Biosorption of styrene from synthetic wastewater by sugar cane waste(Bagass)

Document Type : Research Paper


1 Amirkabir university of technology chemical engineering department

2 Amirkabir university , chemical engineering department


In this work, styrene removal from wastewater by using sugarcane waste (bagasse) as an adsorbent was studied. Equilibrium isotherms and kinetics were determined; the effects of bagasse particle size and concentration, solutions pH, and temperature on the biosorption of styrene were studied in batch experiments. Adsorption equilibrium data was successfully fitted to Langmuir isotherms (R2=0.986) and Freundlich isotherms (R2=0.96). Also, the kinetics of biosorption was fitted to pseudo-second order equations (K2=0.00146 g mg-1 min-1, qe=24.5 mg g-1 for particle size range of 88-105 μm).
According to the obtained results, an empirical equation was presented that could be used to calculate the percentage of styrene adsorption. The results showed that an increase in temperature caused a decrease in styrene removal. Moreover, maximum uptake was observed with NaOH-treated bagasse. It was found that an increase in average particle size decreased the biosorption rate. According to the calculated heat of adsorption, this sorption can be classified as a chemical biosorption. The optimum uptake was determined to be 88% at a pH equal to 12.1, a temperature of 35 oC, a particle size of 420-500 μm, and a bagasse concentration of 1 g L-1.


