An experimental study on the effect of composite electrode on the membrane- assisted electrode in CDI and MCDI processes towards nitrate ion selectivity

Document Type : Research Paper

Authors

1 School of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran

2 Fuel Cell Laboratory, Green Research Center, Iran University of Science and Technology, Narmak, Tehran, Iran

3 Center of Excellence for Membrane Science and Technology, Iran University of Science and Technology, Narmak, Tehran, Iran

4 Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies, Amol, Mazandaran, Iran

Abstract

The removal of nitrate concentrations above international drinking water standards is a prominent task of governments. In this regard, various technologies such as reverse osmosis, biological denitrification, electrodialysis, and capacitive deionization (CDI) as an electrochemical approach have been used for nitrate removal from water. In the present research study, a novel composite electrode named E2 was synthesized and used to improve the efficiency of the membrane capacitive deionization (MCDI) process for increasing the electrosorption capacity of nitrate from water. E1 as a based electrode composed of activated carbon (AC), PVDF, and E2 as an optimal electrode containing (AC), PVDF, ZrO2, and PANi -ES were utilized. The morphology and structure of the composite electrode were determined using field emission scanning electron microscopy (FESEM), Brunauer–Emmett–Teller (BET), Fourier-transform infrared spectroscopy (TEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDAX) techniques. Also, the cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) methods were applied to investigate the electrochemical behavior of the electrodes. In the MCDI process with the presence of the E2 electrode, the amounts of separated nitrate ion and its adsorption efficiency were 7.51 mg/g and 81.6%, respectively; this demonstrated that the capacity of the adsorbed nitrate ion by the MCDI process was 30.34% higher than the CDI process. On the other hand, the E2 electrode, compared to the E1 electrode, ameliorated the performance by almost 50% of the amount of adsorbed nitrate ion and also ion adsorption efficiency during the CDI and MCDI processes.



Keywords

Main Subjects


[1] Tang, K., Kim, Y. H., Chang, J., Mayes, R. T., Gabitto, J., Yiacoumi, S., Tsouris, C. (2019). Seawater desalination by over-potential membrane capacitive deionization: Opportunities and hurdles. Chemical engineering journal, 357, 103-111.
[2] Tang, W., Kovalsky, P., He, D., Waite, T. D. (2015). Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization. Water research, 84, 342-349.
[3] Zuo, K., Kim, J., Jain, A., Wang, T., Verduzco, R., Long, M., Li, Q. (2018). Novel composite electrodes for selective removal of sulfate by the capacitive deionization process. Environmental science and technology, 52(16), 9486-9494.
[4] Chen, R., Sheehan, T., Ng, J. L., Brucks, M., Su, X. (2020). Capacitive deionization and electrosorption for heavy metal removal. Environmental science: Water research and technology, 6(2), 258-282.
[5] Seo, S. J., Jeon, H., Lee, J. K., Kim, G. Y., Park, D., Nojima, H., Moon, S. H. (2010). Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water research, 44(7), 2267-2275.
[6] Xing, W., Liang, J., Tang, W., Zeng, G., Wang, X., Li, X., Huang, M. (2019). Perchlorate removal from brackish water by capacitive deionization: Experimental and theoretical investigations. Chemical engineering journal, 361, 209-218.
[7] Oren, Y. (2008). Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review). Desalination, 228(1-3), 10-29.
[8] Zhao, Y., Wang, Y., Wang, R., Wu, Y., Xu, S., Wang, J. (2013). Performance comparison and energy consumption analysis of capacitive deionization and membrane capacitive deionization processes. Desalination, 324, 127-133.
[9] Wang, C., Song, H., Zhang, Q., Wang, B., Li, A. (2015). Parameter optimization based on capacitive deionization for highly efficient desalination of domestic wastewater biotreated effluent and the fouled electrode regeneration. Desalination, 365, 407-415.
[10] Anderson, M. A., Cudero, A. L., Palma, J. (2010). Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?. Electrochimica acta, 55(12), 3845-3856.
[11] Seed, L. P., Yetman, D. D., Pargaru, Y., Shelp, G. S. (2006). The DesEL system–capacitive deionization for the removal of ions from water. Proceedings of the water environment federation, 2006(5), 7172-7180.
[12] Liu, N. L., Sun, S. H., Hou, C. H. (2019). Studying the electrosorption performance of activated carbon electrodes in batch-mode and single-pass capacitive deionization. Separation and purification technology, 215, 403-409.
[13] Md, A., Ahmed, S. (2018). Tewari, Capacitive deionization: Processes, materials and state of the technology. Journal of. electroanal chemistry, 813, 178-192.

