[1] Tang, K., Kim, Y. H., Chang, J., Mayes, R. T., Gabitto, J., Yiacoumi, S., Tsouris, C. (2019). Seawater desalination by over-potential membrane capacitive deionization: Opportunities and hurdles. Chemical engineering journal, 357, 103-111.
[2] Tang, W., Kovalsky, P., He, D., Waite, T. D. (2015). Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization. Water research, 84, 342-349.
[3] Zuo, K., Kim, J., Jain, A., Wang, T., Verduzco, R., Long, M., Li, Q. (2018). Novel composite electrodes for selective removal of sulfate by the capacitive deionization process. Environmental science and technology, 52(16), 9486-9494.
[4] Chen, R., Sheehan, T., Ng, J. L., Brucks, M., Su, X. (2020). Capacitive deionization and electrosorption for heavy metal removal. Environmental science: Water research and technology, 6(2), 258-282.
[5] Seo, S. J., Jeon, H., Lee, J. K., Kim, G. Y., Park, D., Nojima, H., Moon, S. H. (2010). Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water research, 44(7), 2267-2275.
[6] Xing, W., Liang, J., Tang, W., Zeng, G., Wang, X., Li, X., Huang, M. (2019). Perchlorate removal from brackish water by capacitive deionization: Experimental and theoretical investigations. Chemical engineering journal, 361, 209-218.
[7] Oren, Y. (2008). Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review). Desalination, 228(1-3), 10-29.
[8] Zhao, Y., Wang, Y., Wang, R., Wu, Y., Xu, S., Wang, J. (2013). Performance comparison and energy consumption analysis of capacitive deionization and membrane capacitive deionization processes. Desalination, 324, 127-133.
[9] Wang, C., Song, H., Zhang, Q., Wang, B., Li, A. (2015). Parameter optimization based on capacitive deionization for highly efficient desalination of domestic wastewater biotreated effluent and the fouled electrode regeneration. Desalination, 365, 407-415.
[10] Anderson, M. A., Cudero, A. L., Palma, J. (2010). Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?. Electrochimica acta, 55(12), 3845-3856.
[11] Seed, L. P., Yetman, D. D., Pargaru, Y., Shelp, G. S. (2006). The DesEL system–capacitive deionization for the removal of ions from water. Proceedings of the water environment federation, 2006(5), 7172-7180.
[12] Liu, N. L., Sun, S. H., Hou, C. H. (2019). Studying the electrosorption performance of activated carbon electrodes in batch-mode and single-pass capacitive deionization. Separation and purification technology, 215, 403-409.
[13] Md, A., Ahmed, S. (2018). Tewari, Capacitive deionization: Processes, materials and state of the technology. Journal of. electroanal chemistry, 813, 178-192.
[14] Mossad, M., Zou, L. (2012). A study of the capacitive deionisation performance under various operational conditions. Journal of hazardous materials, 213, 491-497.
[15] McNair, R., Szekely, G., Dryfe, R. A. (2020). Ion-exchange materials for membrane capacitive deionization. ACS ES and T Water, 1(2), 217-239.
[16] Hassanvand, A., Chen, G. Q., Webley, P. A., & Kentish, S. E. (2018). A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization. Water research, 131, 100-109.
[17] Yan, T., Xu, B., Zhang, J., Shi, L., Zhang, D. (2018). Ion-selective asymmetric carbon electrodes for enhanced capacitive deionization. SC advances, 8(5), 2490-2497.
[18] Yasin, A. S., Mohamed, A. Y., Mohamed, I. M., Cho, D. Y., Park, C. H., Kim, C. S. (2019). Theoretical insight into the structure-property relationship of mixed transition metal oxides nanofibers doped in activated carbon and 3D graphene for capacitive deionization. Chemical engineering journal, 371, 166-181.
[19] Chung, S., Kang, H., Ocon, J. D., Lee, J. K., Lee, J. (2015). Enhanced electrical and mass transfer characteristics of acid-treated carbon nanotubes for capacitive deionization. Current applied physics, 15(11), 1539-1544.
[20] Jia, B., Zhang, W. (2016). Preparation and application of electrodes in capacitive deionization (CDI): a state-of-art review. Nanoscale research letters, 11(1), 1-25.
[21] Sufiani, O., Tanaka, H., Teshima, K., Machunda, R. L., Jande, Y. A. (2020). Enhanced electrosorption capacity of activated carbon electrodes for deionized water production through capacitive deionization. Separation and purification technology, 247, 116998.
