Characterization and Kinetic study of PAH–degrading Sphingopyxis ummariensis bacteria isolated from a petrochemical wastewater treatment plant

Document Type : Research Paper


1 Department of Chemical Technologies, Iranian Research Organization for Science and technology

2 Department of Biotechnology, Iranian Research Organization for Science and Technology

3 Department of Chemical Technologies, Iranian Research Organization for Science and Technology


The expansion of a microbial bank for the degradation of polycyclic aromatic hydrocarbons (PAHs) is crucial for removal of these persistent pollutants. In this study, five gram-negative, aerobic, non-fermentative bacterial strains (III-R3, IV-P11, IV-P13, IV-R13, and V-P18) were isolated from the activated sludge of a petrochemical wastewater treatment plant using enrichment pro­ tocol based on phenanthrene. The isolates were capable of utilizing phenanthrene, anthracene, and pyrene as a sole carbon and energy source in an aerobic batch aqueous system. The PAHs biodegradation yields were evaluated by gas chromatography and the bacterial isolates were identified using the 16S rRNA sequencing method. A first-order kinetic model provided the best fit to the phenanthrene degradation profiles with a correlation coefficient value of 0.95-0.98. The phenanthrene biodegradation rate constants and half-lives were measured at the range 0.653--Q.878 day-' and 0.79-1.06 day, respectively. Lower values of Anthracene degradation re­ sulted with the isolates of the current study, while a relatively high percentage of the removal of Pyrene was obtained by some of the isolates. The data obtained in this study shows that bacterial isolates have degradation preference over Mycobacterium sp. and Pseudomonas aeruginosa; and they are comparable with Pseudomonas stutzeri, Sphingomonas sp., and microbial consortium applied by other researchers. Analysis of the 16S rDNA gene sequence, when compared with the GenBank, indicates that all the strains belong to the genus Sphingopyxis with the nearest type strain being Sphingopyxis ummariensis Ul2 (MTCC 8591T). It is the first time that Sphingopyxis ummariensis is reported for its capability in the degradation of PAHs.


