356, 1003-1013.
[41] Ameta, R., Solanki, M., Benjamin, S., Ameta, S. (2018) Photocatalysis advanced oxidation processes for wastewater treatment. In: advanced oxidation processes for wastewater treatment, pp.135-175.
[42] Bonsen, E., Schroeter, S., Jacobs, H., Broekaert, J. (1997). Photocatalytic degradation of ammonia with TiO2 as photocatalyst in the laboratory and under the used of solar radiation. Chemosphere, 35, 1431-1445.
[43] Zhang, G., Ruan, J., Du, T. (2021). Recent advances on photocatalytic and electrochemical oxidation for ammonia treatment from water/wastewater. ACS environmental science and technology, 1(3), 10-325.
[44] Hashemi, S.F., Sabbaghi, S., Saboori, R., ZareNezhad, B. (2022). Photocatalytic degradation of ammonia with titania nanoparticles under UV light irradiation. Environmental science and pollution research, 1-15.
[45] Li, H., Yajie, C., Liu, P., Li, Y.,Zhou, A., Ye, F., Xue, S., Yue, X. (2021). Ammonia-nitrogen removal from water with gC3N4-rGO-TiO2 Z-scheme system via photocatalytic nitrification-denitrification process. Environmental research. 205, 112434.
[46] Kato, H., Kudo, A. (2002). Photocatalytic reduction of nitrate ions over tantalate photocatalysts. Physical chemistry chemical physics, 4, 2833-2838.
[47] Suhadolnik, L., Pohar, A., Novak, U., Likozar, B., Mihelič, A., Ceh, M. (2018). Continuous photocatalytic, electrocatalytic and photo-electrocatalytic degradation of a reactive textile dye for wastewater-treatment processes: Batch, microreactor and scaled-up operation. Journal of industrial and engineering chemistry, 72, 178-188.
[48] Tantis, I., Stathatos, E., Mantzavinos, D., Lianos, P. (2015). Photoelectrocatalytic degradation of potential water pollutants in the presence of NaCl using nanocrystalline titania films. Journal of chemical technology and biotechnology, 90, 1338-1344.
[49] Sa, J., Aguera, C. A., Gross, S., Anderson, J. A. (2009). Photocatalytic nitrate reduction over metal modified TiO2. Applied catalysis B: environmental, 85, 3-4, 192-200.
[50] Anderson, J. (2011). Photocatalytic nitrate reduction over Au/TiO2. Catalysis today, 175, 316-321.
[51] Silveira, J. E., Alicia L. Garcia-Costa, Jaime Carbajo, Alyson R. Ribeiro, Gema Pliego, Wendel S. Paz, Juan A. Zazo, Jose A. Casas, (2022). Nitrate removal in saline water by photo-reduction using natural FeTiO3 as catalyst, Chemical engineering journal advances, 12, 100387.
[52] Jiangzhou Q., Nengsheng L., Yi W., Yanyu L., Yiping H., Quanlin Z., Zhengfang Y. (2022). The mechanism of efficient photoreduction nitrate over anatase TiO2 in simulated sunlight, Chemosphere, 307(2), 135921.
[53] Sun, D., Hong, X., Wu, K., Hui, K.S., Du, Y., Hui, K.N. (2020). Simultaneous removal of ammonia and phosphate by electro-oxidation and electrocoagulation using RuO2-IrO2/Ti and microscale zero-valent iron composite electrode. Water research, 169, 115239.
[54] Evans, J.W. (2003) Metal production: Electrometallurgy. in: Encyclopedia of Materials: Science and Technology; Elsevier, pp 1-12.
[55] Shibuya, S., Yokoyama, D., Sekine, Y., Mikami, I. (2013). Photocatalytic oxidation of aqueous ammonia in the presence of oxygen over palladium loaded TiO2. Chemistry letters, 42, 1082-1083.
[56] Mikami, I., Aoki, S., Miura, Y. (2010). Photocatalytic oxidation of aqueous ammonia in the presence of oxygen over platinum loaded TiO2. Chemistry letters, 39, 704-705.
[57] Deganello, F., Liotta, L.F., Macaluso, A., Venezia, A.M., Deganello, G. (2000). Catalytic reduction of nitrates and nitrites in water solution on pumice-supported Pd–Cu catalysts. Applied catalysis B-environmental, 24, 265-273.
[58] Epron, F., Gauthard, F., Pineda, C.A., Barbier, J. (2001). Catalytic reduction of nitrate and nitrite on Pt–Cu/Al2O3 catalysts in aqueous solution: Role of the interaction between copper and platinum in the reaction. Journal of catalysis, 198, 309-318.
