[1] Herce, C., Martini, C., Salvio, M., Toro, C. (2022). Energy performance of Italian oil refineries based on mandatory energy audits. Energies, 15, 532.
[2] Szklo, A., Schaeffer, R. (2007). Fuel specification, energy consumption and CO2 emission in oil refineries, Energy, 32(7), 1075-1092.
[3] Lei, T., Guan, D., Shan, Y., Zheng, B., Liang, X., Meng, J., Zhang, Q., Tao. S. (2021). Adaptive CO2 emissions mitigation strategies of global oil refineries in all age groups. One earth, 4(8), 1114.
[4] Bezza, F. A., Beukes, M., Chirwa, E. M. N. (2015). Application of biosurfactant produced by Ochrobactrum intermedium cn3 for enhancing petroleum sludge bioremediation. Process biochemistry, 5(11), 1-49.
[5] Kumari, B., Singh, S. N., Singh, D. P. (2012). Characterization of two biosurfactant producing strains in crude oil degradation. Process biochemistry, 47, 2463-2471.
[6] Simanzhenkov, V., Idem, R. (2003). Crude oil chemistry. Marcel Dekker, Inc. USA.
[7] Grin’ko, A. A., Golovko, A.K. (2011). Fractionation of resins and asphaltenes and investigation of their composition and structure using heavy oil from the USA field as an example. Petroleum chemistry, 51, 192-202.
[8] Vazquez-Duhalt, R., Torres, E., Valdettama, B., Borgen, S. L. (2002). Will biochemical catalysis impact the petroleum refining industry. Energy and fuels, 16, 1239-1250.
[9] Varjani, S. J. (2017). Microbial degradation of petroleum hydrocarbons, Bioresource technology, 223, 277–286.
[10] Ramasamy, S., Mathiyalagan, P., Chandran, P. (2014). Characterization and optimization of EPS-producing and diesel oil-degrading Ochrobactrum anthropi MP3 isolated from refinery wastewater. Petroleum science, 11, 439-445.
[11] Premuzic, E. T., Lin, M. S., Lian, H., Zhou, W. M., Yablon, J. (1997). The use of chemical markers in the evaluation of crude oil bioconversion products, technology, and economic analysis. Fuel process technology, 52, 207-223.
[12] Naranjo-Briceño, L., Pernía, B., Perdomo, T., González, M., Inojosa, Y., Sisto, Á. D., León, V. (2019). Potential role of extremophilic hydrocarbonoclastic fungi for extra-heavy crude oil bioconversion and the sustainable development of the petroleum industry. In fungi in extreme environments: Ecological role and Biotechnological Significance (pp. 559-586). Springer, Cham.
[13] Xia, M., Fu, D., Chakraborty, R., Singh, R. P., Terry, N. (2019). Enhanced crude oil depletion by constructed bacterial consortium comprising bioemulsifier producer and petroleum hydrocarbon degraders. Bioresource technology, 282, 456-463.
[14] Singh, A., Ward, O. P. (Eds.). (2013). Biodegradation and bioremediation (Vol. 2). Springer science and business media.
[15] Das, N., Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnology research international, 2011, 941810.
[17] Leon, V., Kumar, M. (2005). Biological upgrading of heavy crude oil. Biotechnology and bioprocess engineering, 10, 471-481.
[18] Bhatia, S., Sharma, D. K. (2006). Emerging role of biorefining of heavier crude oils and integration of biorefining with petroleum refineries in the future. Petroleum science technology, 24, 1125-1159.
[19] Bachmann, R. T., Johnson, A. C., Edyvean, R. G. J. (2014). Biotechnology in the petroleum industry: An overview. International biodeterioration and biodegradation, 86, 225-237.
[20] Premuzic, E. T., Bohenek, M. S. L. M., Zhou W. M. (1999). Bioconversion reactions in asphaltenes and heavy crude oils. Energy fuels, 13, 297 -304.
[21] Gailiūtė, I., Grigiškis, S., Žėkaitė, G., Čipinytė, V. (2011). Selection of microbes and conditions that induced bio-cracking of branched hydrocarbon squalane. Proceedings of the 8th International Scientific and Practical Conference; Vol. 1, ISSN 1691-5402.
[22]
Sietmann, R.,
Hammer, E.,
Schauer, F. (2002). Biotransformation of biarylic compounds by yeasts of the genus trichosporon.
Systematic and applied mcrobiology, 25 (3), 332-339.
[23] Ghollami, M., Roayaei, M., Ghavipanjeh, F., Rasekh, B. (2013). Bioconversion of heavy hydrocarbon cuts containing high amounts of resins by microbial consortia. Journal of petroleum. environmental biotechnology, 4(139), 1-5.
[24] Azodi, S. M., Shavandi, M., Amoozegar, M. A. (2015). Biocracking of long chain alkanes by halophilic and halotolerant bacteria with the aim of heavy oil upgrading. 1st International and 9th National Biotechnology Congress. Shahid Beheshti University, Tehran. Iran.
[25] Ghavipanjeh, F., Pazouki, M., Ziaei Rad, Zh., Hosseinia, A. (2015). Biological conversion of normal chain octadecane by native microbial consortia. Iranian journal of cemical engineering, 12, 50-58.
[26] Salehi, R., Shayegan, J., Ghavipanjeh, F., Pazouki, M., Hsseinnia, A. (2009). Anaerobic bioconversion of heavy hydrocarbons using native consortia. Iranian journal of chemical engineering, 6, 40-49.
[27] Xu, X., Liu, W., Tian, S., Wang, W., Qi, Q., Jiang, P., Yu, H. (2018). Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: a perspective analysis. Frontiers in microbiology, 9, 2885.
[28] Korda, A., Santas, P., Tenente, A., Santas, R. (1997). Petroleum hydrocarbon bioremediation: sampling and analytical techniques, in situ treatments and commercial microorganisms currently used. Applied mcrobiology and biotechnology, 48, 677-686.
[29] ASTM D6560.00. Standard test method for determination of asphaltenes (heptane insolubles) in crude petroleum and petroleum products.
[30] Bari, M. L., Yeasmin, S. (2022). Microbes culture methods. Journal: Encyclopedia of infection and immunity, 77-98.
[31] Santhanam, A., Sasidharan, S. (2010). Microbial production of polyhydroxy alkanotes (PHA) from Alcaligens spp. and Pseudomonas oleovorans using different carbon sources. African journal of biotechnology, 9, 3144-3150.
[32] Anderson, A. J., Dawes, E. A. (1990). Occurrence, metabolism, metabolic role and industrial uses of bacterial polyhydroxyalkanoates. Microbiology reviews, 54, 450-472.
[34] Setti, L., Rossi, M., Lanzarini, G., Piffer, P. G. (1992). The effect of n-alkanes in the degradation of dibenzothiophene and of organic sulfur compounds in heavy oil by a Pseudomonas sp. Biotechnology letters, 14, 515-520.
[35] McGenity, T., Van Der Meer, J. R., de Lorenzo, V. (2010). Handbook of hydrocarbon and lipid microbiology (p. 4716). K. N. Timmis (Ed.). Berlin: Springer.
[36] Kim, I. S., Doght, J. M, Gray, M. R. (2002). Selective transport and accumulation of Alkanes by Rhodococcus erithropolis S+14He, Biotechnology and bioengineering, 80, 650-659.
[37]
Merdinger, E.,
Merdinger, R. P. (1970). Utilization of n-alkanes by Pullularia pullulans.
Applied microbiology.
20(4):651-652.