[22] Zhang, C., Wang, X., Wang, H., Wu, X., Shen, J. (2019). A positive-negative alternate adsorption effect for capacitive deionization in nano-porous carbon aerogel electrodes to enhance desalination capacity. Desalination, 458, 45-53.
[23] Kumar, R., Gupta, S. S., Katiyar, S., Raman, V. K., Varigala, S. K., Pradeep, T., Sharma, A. (2016). Carbon aerogels through organo-inorganic co-assembly and their application in water desalination by capacitive deionization. Carbon, 99, 375-383.
[24] Feng, J., Xiong, S., Wang, Y. (2019). Atomic layer deposition of TiO2 on carbon-nanotube membranes for enhanced capacitive deionization. Separation and purification technology, 213, 70-77.
[25] Luo, G., Wang, Y., Gao, L., Zhang, D., Lin, T. (2018). Graphene bonded carbon nanofiber aerogels with high capacitive deionization capability. Electrochimica acta, 260, 656-663.
[26] Ma, J., Wang, L., Yu, F. (2018). Water-enhanced performance in capacitive deionization for desalination based on graphene gel as electrode material. Electrochimica acta, 263, 40-46.
[27] Liu, X., Chen, T., Qiao, W. C., Wang, Z., & Yu, L. (2017). Fabrication of graphene/activated carbon nanofiber composites for high performance capacitive deionization. Journal of the Taiwan institute of chemical engineers, 72, 213-219.
[28] Yasin, A. S., Obaid, M., Mohamed, I. M., Yousef, A., Barakat, N. A. (2017). ZrO 2 nanofibers/activated carbon composite as a novel and effective electrode material for the enhancement of capacitive deionization performance. RSC advances, 7(8), 4616-4626.
[29] Abi Jaoude, M., Alhseinat, E., Polychronopoulou, K., Bharath, G., Darawsheh, I. F. F., Anwer, S., Banat, F. (2020). Morphology-dependent electrochemical performance of MnO2 nanostructures on graphene towards efficient capacitive deionization. Electrochimica acta, 330, 135202.
[30] Hou, C. H., Liu, N. L., Hsu, H. L., Den, W. (2014). Development of multi-walled carbon nanotube/poly (vinyl alcohol) composite as electrode for capacitive deionization. Separation and purification technology, 130, 7-14.
[31] Lado, J. J., Pérez-Roa, R. E., Wouters, J. J., Tejedor-Tejedor, M. I., Federspill, C., Ortiz, J. M., Anderson, M. A. (2017). Removal of nitrate by asymmetric capacitive deionization. Separation and purification technology, 183, 145-152.
[32] Hu, C., Dong, J., Wang, T., Liu, R., Liu, H., Qu, J. (2018). Nitrate electro-sorption/reduction in capacitive deionization using a novel Pd/NiAl-layered metal oxide film electrode. Chemical engineering journal, 335, 475-482.
[33] Tsai, S. W., Hackl, L., Kumar, A., Hou, C. H. (2021). Exploring the electrosorption selectivity of nitrate over chloride in capacitive deionization (CDI) and membrane capacitive deionization (MCDI). Desalination, 497, 114764.
[34] Kim, Y. J., Kim, J. H., Choi, J. H. (2013). Selective removal of nitrate ions by controlling the applied current in membrane capacitive deionization (MCDI). Journal of membrane science, 429, 52-57.
[35] Baghodrat, M., Mehri, F., Rowshanzamir, S. (2020). Electrochemical performance and enhanced nitrate removal of homogeneous polysulfone-based anion exchange membrane applied in membrane capacitive deionization cell. Desalination, 496, 114696.
[36] Fateminia, R., Rowshanzamir, S., Mehri, F. (2021). Synergistically enhanced nitrate removal by capacitive deionization with activated carbon/PVDF/polyaniline/ZrO2 composite electrode. Separation and purification technology, 274, 119108.
[37] Kim, D. I., Gonzales, R. R., Dorji, P., Gwak, G., Phuntsho, S., Hong, S., Shon, H. (2020). Efficient recovery of nitrate from municipal wastewater via MCDI using anion-exchange polymer coated electrode embedded with nitrate selective resin. Desalination, 484, 114425.
[38] Merle, G., Wessling, M., Nijmeijer, K. (2011). Anion exchange membranes for alkaline fuel cells: A review. Journal of membrane science, 377(1-2), 1-35.