[14] Mossad, M., Zou, L. (2012). A study of the capacitive deionisation performance under various operational conditions. Journal of hazardous materials, 213, 491-497.

[15] McNair, R., Szekely, G., Dryfe, R. A. (2020). Ion-exchange materials for membrane capacitive deionization. ACS ES and T Water, 1(2), 217-239.

[16] Hassanvand, A., Chen, G. Q., Webley, P. A., & Kentish, S. E. (2018). A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization. Water research, 131, 100-109.

[17] Yan, T., Xu, B., Zhang, J., Shi, L., Zhang, D. (2018). Ion-selective asymmetric carbon electrodes for enhanced capacitive deionization. SC advances, 8(5), 2490-2497.
[18] Yasin, A. S., Mohamed, A. Y., Mohamed, I. M., Cho, D. Y., Park, C. H., Kim, C. S. (2019). Theoretical insight into the structure-property relationship of mixed transition metal oxides nanofibers doped in activated carbon and 3D graphene for capacitive deionization. Chemical engineering journal, 371, 166-181.
[19] Chung, S., Kang, H., Ocon, J. D., Lee, J. K., Lee, J. (2015). Enhanced electrical and mass transfer characteristics of acid-treated carbon nanotubes for capacitive deionization. Current applied physics, 15(11), 1539-1544.
[20] Jia, B., Zhang, W. (2016). Preparation and application of electrodes in capacitive deionization (CDI): a state-of-art review. Nanoscale research letters, 11(1), 1-25.
[21] Sufiani, O., Tanaka, H., Teshima, K., Machunda, R. L., Jande, Y. A. (2020). Enhanced electrosorption capacity of activated carbon electrodes for deionized water production through capacitive deionization. Separation and purification technology, 247, 116998.
[22] Zhang, C., Wang, X., Wang, H., Wu, X., Shen, J. (2019). A positive-negative alternate adsorption effect for capacitive deionization in nano-porous carbon aerogel electrodes to enhance desalination capacity. Desalination, 458, 45-53.
[23] Kumar, R., Gupta, S. S., Katiyar, S., Raman, V. K., Varigala, S. K., Pradeep, T., Sharma, A. (2016). Carbon aerogels through organo-inorganic co-assembly and their application in water desalination by capacitive deionization. Carbon, 99, 375-383.
[24] Feng, J., Xiong, S., Wang, Y. (2019). Atomic layer deposition of TiO2 on carbon-nanotube membranes for enhanced capacitive deionization. Separation and purification technology, 213, 70-77.
[25] Luo, G., Wang, Y., Gao, L., Zhang, D., Lin, T. (2018). Graphene bonded carbon nanofiber aerogels with high capacitive deionization capability. Electrochimica acta, 260, 656-663.
[26] Ma, J., Wang, L., Yu, F. (2018). Water-enhanced performance in capacitive deionization for desalination based on graphene gel as electrode material. Electrochimica acta, 263, 40-46.
[27] Liu, X., Chen, T., Qiao, W. C., Wang, Z., & Yu, L. (2017). Fabrication of graphene/activated carbon nanofiber composites for high performance capacitive deionization. Journal of the Taiwan institute of chemical engineers, 72, 213-219.
[28] Yasin, A. S., Obaid, M., Mohamed, I. M., Yousef, A., Barakat, N. A. (2017). ZrO 2 nanofibers/activated carbon composite as a novel and effective electrode material for the enhancement of capacitive deionization performance. RSC advances, 7(8), 4616-4626.
[29] Abi Jaoude, M., Alhseinat, E., Polychronopoulou, K., Bharath, G., Darawsheh, I. F. F., Anwer, S., Banat, F. (2020). Morphology-dependent electrochemical performance of MnO2 nanostructures on graphene towards efficient capacitive deionization. Electrochimica acta, 330, 135202.
