[1] Atlas, R. M., Bartha, R. (1998). Fundamentals and applications. 4th Ed., Benjamin/Cummings Publishing Co. Inc., California, USA, 523-530.
[2] Leung, M. (2004). Bioremediation: techniques for cleaning up a mess. Bioteach journal, 2, 18-22.
[3] Margesin, R., Zimmerbauer, A., Schinner, F. (2000). Monitoring of bioremediation by soil biological activities. Chemosphere, 40(4), 339-346.
[4] Macaulay, B. M., Rees, D. (2014). Bioremediation of oil spills: a review of challenges for research advancement. Annals of environmental science, 8, 9-37.
[5] Das, N., Chandran (2011). Microbial degradation of petroleum hydrocarbon contaminants. An overview. Biotechnology research international, ID-941810, 1-13.
[6] OSRRMS (Oil Spill Response and remediation management system) (2015). Sediment hydrocarbons in former mangrove arears, Southern Ogoni land, Eastern, Nigeria. In: Threats to mangrove forest: hazaeds, vulnerability and management, Nigeria.
[7] Baldrain, P. (2009). Microbial enzyme-catalyzed process in soils and their analysis. Plant soil and environment, 55, 370-378.
[8] Sinsabaugh, R. L. (2010). Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil biology and biochemistry, 42, 391-404.
[9] Karigar, C. S., Rao, S. S. (2011). Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme research, 7, 8051-8087.
[10] Bouyouces, G. J. (1962). Hydrometer method improved for making particle size analysis of soils. Agronmoy journal, 53, 464-465.
[11] Walkey, A., Black, I. A. (1934). An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil science, 37, 29-37.
[12] Allison, S. D., Jastrow, J. D. (2006). Activities of extracellular enzymes in physically isolated fractions of restored grassland soils. Soil biology and biochemistry, 38, 3245-3256.
[13] German, D. P., Weintraub, M. N., Grandy, A. S., Lauber, C. I., Rinkes, Z. L., Allison, S. D. (2011). Optimizing of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil biology and biochemistry, 43, 1387-1397.
[14] Bach, C. E., Warnock, D. D., Van Horn, D. J., Weintraub, M. N. Sinsabaugh, R. L., Allison, S. D., German, D. P. (2013). Measuring phenoil oxidase and peroxidase activities with pyrogallol, L-DOPA and ABTS: Effect of assay conditions and soil types. Soil biology and biochemistry, 67, 183-191.
[15] Saisuburamaniyan, N., Krithika, L., Dileena, K. P., Sivasuburamanian, S., Puvanakrishnan, R. (2004). Lipase assay in soils by copper soap colorimetry. Anal biochem, 330 (1), 70-73.
[16] Cohen, G., Dembiec, D., Marcus, J. (1970). Measurement of catalase activity in tissue extracts. Analytical biochemistry, 34, 30-38.
[17] Diaz, E. (2004). Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. International microbiology, 7, 173-180.
[18] Polyak, Y. M., Bakina, L. G., XChugunova, M. V., Mayachkina, N. V., Gerasimov, A. O., Bure, V. M. (2018). Effect of remediation strategies on biological activity of oil-contaminated soil- Afield study. International biodeterioration and biodegradation, 126, 57-68.
[19] Gupta, A., Joia, J., Sood, A., Sood, R., Sidhu, C., Kaur, G. (2016). Microbes as potential tool for remediation of heavy metals: a review Journal of microbial and biochemical technology, 8(4), 364-372.
[20] Assayanig, A., Amornkitticharoen, B., Ekpaisal, N., Meevootisom, V., Flegel, T. W. (1992). Isolation, characterization and function of laccase from Trichoderma. Applied microbiology and biotechnology, 38(2), 198-202.
[21] Viswanath, B., Rajesh, B., Janardhan, A., Kumar, A. P., Narasimha, G. (2014). Fungal laccases and their applications in bioremediation. Enzyme research, 163242.
