[1] M. H. Sayadi, S. Sobhani, and H. Shekari. (2019). Photocatalytic degradation of azithromycin using GO@ Fe3O4/ZnO/SnO2 nanocomposites. Journal of cleaner production. 232, 127-136.
[2] S. Fukahori and T. Fujiwara. (2015) Photocatalytic decomposition behavior and reaction pathway of sulfamethazine antibiotic using TiO2. Journal of environmental management. 157, 103-110.
[3] N. Ahmadpour, M. H. Sayadi, V. Anoop, and B. Mansouri. (2019). Ultrasonic degradation of ibuprofen from the aqueous solution in the presence of titanium dioxide nanoparticles/hydrogen peroxide. Desalination and water treatment. 145, 291-299.
[4] Yazdi, M., Sayadi, M. H., Farsad, F. (2018). Removal of penicillin in aqueous solution using chlorella vulgaris and spirulina platensis from hospital wastewater, Desalination and water treatment, 123, 315-320.
[5] Dehghani, M., Nasseri, S., Ahmadi, M., Samaei, M. R., Anushiravani, A. (2014). Removal of penicillin G from aqueous phase by Fe+3-TiO2/UV-A process. Journal of environmental health science and engineering, 12(1), 1-7.
[6] Hossain, M. M., Dean, J. (2008). Extraction of penicillin G from aqueous solutions: Analysis of reaction equilibrium and mass transfer. Separation and purification technology, 62(2), 437-443.
[7] Zhu, T. T., Su, Z. X., Lai, W. X., Zhang, Y. B., Liu, Y. W. (2021). Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology. Science of the total environment, 776, 145906.
[8] Akhil, D., Lakshmi, D., Senthil Kumar, P., Vo, D. V. N., Kartik, A. (2021). Occurrence and removal of antibiotics from industrial wastewater. Environmental chemistry letters, 19(2), 1477-1507.
[9] Daghrir, R., Drogui, P., Ka, I., El Khakani, M. A. (2012). Photoelectrocatalytic degradation of chlortetracycline using Ti/TiO2 nanostructured electrodes deposited by means of a pulsed laser deposition process. Journal of hazardous materials, 199, 15-24.
[10] Kıdak, R., Doğan, Ş. (2018). Medium-high frequency ultrasound and ozone based advanced oxidation for amoxicillin removal in water. Ultrasonics sonochemistry, 40, 131-139.
[11] Davididou, K., Monteagudo, J. M., Chatzisymeon, E., Durán, A., Expósito, A. J. (2017). Degradation and mineralization of antipyrine by UV-A LED photo-Fenton reaction intensified by ferrioxalate with addition of persulfate. Separation and purification technology, 172, 227-235.
[12] Sayadi, M. H., Ahmadpour, N., Homaeigohar, S. (2021). Photocatalytic and antibacterial properties of Ag-CuFe2O4@ WO3 magnetic nanocomposite. Nanomaterials, 11(2), 298.
[13] Loos, G., Scheers, T., Van Eyck, K., Van Schepdael, A., Adams, E., Van der Bruggen, B., Dewil, R. (2018). Electrochemical oxidation of key pharmaceuticals using a boron doped diamond electrode. Separation and purification technology, 195, 184-191.
[14] Ahmadpour, N., Sayadi, M. H., Sobhani, S., Hajiani, M. (2020). Photocatalytic degradation of model pharmaceutical pollutant by novel magnetic TiO2@ ZnFe2O4/Pd nanocomposite with enhanced photocatalytic activity and stability under solar light irradiation. Journal of environmental management, 271, 110964.
[15] Kargar, F., Bemani, A., Sayadi, M. H., Ahmadpour, N. (2021). Synthesis of modified beta bismuth oxide by titanium oxide and highly efficient solar photocatalytic properties on hydroxychloroquine degradation and pathways. Journal of photochemistry and photobiology A: Chemistry, 419, 113453.
[16] Naddeo, V., Uyguner-Demirel, C. S., Prado, M., Cesaro, A., Belgiorno, V., Ballesteros, F. (2015). Enhanced ozonation of selected pharmaceutical compounds by sonolysis. Environmental technology, 36(15), 1876-1883.
[17] Salehnia, S., Barikbin, B., Khosravi, R. (2020). Removal of Penicillin G by Electro-fenton Process from Aqueous Solutions. Journal of research in environmental health, [online], 6(1), 23-33.
[18] Mohammadi, A. S., Sardar, M. (2013). The removal of penicillin G from aqueous solutions using chestnut shell modified with H2SO4: Isotherm and kinetic study. Iranian journal of health and environment, 5(4), 497-508.