[30] Hou, C. H., Liu, N. L., Hsu, H. L., Den, W. (2014). Development of multi-walled carbon nanotube/poly (vinyl alcohol) composite as electrode for capacitive deionization. Separation and purification technology, 130, 7-14.
[31] Lado, J. J., Pérez-Roa, R. E., Wouters, J. J., Tejedor-Tejedor, M. I., Federspill, C., Ortiz, J. M., Anderson, M. A. (2017). Removal of nitrate by asymmetric capacitive deionization. Separation and purification technology, 183, 145-152.
[32] Hu, C., Dong, J., Wang, T., Liu, R., Liu, H., Qu, J. (2018). Nitrate electro-sorption/reduction in capacitive deionization using a novel Pd/NiAl-layered metal oxide film electrode. Chemical engineering journal, 335, 475-482.
[33] Tsai, S. W., Hackl, L., Kumar, A., Hou, C. H. (2021). Exploring the electrosorption selectivity of nitrate over chloride in capacitive deionization (CDI) and membrane capacitive deionization (MCDI). Desalination, 497, 114764.
[34] Kim, Y. J., Kim, J. H., Choi, J. H. (2013). Selective removal of nitrate ions by controlling the applied current in membrane capacitive deionization (MCDI). Journal of membrane science, 429, 52-57.
[35] Baghodrat, M., Mehri, F., Rowshanzamir, S. (2020). Electrochemical performance and enhanced nitrate removal of homogeneous polysulfone-based anion exchange membrane applied in membrane capacitive deionization cell. Desalination, 496, 114696.
[36] Fateminia, R., Rowshanzamir, S., Mehri, F. (2021). Synergistically enhanced nitrate removal by capacitive deionization with activated carbon/PVDF/polyaniline/ZrO2 composite electrode. Separation and purification technology, 274, 119108.
[37] Kim, D. I., Gonzales, R. R., Dorji, P., Gwak, G., Phuntsho, S., Hong, S., Shon, H. (2020). Efficient recovery of nitrate from municipal wastewater via MCDI using anion-exchange polymer coated electrode embedded with nitrate selective resin. Desalination, 484, 114425.
[38] Merle, G., Wessling, M., Nijmeijer, K. (2011). Anion exchange membranes for alkaline fuel cells: A review. Journal of membrane science, 377(1-2), 1-35.
[39] Lee, J. Y., Seo, S. J., Yun, S. H., Moon, S. H. (2011). Preparation of ion exchanger layered electrodes for advanced membrane capacitive deionization (MCDI). Water research, 45(17), 5375-5380.
[40] Min, X., Hu, X., Li, X., Wang, H., Yang, W. (2019). Synergistic effect of nitrogen, sulfur-codoping on porous carbon nanosheets as highly efficient electrodes for capacitive deionization. Journal of colloid and Interface science, 550, 147-158.
[41] Li, Y., Chen, N., Li, Z., Shao, H., Qu, L. (2020). Frontiers of carbon materials as capacitive deionization electrodes. Dalton transactions, 49(16), 5006-5014.
[42] Yeo, J. H., Choi, J. H. (2013). Enhancement of nitrate removal from a solution of mixed nitrate, chloride and sulfate ions using a nitrate-selective carbon electrode. Desalination, 320, 10-16.
[43] Zengin, H., Kalaycı, G. (2010). Synthesis and characterization of polyaniline/activated carbon composites and preparation of conductive films. Materials chemistry and physics, 120(1), 46-53.