[39] Lee, J. Y., Seo, S. J., Yun, S. H., Moon, S. H. (2011). Preparation of ion exchanger layered electrodes for advanced membrane capacitive deionization (MCDI). Water research, 45(17), 5375-5380.
[40] Min, X., Hu, X., Li, X., Wang, H., Yang, W. (2019). Synergistic effect of nitrogen, sulfur-codoping on porous carbon nanosheets as highly efficient electrodes for capacitive deionization. Journal of colloid and Interface science, 550, 147-158.
[41] Li, Y., Chen, N., Li, Z., Shao, H., Qu, L. (2020). Frontiers of carbon materials as capacitive deionization electrodes. Dalton transactions, 49(16), 5006-5014.
[42] Yeo, J. H., Choi, J. H. (2013). Enhancement of nitrate removal from a solution of mixed nitrate, chloride and sulfate ions using a nitrate-selective carbon electrode. Desalination, 320, 10-16.
[43] Zengin, H., Kalaycı, G. (2010). Synthesis and characterization of polyaniline/activated carbon composites and preparation of conductive films. Materials chemistry and physics, 120(1), 46-53.
[44] Magnuson, M., Guo, J. H., Butorin, S. M., Agui, A., Såthe, C., Nordgren, J., Monkman, A. P. (1999). The electronic structure of polyaniline and doped phases studied by soft X-ray absorption and emission spectroscopies. The journal of chemical physics, 111(10), 4756-4761.
[45] Bienkowski, K. (2006). Polyaniline and its derivatives doped with Lewis acids-synthesis and spectroscopic properites. Doctoral dissertation, Université Joseph-Fourier-Grenoble I; Warsaw University of Technology.
[46] Li, H., Zou, L., Pan, L., Sun, Z. (2010). Novel graphene-like electrodes for capacitive deionization. Environmental science and technology, 44(22), 8692-8697.
[47] Kim, J. S., Choi, J. H. (2010). Fabrication and characterization of a carbon electrode coated with cation-exchange polymer for the membrane capacitive deionization applications. Journal of membrane science, 355(1-2), 85-90.
[48] Goel, P., Mandal, P., Bhuvanesh, E., Shahi, V. K., Chattopadhyay, S. (2021). Temperature resistant cross-linked brominated poly phenylene oxide-functionalized graphene oxide nanocomposite anion exchange membrane for desalination. Separation and purification technology, 255, 117730.
[49] Xu, X., Pan, L., Liu, Y., Lu, T., Sun, Z. (2015). Enhanced capacitive deionization performance of graphene by nitrogen doping. Journal of colloid and interface science, 445, 143-150.
[50] Alencherry, T., Naveen, A. R., Ghosh, S., Daniel, J., Venkataraghavan, R. (2017). Effect of increasing electrical conductivity and hydrophilicity on the electrosorption capacity of activated carbon electrodes for capacitive deionization. Desalination, 415, 14-19.
[51] Zornitta, R. L., García-Mateos, F. J., Lado, J. J., Rodríguez-Mirasol, J., Cordero, T., Hammer, P., Ruotolo, L. A. (2017). High-performance activated carbon from polyaniline for capacitive deionization. Carbon, 123, 318-333.
[52] Yasin, A. S., Mohamed, I., Mousa, H. M., Park, C. H., Kim, C. S. (2018). Facile synthesis of TiO2/ZrO2 nanofibers/nitrogen co-doped activated carbon to enhance the desalination and bacterial inactivation via capacitive deionization. Scientific reports, 8(1), 1-14.
[53] Thommes, M. (2010). Physical adsorption characterization of nanoporous materials. Chemie ingenieur technik, 82(7), 1059-1073.
[54] Porada, S., Zhao, R., Van Der Wal, A., Presser, V., Biesheuvel, P. M. (2013). Review on the science and technology of water desalination by capacitive deionization. Progress in materials science, 58(8), 1388-1442.
[55] Prasanna, B. P., Avadhani, D. N., Muralidhara, H. B., Chaitra, K., Thomas, V. R., Revanasiddappa, M., Kathyayini, N. (2016). Synthesis of polyaniline/ZrO2 nanocomposites and their performance in AC conductivity and electrochemical supercapacitance. Bulletin of materials science, 39(3), 667-675.