[59] Zhang, J., Nosaka, Y. (2015). Generation of OH radicals and oxidation mechanism in photocatalysis of WO3 and BiVO4 powders. Journal of photochemistry and photobiology A-chemistry, 303, 53-58.
[60] Marinčić, L., Leitz, F.B. (1978). Electro-oxidation of ammonia in waste water. Journal of applied electrochemistry, 8, 333-345.
[61] Zöllig, H., Fritzsche, C., Morgenroth, E., Udert, K. M. (2015). Direct electrochemical oxidation of ammonia on graphite as a treatment option for stored source-separated urine. Water research, 69, 284-294.
[62] Qing, G., Anari, Z., Abolhassani, M., Foster, S. L., Matlock, M., Thoma, G., Greenlee, L. F. (2021). Electrochemical ammonia removal and disinfection of aquaculture wastewater using batch and flow reactors incorporating PtRu/graphite anode and graphite cathode. Aquacultural engineering, 93, 102-155.
[63] Sun, J., Liu, L., Yang, F. (2021). Electro-enhanced chlorine-mediated ammonium nitrogen removal triggered by an optimized catalytic anode for sustainable saline wastewater treatment. Science of the total environment, 776, 146035.
[64]
Paidar, M.,
Bouzek, K.,
Bergmann, H. (2002). Influence of cell construction on the electrochemical reduction of nitrate.
Chemical engineering journal,
99-109.
[65] Zhou, C., Baia, J., Zhang, Y., Lia, J., Lib, Z., Jiang, P., Fanga, F., Zhou, M., Meia, X., Zhou, B. (2020). Novel 3D Pd-Cu (OH)2/CF cathode for rapid reduction of nitrate-N and simultaneous total nitrogen removal from wastewater. Journal of hazardous materials, 401,123232.
[66] Rao, X., Shao, X., Xu, J., Yi, J., Qiao, J., Li, Q. Chien, M., Inoue, C., Liu, Y., Zhang, J. (2019). Efficient nitrate removal from water using selected cathodes and Ti/PbO2 anode: Experimental study and mechanism verification. Separation and purification technology, 216, 158-165.
[67] Song, Q., Li, M., Wang, L., Ma, X., Liu, F., Liu, X. (2019). Mechanism, and optimization of electrochemical system for simultaneous removal of nitrate and ammonia, Journal of hazardous materials, 363.
[68] Calle-Vallejo, F., Huang, M., Henry, J.B., Koper, M., Bandarenka, A. (2013). Theoretical design and experimental implementation of Ag/Au electrodes for the electrochemical reduction of nitrate.
Physical chemistry chemical physics, 15, 1-10.
[69] Barrabés, N., Sá, J. (2011). Catalytic nitrate removal from water, past, present, and future perspectives. Applied catalysis B: environmental, 104(1-2), 1-5.
[70] Niu, Z., Fan, S., Li, X., Wang, P., Liu, Z., Wang, J., Bai, C., Zhang D. (2022). Bifunctional copper-cobalt spinel electrocatalysts for efficient tandem-like nitrate reduction to ammonia, Chemical engineering journal, 450 (4), 138343.
[71] Garcia-Segura, S., Lanzarini-Lopes, M., Hristovski, K., Westerhoff, P., (2018). Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications. Applied catalysis B: Environmental, 236, 546-568.
[72] Xiao, S., Wan, D., Zhang, K., Qu, H., Peng, J. (2016). Enhanced photoelectrocatalytic degradation of ammonia by in situ photoelectrogenerated active chlorine on TiO2 nanotube electrodes. Journal of environmental sciences, 50, 103-108.
[73] Xiao, S., Qu, J., Zhao, X., Liu, H., Wan, D. (2009). Electrochemical process combined with UV light irradiation for synergistic degradation of ammonia in chloride-containing solutions. Water research, 43 5, 1432-1440.
[74] Darvishi C., Soltani, R., Rezaee, A., Godini, H., Khataee, A., Hasanbeiki, A. (2012). Photoelectrochemical treatment of ammonium using seawater as a natural supporting electrolyte. Chemistry and ecology, 29, 1-14.
[75] Zhang, Y., Li, J., Bai, J., Shen, Z., Linsen, L., Xia, L., Chen, S., Zhou, B. (2018). Exhaustive conversion of inorganic nitrogen to nitrogen gas based on a photoelectro-chlorine cycle reaction and a highly selective nitrogen gas generation cathode. Environmental science and technology, 52(3), 1413-1420.
[76] Lu, S., Li, X., Liao, Y., Zhang, G. (2022). Optimized titania nanotubes photoanode mediated photoelectrochemical oxidation of ammonia in highly chlorinated wastewater via Cl-based radicals. Environmental research, 214(4), 113972.