[44] Magnuson, M., Guo, J. H., Butorin, S. M., Agui, A., Såthe, C., Nordgren, J., Monkman, A. P. (1999). The electronic structure of polyaniline and doped phases studied by soft X-ray absorption and emission spectroscopies. The journal of chemical physics, 111(10), 4756-4761.
[45] Bienkowski, K. (2006). Polyaniline and its derivatives doped with Lewis acids-synthesis and spectroscopic properites. Doctoral dissertation, Université Joseph-Fourier-Grenoble I; Warsaw University of Technology.
[46] Li, H., Zou, L., Pan, L., Sun, Z. (2010). Novel graphene-like electrodes for capacitive deionization. Environmental science and technology, 44(22), 8692-8697.
[47] Kim, J. S., Choi, J. H. (2010). Fabrication and characterization of a carbon electrode coated with cation-exchange polymer for the membrane capacitive deionization applications. Journal of membrane science, 355(1-2), 85-90.
[48] Goel, P., Mandal, P., Bhuvanesh, E., Shahi, V. K., Chattopadhyay, S. (2021). Temperature resistant cross-linked brominated poly phenylene oxide-functionalized graphene oxide nanocomposite anion exchange membrane for desalination. Separation and purification technology, 255, 117730.
[49] Xu, X., Pan, L., Liu, Y., Lu, T., Sun, Z. (2015). Enhanced capacitive deionization performance of graphene by nitrogen doping. Journal of colloid and interface science, 445, 143-150.
[50] Alencherry, T., Naveen, A. R., Ghosh, S., Daniel, J., Venkataraghavan, R. (2017). Effect of increasing electrical conductivity and hydrophilicity on the electrosorption capacity of activated carbon electrodes for capacitive deionization. Desalination, 415, 14-19.
[51] Zornitta, R. L., García-Mateos, F. J., Lado, J. J., Rodríguez-Mirasol, J., Cordero, T., Hammer, P., Ruotolo, L. A. (2017). High-performance activated carbon from polyaniline for capacitive deionization. Carbon, 123, 318-333.
[52] Yasin, A. S., Mohamed, I., Mousa, H. M., Park, C. H., Kim, C. S. (2018). Facile synthesis of TiO2/ZrO2 nanofibers/nitrogen co-doped activated carbon to enhance the desalination and bacterial inactivation via capacitive deionization. Scientific reports, 8(1), 1-14.
[53] Thommes, M. (2010). Physical adsorption characterization of nanoporous materials. Chemie ingenieur technik, 82(7), 1059-1073.
[54] Porada, S., Zhao, R., Van Der Wal, A., Presser, V., Biesheuvel, P. M. (2013). Review on the science and technology of water desalination by capacitive deionization. Progress in materials science, 58(8), 1388-1442.
[55] Prasanna, B. P., Avadhani, D. N., Muralidhara, H. B., Chaitra, K., Thomas, V. R., Revanasiddappa, M., Kathyayini, N. (2016). Synthesis of polyaniline/ZrO2 nanocomposites and their performance in AC conductivity and electrochemical supercapacitance. Bulletin of materials science, 39(3), 667-675.
[56] Abbas, Q., Pajak, D., Frąckowiak, E., Béguin, F. (2014). Effect of binder on the performance of carbon/carbon symmetric capacitors in salt aqueous electrolyte. Electrochimica acta, 140, 132-138.
[57] Huang, W. E. I., Zhang, Y., Bao, S., Song, S. (2013). Desalination by capacitive deionization with carbon-based materials as electrode: a review. Surface review and letters, 20(06), 1330003.
[58] Barbieri, O., Hahn, M., Herzog, A., Kötz, R. (2005). Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon, 43(6), 1303-1310.
[59] Ntakirutimana, S., Tan, W., Anderson, M. A., Wang, Y. (2020). Editors’ Choice—Review—Activated carbon electrode design: Engineering tradeoff with respect to capacitive deionization performance. journal of the electrochemical society, 167(14), 143501.