[56] Abbas, Q., Pajak, D., Frąckowiak, E., Béguin, F. (2014). Effect of binder on the performance of carbon/carbon symmetric capacitors in salt aqueous electrolyte. Electrochimica acta, 140, 132-138.
[57] Huang, W. E. I., Zhang, Y., Bao, S., Song, S. (2013). Desalination by capacitive deionization with carbon-based materials as electrode: a review. Surface review and letters, 20(06), 1330003.
[58] Barbieri, O., Hahn, M., Herzog, A., Kötz, R. (2005). Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon, 43(6), 1303-1310.
[59] Ntakirutimana, S., Tan, W., Anderson, M. A., Wang, Y. (2020). Editors’ Choice—Review—Activated carbon electrode design: Engineering tradeoff with respect to capacitive deionization performance. journal of the electrochemical society, 167(14), 143501.
[60] Tian, S., Zhang, Z., Zhang, X., Ostrikov, K. K. (2019). Capacitative deionization using commercial activated carbon fiber decorated with polyaniline. Journal of colloid and interface science, 537, 247-255.
[61] Yan, C., Zou, L., Short, R. (2014). Polyaniline-modified activated carbon electrodes for capacitive deionization. Desalination, 333(1), 101-106.
[62] Xu, G., Wang, N., Wei, J., Lv, L., Zhang, J., Chen, Z., Xu, Q. (2012). Preparation of graphene oxide/polyaniline nanocomposite with assistance of supercritical carbon dioxide for supercapacitor electrodes. Industrial & engineering chemistry research, 51(44), 14390-14398.
[63] Srinivasan, P., Gottam, R. (2018). Infrared Spectra: Useful technique to identify the conductivity level of emeraldine form of poly-aniline and indication of conductivity measurement either two or four probe technique. Material. science. research. India, 15(3), 2009-2017.
[64] Shi, L., Wang, X., Lu, L., Yang, X., Wu, X. (2009). Preparation of TiO2/polyaniline nanocomposite from a lyotropic liquid crystalline solution. Synthetic Metals, 159(23-24), 2525-2529.
[65] Peng, Z., Zhang, D., Shi, L., Yan, T. (2012). High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionization. Journal of materials chemistry, 22(14), 6603-6612.
[66] Li, G., Cai, W., Zhao, R., Hao, L. (2019). Electrosorptive removal of salt ions from water by membrane capacitive deionization (MCDI): characterization, adsorption equilibrium, and kinetics. Environmental science and pollution research, 26(17), 17787-17796.
[67] Salitra, G., Soffer, A., Eliad, L., Cohen, Y., Aurbach, D. (2000). Carbon electrodes for double‐layer capacitors I. Relations between ion and pore dimensions. Journal of the electrochemical society, 147(7), 2486.
[68] Li, Y., Zhang, C., Jiang, Y., Wang, T. J., Wang, H. (2016). Effects of the hydration ratio on the electrosorption selectivity of ions during capacitive deionization. Desalination, 399, 171-177.
[69] Mubita, T. M., Dykstra, J. E., Biesheuvel, P. M., Van Der Wal, A., Porada, S. (2019). Selective adsorption of nitrate over chloride in microporous carbons. Water research, 164, 114885.
[70] Ota, K., Amano, Y., Aikawa, M., Machida, M. (2013). Removal of nitrate ions from water by activated carbons (ACs)—Influence of surface chemistry of ACs and coexisting chloride and sulfate ions. Applied surface science, 276, 838-842.
[71] Tang, K., Kim, Y. H., Chang, J., Mayes, R. T., Gabitto, J., Yiacoumi, S., Tsouris, C. (2019). Seawater desalination by over-potential membrane capacitive deionization: Opportunities and hurdles. Chemical engineering journal, 357, 103-111.
[72] Jiang, S., Wang, H., Xiong, G., Wang, X., Tan, S. (2018). Removal of nitrate using activated carbon-based electrodes for capacitive deionization. Water supply, 18(6), 2028-2034.
[73] Gan, L., Wu, Y., Song, H., Zhang, S., Lu, C., Yang, S., Li, A. (2019). Selective removal of nitrate ion using a novel activated carbon composite carbon electrode in capacitive deionization. Separation and purification technology, 212, 728-736.
[74] Pastushok, O., Zhao, F., Ramasamy, D. L., Sillanpää, M. (2019). Nitrate removal and recovery by capacitive deionization (CDI). Chemical engineering journal, 375, 121943.