[19] Gholami, A., Hajiani, M., Sayadi Anari, M. H. (2019). Investigation of photocatalytic degradation of clindamycin by TiO2. Journal of water and environmental nanotechnology, 4(2), 139-146.
[20] Kutuzova, A., Dontsova, T., Kwapinski, W. (2021). Application of TiO2-Based photocatalysts to antibiotics degradation: cases of sulfamethoxazole, trimethoprim and ciprofloxacin. Catalysts, 11(6), 728.
[21] Ali, I., Suhail, M., Alothman, Z. A., Alwarthan, A. (2018). Recent advances in syntheses, properties and applications of TiO2 nanostructures. RSC advances, 8(53), 30125-30147.
[22] Ahmadpour, N., Sayadi, M. H., Sobhani, S., Hajiani, M. (2020). A potential natural solar light active photocatalyst using magnetic ZnFe2O4@ TiO2/Cu nanocomposite as a high performance and recyclable platform for degradation of naproxen from aqueous solution. Journal of cleaner production, 268, 122023.
[23] Jallouli, N., Pastrana-Martínez, L. M., Ribeiro, A. R., Moreira, N. F., Faria, J. L., Hentati, O., Ksibi, M. (2018). Heterogeneous photocatalytic degradation of ibuprofen in ultrapure water, municipal and pharmaceutical industry wastewaters using a TiO2/UV-LED system. Chemical engineering journal, 334, 976-984.
[24] Ahmadpour, N., Sayadi, M. H., Homaeigohar, S. (2020). A hierarchical Ca/TiO2/NH2-MIL-125 nanocomposite photocatalyst for solar visible light induced photodegradation of organic dye pollutants in water. RSC advances, 10(50), 29808-29820.
[25] Koltsakidou, Α., Antonopoulou, M., Sykiotou, M., Εvgenidou, Ε., Konstantinou, I., Lambropoulou, D. A. (2017). Photo-Fenton and Fenton-like processes for the treatment of the antineoplastic drug 5-fluorouracil under simulated solar radiation. Environmental science and pollution research, 24(5), 4791-4800.
[26] Sayadi, M. H., Homaeigohar, S., Rezaei, A., Shekari, H. (2021). Bi/SnO2/TiO2-graphene nanocomposite photocatalyst for solar visible light–induced photodegradation of pentachlorophenol. Environmental science and pollution research, 28(12), 15236-15247.
[27] Nasiri, A., Tamaddon, F., Mosslemin, M. H., Amiri Gharaghani, M., Asadipour, A. (2019). Magnetic nano-biocomposite CuFe2O4@ methylcellulose (MC) prepared as a new nano-photocatalyst for degradation of ciprofloxacin from aqueous solution. Environmental health engineering and management journal, 6(1), 41-51.
[28] Al-Musawi, T. J., Rajiv, P., Mengelizadeh, N., Arghavan, F. S., Balarak, D. (2021). Photocatalytic efficiency of CuNiFe2O4 nanoparticles loaded on multi-walled carbon nanotubes as a novel photocatalyst for ampicillin degradation. Journal of molecular liquids, 337, 116470.
[29] Sayadi, M. H., Ghollasimood, S., Ahmadpour, N., Homaeigohar, S. (2022). Biosynthesis of the ZnO/SnO2 nanoparticles and characterization of their photocatalytic potential for removal of organic water pollutants. Journal of photochemistry and photobiology A: chemistry, 425, 113662.
[30] Belhouchet, N., Hamdi, B., Chenchouni, H., Bessekhouad, Y. (2019). Photocatalytic degradation of tetracycline antibiotic using new calcite/titania nanocomposites. Journal of photochemistry and photobiology A: Chemistry, 372, 196-205.
[31] Rezaei-Vahidian, H., Zarei, A. R., Soleymani, A. R. (2017). Degradation of nitro-aromatic explosives using recyclable magnetic photocatalyst: catalyst synthesis and process optimization. Journal of hazardous materials, 325, 310-318.
[32] Rezaei, A., Rezaei, M. R., Sayadi, M. H. (2021). Enhanced 3, 5-dimethylphenol photodegradation via adsorption-photocatalysis synergy using FSTRG nanohybrid catalyst. Journal of molecular liquids, 335, 116546.
[33] Elmolla, E. S., Chaudhuri, M. (2010). Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination, 252(1-3), 46-52.
[34] Zhang, Y., Shao, Y., Gao, N., Gao, Y., Chu, W., Li, S., Xu, S. (2018). Kinetics and by-products formation of chloramphenicol (CAP) using chlorination and photocatalytic oxidation. Chemical engineering journal, 333, 85-91.
[35] Ye, S., Yan, M., Tan, X., Liang, J., Zeng, G., Wu, H., Wang, H. (2019). Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light. Applied catalysis B: Environmental, 250, 78-88.