[22 Heinzkill, M., Bech, L., Halkier, T., Schneider, P., Anke, T. (1998). Characterization of laccases and peroxidases from wood-rotting fungi (Family C oprinaceae). Applied and environmental microbiology, 64(5), 1601-1606.
[23] Minussi, R., Miranda, M., Silva, J., Ferreira, C., Aoyama, H., Marangoni, S., Rotilio, D., Pastore, G., Duran, N. (2007). Purification, characterization and application of laccase from Trametes versicolor for colour and phenolic removal of olive mill wastewater in the presence of 1-hydroxybenzotriazole. African journal of biotechnology, 6(10), 6.
[24] Thiruchelvam, A. T., Ramsay, J. A. (2007). Growth and laccase production kinetics of Trametes versicolor in a stirred tank reactor. Applied microbiology and biotechnology, 74(3), 547-554.
[25] Thurston, C. F. (1994). The structure and function of fungal laccases. Microbiology, 140(1), 19-26.
[26] Soden, D. M., Dobson, A. D. W. (2001). Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiology, 147(7), 1755-1763.
[27] Baldrian, P., Gabriel, J. (2002). Copper and cadmium increase laccase activity inPleurotus ostreatus. FEMS microbiology letters, 206(1), 69-74.
[28] Fenice, M., Sermanni, G. G., Federici, F., D'Annibale, A. (2003). Submerged and solid-state production of laccase and Mn-peroxidase by Panus tigrinus on olive mill wastewater-based media. Journal of biotechnology, 100(1), 77-85.
[29] Riffaldi, R., Levi-Minzi, R., Cardelli, R., Palumbo, S., Saviozzi, A. (2006). Soil biological activities in monitoring the bioremediation of diesel oil-contaminated soil. Water, air, and soil pollution, 170(1–4), 3-15.
[30] Mahmoud, F., Maqbool, Z., Hussan, S., Imran, M., Shahzad, A. T. A., Ahmed, Z., Azeem F., Muzammil, S. (2016). Prospects of using fungi as bioresource for bioremediation of pesticides in the environment, a critical review. Environmental science and pollution research, 23(17), 16904-16925.
[31] Ogbolosingha, A. J., Essien, E. B., Ohiri, R. C. (2015). Variation of lipase, catalase and dehydrogenase activities during bioremediation of crude oil polluted soil. Journal of environment and earth science, 5(14), 128-141.
[32] Ugochukwu, K. C., Agha, N. C., Ogbulie, J. N. (2008). Lipase activities of microbial isolates from soil contaminated with crude oil after bioremediation. African journal of biotechnology, 7(16), 2881-2884.
[33] Subhas, K. S., Robert, L. I. (1998). Bioremediation. Fundamentals and applications. Vol. 1. Technomic Publishing Company, Inc. Lancaster, Pennsylvannnia, 17604. USA.
[34] Achuba, F. I., Peretiemo-Clarke, B. O. (2008). Effect of spent engine oil on soil catalase and dehydrogenase activities. International agrophysics, 22(1), 1-4.
[35] Ajao, A. T., Oluwajobi, A. O., Olatayo, V. S. (2011). Bioremediation of soil microcosms from auto-mechanic workshops. Journal of applied sciences and environmental management, 15(3), 473-477.
[36] Achuba, F. I., Okoh, P. N. (2014). Effect of petroleum products on soil catalase and dehydrogenase activities. Open journal of soil science, 4(12), 399.
[37] Margesin, R., Hämmerle, M., Tscherko, D. (2007). Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: effects of hydrocarbon concentration, fertilizers, and incubation time. Microbial ecology, 53(2), 259-269.
[38] Hiner, N. P. A., Raven, E. L., Thorneley, R. N. F., Gracia-Canovas, F., Rodrigue-Lopez, J. N. (2002). Mechanism of compound formation in heme peroxidases. Journal of inorganic biochemistry, 91(1), 27-34.
[39] Koua, D., Cerutti, L., Falquet, L., Sigrist, C. J. A., Theiler, G., Hulo, N., Dunand, C. (2009). PeroxiBase: a database with new tools for peroxidase family classification. Nucleic acids research, 37, 261-266.