Main Subjects

[1] World Petrochemicals. SRI Consulting. (2008).
[2] EPA, S. C. (2001). United States Environmental Protection Agency.
[3] Warhurst, A. M., Fewson, C. A. (1994). Microbial metabolism and biotransformations of styrene. Journal of applied bacteriology, 77(6), 597-606.
[4] Cheng, W. H., Hsu, S. K., Chou, M. S. (2008). Volatile organic compound emissions from wastewater treatment plants in Taiwan: legal regulations and costs of control. Journal of environmental management, 88(4), 1485-1494.
[5] Hsieh, C. C. (2000). Removal mechanisms of VOCs in an activated sludge process. Journal of hazardous materials, 79(1), 173-187.
[6] Fallah, N., Bonakdarpour, B., Nasernejad, B., Moghadam, M. A. (2010). Long-term operation of submerged membrane bioreactor (MBR) for the treatment of synthetic wastewater containing styrene as volatile organic compound (VOC): Effect of hydraulic retention time (HRT). Journal of hazardous materials, 178(1), 718-724.
[7] Lin, T. Y., Sree, U., Tseng, S. H., Chiu, K. H., Wu, C. H., Lo, J. G. (2004). Volatile organic compound concentrations in ambient air of Kaohsiung petroleum refinery in Taiwan. Atmospheric Environment, 38(25), 4111-4122.
[8] Mofidi, A., Asilian, H., & Jafari, A. J. (2013). Adsorption of volatile organic compounds on fluidized activated carbon bed. Health scope, 2(2), 84-89.
[9] Ho, Y. S. (2003). Removal of copper ions from aqueous solution by tree fern. Water research, 37(10), 23232330.
[10] Nasernejad, B., Zadeh, T. E., Pour, B. B., Bygi, M. E., Zamani, A. (2005). Camparison for biosorption modeling of heavy metals (Cr (III), Cu (II), Zn (II)) adsorption from wastewater by carrot residues. Process biochemistry, 40(3), 1319-1322.
[11] Basci, N., Kocadagistan, E., Kocadagistan, B. (2004).Biosorption of copper (II) from aqueous solutions by wheat shell. Desalination, 164(2), 135-140.
[12] Vijayaraghavan, K., Yun, Y. S. (2008). Bacterial biosorbents and biosorption. Biotechnology advances, 26(3), 266-291.
[13] Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants:a review.Process bochemistry, 40(3), 997-1026.
[14] Tsezos, M. (2001). Biosorption of metals. The experience accumulated and the outlook for technology
development.Hydrometallurgy, 59(2), 241-243.
[15] Marín, A. P., Aguilar, M. I., Meseguer, V. F., Ortuno, J. F., Sáez, J.,  Lloréns, M. (2009). Biosorption of chromium (III) by orange (Citrus cinensis) waste: batch and continuous studies. Chemical engineering journal, 155(1), 199206.
[16] Elangovan, R., Philip, L., Chandraraj, K. (2008). Biosorption of hexavalent and trivalent chromium by palm flower (Borassus aethiopum). Chemical engineering journal, 141(1), 99-111. 
[17] Sarin, V.,  Pant, K. (2006). Removal of chromium from industrial waste by using eucalyptus bark. Bioresource technology, 97(1), 15-20.
[18] Das, S. K., Guha, A. K. (2009). Biosorption of hexavalent chromium by Termitomyces clypeatus biomass: kinetics and transmission electron microscopic study. Journal of hazardous materials, 167(1), 685-691. 
[19] Wang, J., Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnology advances, 24(5), 427-451.
[20] Ferraz, A. I., Teixeira, J. A. (1999). The use of flocculating brewer’s yeast for Cr (III) and Pb(II)
removal from residual wastewaters. Bioprocess engineering, 21(5),431-437. 
[21] de Albuquerque Wanderley, M. C., Martín, C., de Moraes Rocha, G. J.,  Gouveia, E. R. (2013). Increase in ethanol production from sugarcane bagasse based on combined pretreatments and fed-batch enzymatic hydrolysis. Bioresource technology, 128, 448-453. 
[22] Montgomery D.C., (2005). Design and Analysis of Ex-periments, 6th edition, John Wiley Sons, Inc, Arizona, USA.
[23] Imandi, S. B., Bandaru, V. V. R., Somalanka, S. R., Bandaru,S. R., Garapati, H. R. (2008). Application of statistical experimental designs for the optimization of medium constituents for the production of citric acid from  pineapple waste. Bioresource technology, 99(10), 4445-4450.
[24] Lotfy, W. A. (2007). The utilization of beet molasses as a novel carbon source for cephalosporin C production by Acremonium chrysogenum: optimization of process arameters through statistical experimental
designs. Bioresource technology, 98(18), 3491-3498.
[25] Majumder, A., Goyal, A. (2008). Enhanced production of exocellular glucansucrase from Leuconostoc dextranicum NRRL B-1146 using response surface method.Bioresource technology, 99(9),3685-3691.
[27] Khoramzadeh, E., Nasernejad, B., Halladj, R. (2013).Mercury biosorption from aqueous solutions by sugarcane bagasse. Journal of the Taiwan institute of chemical engineers, 44(2), 266-269.
[28] Esfandiar, N., Nasernejad, B., Ebadi, T. (2014). Removal of Mn (II) from groundwater by sugarcane bagasse and activated carbon (a comparative study): Application of response surface methodology (RSM). Journal of industrial and engineering chemistry, 20(5), 3726-3736.
[29] Zheng, Z. M., Hu, Q. L., Hao, J., Xu, F., Guo, N. N., Sun,Y., Liu, D. H. (2008). Statistical optimization of culture conditions for 1, 3-propanediol by Klebsiella pneumoniae AC 15 via central composite design.
Bioresource technology, 99(5), 1052-1056.
[30] Gerrard, A. M., Misiaczek, O., Hajkova, D., Halecky, M., Páca, J. (2005). Steady state models fort the biofiltration of styrene/air mixtures. Chemical and biochemical engineering quarterly, 19(2), 185-190.
[31] Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. solids. Journal of the American chemical society, 38(11), 2221-2295.
[32] Freundlich H., 1906. Uber die adsorption in losungen, Phys Chem. 57,385–470.
[33] Khoramzadeh, E., Nasernejad, B., & Halladj, R. (2013).Mercury biosorption from aqueous solutions by sugarcane bagasse. Journal of the Taiwan institute of chemical engineers, 44(2), 266-269.
[34] Asasian, N., Kaghazchi, T., Soleimani, M. (2012). Elimination of mercury by adsorption onto activated
carbon prepared from the biomass material. Journal of industrial and engineering chemistry, 18(1), 283-289.
[35] Özer, A., Özer, D. (2003). Comparative study of the biosorption of Pb (II), Ni (II) and Cr (VI) ions onto S. cerevisiae:determination of biosorption heats. Journal of hazardous materials, 100(1), 219-229.
[36] Rodrigues Filho, G., de Assunção, R. M., Vieira, J. G.,Meireles, C. D. S., Cerqueira, D. A., da Silva Barud, and Messaddeq, Y. (2007). Characterization of methylcellulose produced from sugar cane bagasse cellulose: Crystallinity and thermal properties. Polymer degradation and stability, 92(2), 205-210.
[37] García-Hernández, E., Licea-Claveríe, A., Zizumbo, A., Alvarez-Castillo, A., & Herrera-Franco, P. J. (2004). Improvement of the interfacial compatibility between sugar cane bagasse fibers and polystyrene for composites.Polymer composites, 25(2), 134-145.