Investigation of photocatalytic degradation of 2,4-dichlorophenol by heat treated Fe3O4/TiO2/Ag loaded polycaprolactone/polyethylenglycole electrospun nanofibers

Document Type : Research Paper

Authors

1 Department of Chemical Engineering, Faculty of Engineering, University of Guilan, Guilan, Rasht, Iran

2 Department of Textile Engineering, Faculty of Engineering, University of Guilan, Guilan, Rasht, Iran

Abstract

The electrospinning technique is utilized to physically load Fe3O4/TiO2/Ag nanoparticles on polycaprolactone/polyethylene glycol (PCL/PEG) nanofibers scaffold for oxidative decomposition of 2, 4-dichlorophenol as a model organic pollutant. The scaffold is used in order to eliminate the need for separation of the catalyst after treatment, thus, making the catalyst system recyclable and reusable. Prepared nanofibers were thermally processed to change the morphology to crystalline form to make them transparent to visible light, which is a necessity for the function of photocatalysts. Different analysis techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), UV/Vis spectrophotometry (UV–Vis), and field emission electron microscopy (FESEM) were implemented to identify and characterize the presented products. Kinetic performance of both the particulate system and nanofiber system was determined. The prepared products demonstrated good catalytic activity by 53%, decomposing the target pollutant in 180 minutes of visible light exposure. The new catalyst-loaded nanofiber system maintained the decomposition performance of the particulate system and improved its reusability. Although this scaffold nanofiber-based system demonstrates slightly lower pollutant removal performance in the first run compared to the ternary non-fixed particle system (53.12% vs 54.74%), it outperforms the non-fixed particulate system in the 2nd and 3rd runs. The decomposition rate improved from 52.37% to 52.81% in the 2nd run and from 48.08 to 51.02% for the 3rd run. This photocatalytic system can be used as a reusable efficient catalyst for oxidative decomposing of 2, 4-dichlorophenol.

Keywords

Main Subjects


  1. (2011). Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. Journal of environmental management, 92(3), 311-330.

[2] Babuponnusami, A., Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of environmental chemical engineering, 2(1), 557-572.

[3] Devi, L. G., Kavitha, R. (2013). A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity. Applied catalysis B: Environmental, 140, 559-587.

[4] Cabiscol Català, E., Tamarit Sumalla, J., Ros Salvador, J. (2000). Oxidative stress in bacteria and protein damage by reactive oxygen species. International microbiology, 2000, 3 (1), 3-8.

[5] Valavanidis, A., Vlahogianni, T., Dassenakis, M., Scoullos, M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and environmental safety, 64(2), 178-189.

[6] Aguilar, C. H., Pandiyan, T., Arenas-Alatorre, J. A., Singh, N. (2015). Oxidation of phenols by TiO2Fe3O4M (M= Ag or Au) hybrid composites under visible light. Separation and purification technology, 149, 265-278.

[7] Bergendahl, J., O’Shaughnessy, J., (2004). Applications of advanced oxidation for wastewater treatment, International business and education conference: A focus on water management, Worcester polytechnic institute.

[8] Daghrir, R., Drogui, P., Robert, D. (2013). Modified TiO2 for environmental photocatalytic applications: a review. Industrial and engineering chemistry research, 52(10), 3581-3599.

[9] Kumar, S. G., Devi, L. G. (2011). Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. The journal of physical chemistry A, 115(46), 13211-13241.

[10] Sarteep, Z., Ebrahimian Pirbazari, A., Aroon, M. A. (2016). Silver doped TiO2 nanoparticles: preparation, characterization and efficient degradation of 2, 4-dichlorophenol under visible light. Journal of water and environmental Nanotechnology, 1(2), 135-144.

[11] Blake, D. M., Webb, J., Turchi, C., Magrini, K. (1991). Kinetic and mechanistic overview of TiO2-photocatalyzed oxidation reactions in aqueous solution. Solar energy materials, 24(1-4), 584-593.

[12] Choi, H., Al-Abed, S. R., Dionysiou, D. D., Stathatos, E., Lianos, P. (2010). TiO2-based advanced oxidation nanotechnologies for water purification and reuse. Sustainability science and engineering, 2, 229-254.

[13] Guo, M., Du, J. (2012). First-principles study of electronic structures and optical properties of Cu, Ag, and Au-doped anatase TiO2. Physica B: Condensed matter, 407(6), 1003-1007.

[14] Kiyonaga, T., Mitsui, T., Torikoshi, M., Takekawa, M., Soejima, T., Tada, H. (2006). Ultrafast photosynthetic reduction of elemental sulfur by Au nanoparticle-loaded TiO2. The journal of physical chemistry B, 110(22), 10771-10778.

[15] Jiang, L., Wang, Y., Feng, C. (2012). Application of photocatalytic technology in environmental safety. Procedia engineering, 45, 993-997.