Main Subjects

[1] Sponza, D. T.,  Gök, O. (2010). Effect of rhamnolipid on the aerobic removal of polyaromatic hydrocarbons (PAHs) and COD components from petrochemical wastewater.Bioresource technology,101(3), 914-924.
[2] Sang, L. Z., Wei, X. Y., Chen, J. N., Zhu, Y. X.,  Zhang, Y.(2009). Simultaneous fluorimetric determination of the biodegradation processes of dissolved multi-component PAHs. Talanta, 78 (4), 1339-1344.
[3] Li, J. L., Chen, B. H. (2009). Surfactant-mediated biodegradation of polycyclic aromatic hydrocarbons. Materials, 2(1), 76-94.
[4] Zhao, H. P., Wu, Q. S., Wang, L., Zhao, X. T., Gao, H.W. (2009). Degradation of phenanthrene by bacterial strain isolated from soil in oil refinery fields in Shanghai China. Journal of hazardous materials, 164(2), 863-869.
[5] Boopathy, R. (2000). Factors limiting bioremediation technologies. Bioresource technology, 74(1), 63-67.
[6] Pantsyrnaya, T., Blanchard, F., Delaunay, S., Goergen, J.L., Guédon, E., Guseva, E.,  Boudrant, J. (2011). Effect of surfactants, dispersion and temperature on solubility and biodegradation of phenanthrene in aqueous media.Chemosphere, 83(1), 29-33.
[7] Haritash, A. K., Kaushik, C. P. (2009). Biodegradationaspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of hazardous materials, 169(1), 1-15.
[8] Weissenfels, W. D. Beyer. M., and Klein. J. (1990). Degradation of phenanthrene, fluorine and fluoranthene by pure culture bacterial strains. Applied microbiology and biotechnology, 32, 479-484.
[9] Guo, W., Li, D., Tao, Y., Gao, P.,  Hu, J. (2008). Isolation and description of a stable carbazole-degrading microbial consortium consisting of Chryseobacterium sp.NCY and Achromobacter sp. NCW. Current microbiology,57(3),251-257.
[10] Dean-Ross, D., Moody, J.,  Cerniglia, C. E. (2002). Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment. FEMS microbiology ecology, 41(1), 1-7.
[11] Kim, T. J., Lee, E. Y., Kim, Y. J., Cho, K. S.,  Ryu, H. W.(2003). Degradation of polyaromatic hydrocarbons by Burkholderia cepacia 2A-12. World journal of microbiology and biotechnology,
19(4), 411-417.
[12] Mohamed, M. E., Al-Dousary, M., Hamzah, R. Y.,Fuchs, G. (2006). Isolation and characterization of indigenous thermophilic bacteria active in natural attenuation of bio-hazardous petrochemical pollutants.International biodeterioration and biodegradation, 58(3),213-223.
[13] Madueño, L., Coppotelli, B. M., Alvarez, H. M.,  Morelli, I. S. (2011). Isolation and characterization of indigenous soil bacteria for bioaugmentation of PAH contaminated soil of semiarid Patagonia, Argentina.International biodeterioration and  biodegradation,65(2),345-351.
[14] Zeng, J., Lin, X., Zhang, J.,  Li, X. (2010). Isolation of polycyclic aromatic hydrocarbons (PAHs)-degrading Mycobacterium sp. and the degradation in soil. Journal of hazardous materials, 183(1), 718-723.
[15] Bogart, A.H., Hemmingsen, B.B. (1992). Enumeration of phenanthrened–degrading bacteria by an overlayer technique and its use in evaluation of petroleum–contaminated sites. Applied and environmental microbiology,8,2579–2582.
[16] Boone, D. R., Castenholz, R. W., Garrity, G. M., Brenner,D. J., Krieg, N. R.,  Staley, J. T. (Eds.). (2005). Bergey’s Manual® of Systematic Bacteriology (Vol. 2). Springer Science and Business Media.
[17] DNeasy®, 2006. Blood and Tissue Handbook, DNeasy blood and tissue kit for purification of total DNA from
animal blood, animal tissue, rodent tails, ear punches,cultured cells, fixed tissue, bacteria, insects. Available
via QIAGEN Group.
[18] Johnsen, A. R.,  Karlson, U. (2004). Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons. Applied microbiology and biotechnology, 63(4), 452-459.
[19] Moody, J. D., Freeman, J. P., Doerge, D. R.,  Cerniglia, C. E. (2001). Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Applied and environmental microbiology, 67(4), 1476-1483.
[20] Jacques, R. J., Santos, E. C., Bento, F. M., Peralba, M. C.,Selbach, P. A., Sá, E. L., & Camargo, F. A. (2005). Anthracene biodegradation by Pseudomonas sp. isolated from a petrochemical sludge landfarming site. International biodeterioration & biodegradation, 56(3), 143-150.
[21] Moscoso, F., Deive, F. J., Longo, M. A., & Sanromán, S.Shokrollahzadeh et al. / Advances in Environmental Technology 1 (2015) 1-9 9 M. A. (2012). Technoeconomic assessment of phenanthrene
degradation by Pseudomonasstutzeri CECT 930 in a batch bioreactor.Bioresource technology, 104, 81-89.
[22] Kobayashi, T., Murai, Y., Tatsumi, K.,  Iimura, Y. (2009).Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. enhanced by water-extractable organic matter from manure compost.
Science of the total environment, 407(22), 5805-5810.
[23] Yuan, S. Y., Chang, J. S., Yen, J. H.,  Chang, B. V. (2001).Biodegradation of phenanthrene in river sediment. Chemosphere, 43(3), 273-278.
[24] Sharma, P., Verma, M., Bala, K., Nigam, A.,  Lal, R.(2010). Sphingopyxis ummariensis sp. nov., isolated from a hexachlorocyclohexane dump site. International journal of systematic and evolutionary microbiology, 60(4),780-784.
[25] Straube, W. L., Jones-Meehan, J., Pritchard, P. H., Jones, W. R. (1999). Bench-scale optimization of bioaugmentation strategies for treatment of soils contaminated with high molecular weight polyaromatic hydrocarbons.Resources,conservation and recycling, 27(1), 27-37.
[26] Rentz, J. A., Alvarez, P. J.,  Schnoor, J. L. (2008). Benzo[a] pyrene degradation by Sphingomonas yanoikuyae JAR02.Environmental pollution, 151(3), 669-677.
[27] Cutright, T. J. (1995). Polycyclic aromatic hydrocarbon biodegradation and kinetics using Cunninghamella echinulatavar.elegans.International biodeterioration and biodegradation,35(4),397-408.
[28] Deive, F. J., Rodríguez, A., Varela, A., Rodrígues, C., Leitao,M.C.,Houbraken,J.A.,Pereira,C.S.(2011).
Impact of ionic liquids on extreme microbial biotypes from soil.Green chemistry,13(3), 687-696.