[60] Tian, S., Zhang, Z., Zhang, X., Ostrikov, K. K. (2019). Capacitative deionization using commercial activated carbon fiber decorated with polyaniline. Journal of colloid and interface science, 537, 247-255.
[61] Yan, C., Zou, L., Short, R. (2014). Polyaniline-modified activated carbon electrodes for capacitive deionization. Desalination, 333(1), 101-106.
[62] Xu, G., Wang, N., Wei, J., Lv, L., Zhang, J., Chen, Z., Xu, Q. (2012). Preparation of graphene oxide/polyaniline nanocomposite with assistance of supercritical carbon dioxide for supercapacitor electrodes. Industrial & engineering chemistry research, 51(44), 14390-14398.
[63] Srinivasan, P., Gottam, R. (2018). Infrared Spectra: Useful technique to identify the conductivity level of emeraldine form of poly-aniline and indication of conductivity measurement either two or four probe technique. Material. science. research. India, 15(3), 2009-2017.
[64] Shi, L., Wang, X., Lu, L., Yang, X., Wu, X. (2009). Preparation of TiO2/polyaniline nanocomposite from a lyotropic liquid crystalline solution. Synthetic Metals, 159(23-24), 2525-2529.
[65] Peng, Z., Zhang, D., Shi, L., Yan, T. (2012). High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionization. Journal of materials chemistry, 22(14), 6603-6612.
[66] Li, G., Cai, W., Zhao, R., Hao, L. (2019). Electrosorptive removal of salt ions from water by membrane capacitive deionization (MCDI): characterization, adsorption equilibrium, and kinetics. Environmental science and pollution research, 26(17), 17787-17796.
[67] Salitra, G., Soffer, A., Eliad, L., Cohen, Y., Aurbach, D. (2000). Carbon electrodes for double‐layer capacitors I. Relations between ion and pore dimensions. Journal of the electrochemical society, 147(7), 2486.
[68] Li, Y., Zhang, C., Jiang, Y., Wang, T. J., Wang, H. (2016). Effects of the hydration ratio on the electrosorption selectivity of ions during capacitive deionization. Desalination, 399, 171-177.
[69] Mubita, T. M., Dykstra, J. E., Biesheuvel, P. M., Van Der Wal, A., Porada, S. (2019). Selective adsorption of nitrate over chloride in microporous carbons. Water research, 164, 114885.
[70] Ota, K., Amano, Y., Aikawa, M., Machida, M. (2013). Removal of nitrate ions from water by activated carbons (ACs)—Influence of surface chemistry of ACs and coexisting chloride and sulfate ions. Applied surface science, 276, 838-842.
[71] Tang, K., Kim, Y. H., Chang, J., Mayes, R. T., Gabitto, J., Yiacoumi, S., Tsouris, C. (2019). Seawater desalination by over-potential membrane capacitive deionization: Opportunities and hurdles. Chemical engineering journal, 357, 103-111.
[72] Jiang, S., Wang, H., Xiong, G., Wang, X., Tan, S. (2018). Removal of nitrate using activated carbon-based electrodes for capacitive deionization. Water supply, 18(6), 2028-2034.
[73] Gan, L., Wu, Y., Song, H., Zhang, S., Lu, C., Yang, S., Li, A. (2019). Selective removal of nitrate ion using a novel activated carbon composite carbon electrode in capacitive deionization. Separation and purification technology, 212, 728-736.
[74] Pastushok, O., Zhao, F., Ramasamy, D. L., Sillanpää, M. (2019). Nitrate removal and recovery by capacitive deionization (CDI). Chemical engineering journal, 375, 121943.