[16] Fang, Y., Jiao, Y., Xiong, K., Ogier, R., Yang, Z. J., Gao, S., Kall, M. (2015). Plasmon enhanced internal photoemission in antenna-spacer-mirror based Au/TiO2 nanostructures. Nano letters, 15(6), 4059-4065.

[17] Lin, Y., Geng, Z., Cai, H., Ma, L., Chen, J., Zeng, J., Wang, X. (2012). Ternary graphene–TiO2–Fe3O4 nanocomposite as a recollectable photocatalyst with enhanced durability. European journal of inorganic chemistry, 2012(28), 4439-4444.

[18] Dominguez, S., Ribao, P., Rivero, M. J., Ortiz, I. (2015). Influence of radiation and TiO2 concentration on the hydroxyl radicals generation in a photocatalytic LED reactor. Application to dodecylbenzenesulfonate degradation. Applied catalysis B: Environmental, 178, 165-169.

[19] Morales, J., Maldonado, A., Olvera, M. D. L. L. (2013, September). Synthesis and characterization of nanoestructured TiO2 anatase-phase powders obtained by the homogeneous precipitation method. In2013 10th international conference on electrical engineering, computing science and automatic control (CCE) (pp. 391-394). IEEE.

[20] Ahlborg, U. G., Thunberg, T. M., Spencer, H. C. (1980). Chlorinated phenols: occurrence, toxicity, metabolism, and environmental impact. CRC critical reviews in toxicology, 7(1), 1-35.

[21] Mohy Eldin, M. S., Aggour, Y. A., El-Aassar, M. R., Beghet, G. E., Atta, R. R. (2016). Development of nano-crosslinked polyacrylonitrile ions exchanger particles for dyes removal. Desalination and water treatment, 57(9), 4255-4266.

[22] Elzain, A. A., El-Aassar, M. R., Hashem, F. S., Mohamed, F. M., Ali, A. S. (2019). Removal of methylene dye using composites of poly (styrene-co-acrylonitrile) nanofibers impregnated with adsorbent materials. Journal of molecular liquids, 291, 111335.

[23] Lee, H. C., In, J. H., Kim, J. H., Hwang, K. Y., Lee, C. H. (2005). Kinetic analysis for decomposition of 2, 4-dichlorophenol by supercritical water oxidation. Korean journal of chemical engineering, 22(6), 882-888.

[24] Alsohaimi, I. H., El-Aassar, M. R., Elzain, A. A., Alshammari, M. S., Ali, A. S. (2020). Development of activated carbon-impregnated alginate* β-cyclodextrin/gelatin beads for highly performance sorption of 2, 4-dichlorophenol from wastewater. Journal of materials research and technology, 9(3), 5144-5153.

[25] El-Aassar, M. R., Alsohaimi, I. H., Ali, A. S., Elzain, A. A. (2020). Removal of phenol and Bisphenol A by immobilized Laccase on poly (Acrylonitrile-co-Styrene/Pyrrole) nanofibers. Separation science and technology, 55(15), 2670-2678.

[26] Dionysiou, D. D., Khodadoust, A. P., Kern, A. M., Suidan, M. T., Baudin, I., Laîné, J. M. (2000). Continuous-mode photocatalytic degradation of chlorinated phenols and pesticides in water using a bench-scale TiO2 rotating disk reactor. Applied catalysis B: environmental, 24(3-4), 139-155.

[27] Arnoldsson, K., Andersson, P. L., Haglund, P. (2012). Formation of environmentally relevant brominated dioxins from 2, 4, 6,-tribromophenol via bromoperoxidase-catalyzed dimerization. Environmental science and technology, 46(13), 7239-7244.

[28] Bandara, J., Mielczarski, J. A., Lopez, A., Kiwi, J. (2001). 2. Sensitized degradation of chlorophenols on iron oxides induced by visible light: comparison with titanium oxide. Applied catalysis B: Environmental, 34(4), 321-333.

[29] Yan, H., Wang, R., Liu, R., Xu, T., Sun, J., Liu, L., Wang, J. (2021). Recyclable and reusable direct Z-scheme heterojunction CeO2/TiO2 nanotube arrays for photocatalytic water disinfection. Applied catalysis B: Environmental, 291, 120096.

[30] Donga, C., Mishra, S. B., Abd-El-Aziz, A. S., Mishra, A. K. (2021). Advances in graphene-based magnetic and graphene-based/TiO2 nanoparticles in the removal of heavy metals and organic pollutants from industrial wastewater. Journal of inorganic and organometallic polymers and materials, 31(2), 463-480.

[31] Al-Madanat, O., Curti, M., Günnemann, C., AlSalka, Y., Dillert, R., Bahnemann, D. W. (2021). TiO2 photocatalysis: Impact of the platinum loading method on reductive and oxidative half-reactions. Catalysis today, 380, 3-15.

[32] Zhang, L., Wu, Z., Chen, L., Zhang, L., Li, X., Xu, H., Zhu, G. (2016). Preparation of magnetic Fe3O4/TiO2/Ag composite microspheres with enhanced photocatalytic activity. Solid state sciences, 52, 42-48.

[33] Fàbrega, C., Andreu, T., Cabot, A., Morante, J. R. (2010). Location and catalytic role of iron species in TiO2: Fe photocatalysts: An EPR study. Journal of photochemistry and photobiology A: Chemistry, 211(2-3), 170-175.

[34] Zhao, Y., Tao, C., Xiao, G., Wei, G., Li, L., Liu, C., Su, H. (2016). Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@ TiO2@ Ag nanocomposites. Nanoscale, 8(9), 5313-5326.

[35] Zhu, J., Ren, J., Huo, Y., Bian, Z., Li, H. (2007). Nanocrystalline Fe/TiO2 visible photocatalyst with a mesoporous structure prepared via a nonhydrolytic sol− gel route. The journal of physical chemistry C, 111(51), 18965-18969.

[36] Mahmiani, Y., Sevim, A. M., Gül, A. (2016). Photocatalytic degradation of 4-chlorophenol under visible light by using TiO2 catalysts impregnated with Co (II) and Zn (II) phthalocyanine derivatives. Journal of photochemistry and photobiology A: Chemistry, 321, 24-32.

[37] Yang, M. Q., Zhang, N., Wang, Y., Xu, Y. J. (2017). Metal-free, robust, and regenerable 3D graphene–organics aerogel with high and stable photosensitization efficiency. Journal of catalysis, 346, 21-29.

[38] Karakas, K., Celebioglu, A., Celebi, M., Uyar, T., Zahmakiran, M. (2017). Nickel nanoparticles decorated on electrospun polycaprolactone/chitosan nanofibers as flexible, highly active and reusable nanocatalyst in the reduction of nitrophenols under mild conditions. Applied catalysis B: Environmental, 203, 549-562.

[39] Wang, C., Yin, J., Han, S., Jiao, T., Bai, Z., Zhou, JPeng, Q. (2019). Preparation of palladium nanoparticles decorated polyethyleneimine/polycaprolactone composite fibers constructed by electrospinning with highly efficient and recyclable catalytic performances. Catalysts, 9(6), 559.

[40] Kim, G. H. (2008). Electrospun PCL nanofibers with anisotropic mechanical properties as a biomedical scaffold. Biomedical materials, 3(2), 025010.

[41] Wang, R., Wang, X., Xi, X., Hu, R., Jiang, G. (2012). Preparation and photocatalytic activity of magnetic Fe3O4/SiO2/TiO2 composites. Advances in materials science and engineering, 2012, 409379.

[42] Zavan, B., Gardin, C., Guarino, V., Rocca, T., Cruz Maya, I., Zanotti, F., Gasbarro, V. (2021). Electrospun PCL-based vascular grafts: In vitro tests. Nanomaterials, 11(3), 751.

[43] Reis, I. A., Cunha Claro, P. I., Marcomini, A. L., Capparelli Mattoso, L. H., da Silva, S. P., de Sena Neto, A. R. (2021). Annealing and crystallization kinetics of poly (lactic acid) pieces obtained by additive manufacturing. Polymer engineering and science, 61(7), 2097-2104.

[44] Rahmayeni, R., Arief, S., Stiadi, Y., Rizal, R., Zulhadjri, Z. (2012). Synthesis of magnetic nanoparticles of TiO2-NiFe2O4: characterization and photocatalytic activity on degradation of rhodamine B. Indonesian journal of chemistry, 12(3), 229-234.

[45] Morales, J., Maldonado, A., Olvera, M. D. L. L. (2013, September). Synthesis and characterization of nanoestructured TiO2 anatase-phase powders obtained by the homogeneous precipitation method. In 2013 10th international conference on electrical engineering, computing science and automatic control (CCE) (pp. 391-394). IEEE.

[46] Roy, K., Sarkar, C. K., Ghosh, C. K. (2015). Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion. Spectrochimica acta part A: Molecular and biomolecular spectroscopy, 146, 286-291.

[47] Yeo, S. J., Kang, H., Kim, Y. H., Han, S., Yoo, P. J. (2012). Layer-by-layer assembly of polyelectrolyte multilayers in three-dimensional inverse opal structured templates. ACS applied materials and interfaces, 4(4), 2107-2115.

[48] Asiltürk, M., Sayılkan, F., Arpaç, E. (2009). Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation. Journal of photochemistry and photobiology A: Chemistry, 203(1), 64-71.

[49] Wu, L., Li, A., Gao, G., Fei, Z., Xu, S., Zhang, Q. (2007). Efficient photodegradation of 2, 4-dichlorophenol in aqueous solution catalyzed by polydivinylbenzene-supported zinc phthalocyanine. Journal of molecular catalysis A: Chemical, 269(1-2), 183-189.